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1. Introduction

Consider the following damped vibration problem{
−ü(t)− q(t)u̇(t) +A(t)u(t) = λ∇F (t, u(t)) a.e. t ∈ [0, T ],
u(0)− u(T ) = u̇(0)− u̇(T ) = 0

(1)

where T > 0, q ∈ L1(0, T ;R), Q(t) =
∫ t

0
q(s)ds for all t ∈ [0, T ], Q(T ) = 0, A :

[0, T ] → RN×N is a continuous map from the interval [0, T ] to the set of N -order
symmetric matrices, λ > 0, µ ≥ 0 and F : [0, T ]×RN → R is measurable with respect
to t, for all u ∈ RN , continuously differentiable in u, for almost every t ∈ [0, T ],
satisfies the following standard summability condition

sup
|ξ|≤a

max{|F (·, ξ)|, |∇F (·, ξ)|} ∈ L1([0, T ]) (2)

for any a > 0, and F (t, 0, . . . , 0) = 0 for all t ∈ [0, T ].
Assume that ∇F is continuous in [0, T ]× RN , then the condition (2) is satisfied.
Inspired by the monographs [19, 20], the existence and multiplicity of periodic solu-

tions for Hamiltonian systems, as a special case of dynamical systems which are very
important in the study of fluid mechanics, gas dynamics, nuclear physics and relativis-
tic mechanics, have been investigated in many papers (see [1, 4, 5, 11, 12, 14, 15, 22, 24]
and the references therein). For example, [11] Cordaro established a multiplicity result
to an eigenvalue problem related to second-order Hamiltonian systems, and proved
the existence of an open interval of positive eigenvalues in which the problem admits
three distinct periodic solutions. In [14] Faraci studied the multiplicity of solutions
of a second order nonautonomous system. In [4] Bonanno and Livrea ensured the
existence of infinitely many periodic solutions for a class of second-order Hamiltonian
systems under an appropriate oscillating behavior of the nonlinear term. Moreover,
they obtained the multiplicity of periodic solutions for the system with a coercive
potential and also in the noncoercive case.
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Moreover, very recently, some researchers have paid attention to the existence
and multiplicity of solutions for damped vibration problems by using the variational
method, for instance, see [8, 9, 10, 17, 23, 25, 26, 27] and references therein. For
example, the authors in [26] based on variational methods and critical point theory
studied the existence of one solution and multiple solutions for damped vibration
problems. Wu and Chen in [25] based on variational principle presented three ex-
istence theorems for periodic solutions of a class of damped vibration problems. In
[27] the authors by a symmetric mountain pass theorem and a generalized mountain
pass theorem, an existence result and a multiplicity result of homoclinic solutions of
damped vibration problems. Chen in [8, 9] studied a class of non-periodic damped
vibration systems with subquadratic terms and with asymptotically quadratic terms,
respectively, and obtained infinitely many nontrivial homoclinic orbits by a variant
fountain theorem developed recently by Zou [29]. In [17] using variational methods
and critical point theory the existence of three distinct weak solutions for a class of
perturbed damped vibration problems with nonlinear terms depending on two real
parameters was investigated.

In the present paper, motivated by [26], using a very recent local minimum theo-
rem for differentiable functionals due to Bonanno [2, Theorem 5.1](Theorem 2.1), we
establish the existence of at least one non-trivial solution for the problem (1) for any
fixed positive parameter λ belonging to an exact interval.

2. Preliminaries

Our main tool is a local minimum theorem, very recently obtained by Bonanno
[2, Theorem 5.1] that we here recall in its equivalent formulation [2, Proposition 2.1
and Remark 2.1]) (see also [21] for the related result).

For a given non-empty set X, and two functionals Φ,Ψ : X → R, we define the
following functions

ϑ(r1, r2) = inf
v∈Φ−1(]r1,r2[)

supu∈Φ−1(]r1,r2[) Ψ(u)−Ψ(v)

r2 − Φ(v)

and

ρ(r1, r2) = sup
v∈Φ−1(]r1,r2[)

Ψ(v)− supu∈Φ−1(]−∞,r1[) Ψ(u)

Φ(v)− r1

for all r1, r2 ∈ R, r1 < r2.

Theorem 2.1. [2, Theorem 5.1] Let X be a real Banach space; Φ : X → R be
a sequentially weakly lower semicontinuous, coercive and continuously Gâteaux dif-
ferentiable function whose Gâteaux derivative admits a continuous inverse on X∗,
Ψ : X → R be a continuously Gâteaux differentiable function whose Gâteaux deriva-
tive is compact. Assume that there are r1, r2 ∈ R, r1 < r2, such that

ϑ(r1, r2) < ρ(r1, r2).

Then, setting Iλ := Φ−λΨ, for each λ ∈] 1
ρ(r1,r2) ,

1
ϑ(r1,r2) [ there is u0,λ ∈ Φ−1(]r1, r2[)

such that Iλ(u0,λ) ≤ Iλ(u) ∀u ∈ Φ−1(]r1, r2[) and I ′λ(u0,λ) = 0.

For more details on Theorem 2.1, we refer the reader to [3, 6, 7, 13, 16, 18], where
it has already been applied to nonlinear second-order differential problems.
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We assume that the matrix A satisfies the following conditions:
(A1) A(t) = (akl(t)), k = 1, . . . , N , l = 1, . . . , N , is a symmetric matrix with

akl ∈ L∞[0, T ] for any t ∈ [0, T ],
(A2) there exists δ > 0 such that (A(t)ξ, ξ) ≥ δ|ξ|2 for any ξ ∈ RN and a.e.

t ∈ [0, T ], where (·, ·) denotes the inner product in RN .
Let us recall some basic concepts. Denote

E = {u : [0, T ]→ RN | u is absolutely continuous, u(0) = u(T ), u̇ ∈ L2([0, T ],RN )}

with the inner product

≺ u, v �E=

∫ T

0

[(u̇(t), v̇(t)) + (u(t), v(t))]dt.

The corresponding norm is defined by

‖u‖E =
(∫ T

0

(|u̇(t)|2 + |u(t)|2)dt
) 1

2 ∀ u ∈ E.

For every u, v ∈ E, we define

≺ u, v �=

∫ T

0

[eQ(T )(u̇(t), v̇(t)) + eQ(T )(A(t)u(t), v(t))]dt,

and we observe that, by the assumptions (A1) and (A2), it defines an inner product
in E. Then E is a separable and reflexive Banach space with the norm

‖u‖ =≺ u, u � 1
2 , ∀u ∈ E.

Obviously, E is an uniformly convex Banach space.
Clearly, the norm ‖ · ‖ is equivalent to the norm ‖ · ‖E (see [15]).
Since (E, ‖ · ‖) is compactly embedded in C([0, T ],RN ) (see [19]), there exists a

positive constant c such that

‖u‖∞ ≤ c ‖ u ‖, (3)

where ‖u‖∞ = maxt∈[0,T ] | u(t) |.
We mean by a (weak) solution of the problem (1), any function u ∈ E such that∫ T

0

eQ(t)(u̇(t), v̇(t))dt+

∫ T

0

eQ(t)(A(t)u(t), v(t))dt−λ
∫ T

0

eQ(t)(∇F (t, u(t)), v(t))dt = 0

for every v ∈ E.

3. Main result

Given a non-negative constant θ and a nonzero point x0 ∈ RN such that

θ 6= c|x0|
(

(

N∑
i,j=1

‖aij‖∞)

∫ T

0

eQ(t)dt
) 1

2

,

put

a(θ, x0) :=

∫ T
0
eQ(t) sup|ξ|≤θ F (t, ξ)dt−

∫ T
0
eQ(t)F (t, x0)dt

θ2 − c2|x0|2(
∑N
i,j=1 ‖aij‖∞)

∫ T
0
eQ(t)dt

.

We formulate our main result as follows.
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Theorem 3.1. Suppose that Assumptions (A1) and (A2) hold. Assume that there
exist a non-negative constant θ1, a positive constant θ2 and a nonzero point x0 ∈ RN
with

θ1

c(δ
∫ T

0
eQ(t)dt)

1
2

< |x0| <
θ2

c((
∑N
i,j=1 ‖aij‖∞)

∫ T
0
eQ(t)dt)

1
2

such that
(a1) a(θ2, x0) < a(θ1, x0).

Then, for any λ ∈
]

1

2c2
1

a(θ1, x0)
,

1

2c2
1

a(θ2, x0)

[
the problem (1) admits at least one

non-trivial solution u0 ∈ E such that
θ1

c
< ||u0|| <

θ2

c
.

Proof. In order to apply Theorem 2.1 to our problem, we takeX = E and we introduce
the functionals Φ, Ψ : X → R defined as follows

Φ(u) =
1

2
‖u‖2

and

Ψ(u) =

∫ T

0

eQ(t)(F (t, u(t))dt

for every u ∈ X. It is well known that Ψ is a differentiable functional whose differential
at the point u ∈ X is

Ψ′(u)(v) =

∫ T

0

eQ(t)(∇F (t, u(t)), v(t))dt,

for every v ∈ X. Ψ′ : X → X∗ is a compact operator. Indeed, it is enough to show
that Ψ′ is strongly continuous on X. For this end, for fixed u ∈ X, let un → u weakly
in X as n→∞, then un converges uniformly to u on [0, T ] as n→∞; see [19]. Since
F is continuously differentiable in u for almost every t ∈ [0, T ], ∇F is continuous in
RN for every t ∈ [0, T ], so

∇F (t, un)→ ∇F (t, u) as n→∞.
Hence, Ψ′(un)→ Ψ′(u) as n→∞. Thus we proved that Ψ′ is strongly continuous on
X, which implies that Ψ′ is a compact operator by Proposition 26.2 of [28]. Moreover,
Φ is continuously differentiable whose differential at the point u ∈ X is

Φ′(u)(v) =

∫ T

0

eQ(t)(u̇(t), v̇(t))dt+

∫ T

0

eQ(t)(A(t)u(t), v(t))dt,

for every v ∈ X. Since Φ′ is uniformly monotone onX, coercive and hemicontinuous in
X, applying [28, Theorem 26. A] it admits a continuous inverse on X∗. Furthermore,

Φ is sequentially weakly lower semicontinuous. Now, put r1 :=
1

2
(
θ1

c
)2, r2 :=

1

2
(
θ2

c
)2

and w(t) := x0 for all t ∈ [0, T ]. We clearly observe that w ∈ X and

1

2
|x0|2δ

∫ T

0

eQ(t)dt ≤ Φ(w) ≤ 1

2
|x0|2(

N∑
i,j=1

‖aij‖∞)

∫ T

0

eQ(t)dt.

This together with the condition

θ1

c(δ
∫ T

0
eQ(t)dt)

1
2

< |x0| <
θ2

c((
∑N
i,j=1 ‖aij‖∞)

∫ T
0
eQ(t)dt)

1
2
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yields

r1 < Φ(w) < r2.

Bearing (3) in mind, we see that

Φ−1(]−∞, r2[) = {u ∈ X; Φ(u) < r2}

=

{
u ∈ X;

||u||2

2
< r2

}
⊆ {u ∈ X; |u(t)| ≤ θ2 for each t ∈ [0, T ]} ,

and it follows that

sup
u∈Φ−1(]−∞,r2[)

Ψ(u) = sup
u∈Φ−1(]−∞,r2[)

∫ T

0

eQ(t)F (t, u(t))dt ≤
∫ T

0

eQ(t) sup
|ξ|≤θ2

F (t, ξ)dt.

Therefore, one has

β(r1, r2) ≤
supu∈Φ−1(]−∞,r2[) Ψ(u)−Ψ(w)

r2 − Φ(w)

≤
∫ T

0
eQ(t) sup|ξ|≤θ2F (t, ξ)dt−Ψ(w)

r2 − Φ(w)

≤
∫ T

0
eQ(t) sup|ξ|≤θ2 F (t, ξ)dt−

∫ T
0
eQ(t)F (t, x0)dt

1

2
(
θ2

c
)2 − 1

2
|x0|2(

∑N
i,j=1 ‖aij‖∞)

∫ T
0
eQ(t)dt

=
2c2(

∫ T
0
eQ(t) sup|ξ|≤θ2 F (t, ξ)dt−

∫ T
0
eQ(t)F (t, x0)dt)

θ2
2 − c2|x0|2(

∑N
i,j=1 ‖aij‖∞)

∫ T
0
eQ(t)dt

= 2c2a(θ2, x0).

On the other hand, arguing as before, one has

ρ(r1, r2) ≥
Ψ(w)− supu∈Φ−1(]−∞,r1[) Ψ(u)

Φ(w)− r1

≥
Ψ(w)−

∫ T
0
eQ(t) sup|ξ|≤θ1 F (t, ξ)dt

Φ(w)− r1

≥
∫ T

0
eQ(t)F (t, x0)dt−

∫ T
0
eQ(t) sup|ξ|≤θ1 F (t, ξ)dt

1

2
|x0|2(

∑N
i,j=1 ‖aij‖∞)

∫ T
0
eQ(t)dt− 1

2
(
θ1

c
)2

=
2c2(

∫ T
0
eQ(t)F (t, x0)dt−

∫ T
0
eQ(t) sup|ξ|≤θ1 F (t, ξ)dt)

c2|x0|2(
∑N
i,j=1 ‖aij‖∞)

∫ T
0
eQ(t)dt− θ2

1

= 2c2a(θ1, x0).

Hence, from Assumption (a2), one has β(r1, r2) < ρ(r1, r2). Therefore, employing

Theorem 2.1, for each λ ∈
]

1
2c2

1
a(θ1,x0) ,

1
2c2

1
a(θ2,x0)

[
, the functional Φ − λΨ admits

at least one critical point u0 ∈ X such that r1 < Φ(u) < r2, that is θ1
c < ||u0|| <

θ2
c . Since the solutions of the problem (1) are exactly the solutions of the equation

Φ′(u)− λΨ′(u) = 0 (see [26, Theorem 2.2]), we have the conclusion. �
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Now, we point out an immediate consequence of Theorem 3.1.

Theorem 3.2. Suppose that Assumptions (A1) and (A2) hold. Assume that there
exist a positive constant θ and a nonzero point x0 ∈ RN with

|x0| <
θ

c((
∑N
i,j=1 ‖aij‖∞)

∫ T
0
eQ(t)dt)

1
2

such that

(a2)

∫ T
0
eQ(t) sup|ξ|≤θ F (t, ξ)dt

θ2
<

1

c2|x0|2(
∑N
i,j=1 ‖aij‖∞)

∫ T
0
eQ(t)dt

∫ T
0
eQ(t)F (t, x0)dt;

(a3) F (t, 0) = 0 for a.e. t ∈ [0, T ].

Then, for every λ ∈
] |x0|2(

∑N
i,j=1 ‖aij‖∞)

∫ T
0
eQ(t)dt

2
∫ T

0
eQ(t)F (t, x0)dt

,
θ2

2c2
∫ T

0
eQ(t) sup|ξ|≤θ F (t, ξ)dt

[
the problem (1) admits at least one non-trivial solution u0 ∈ E such that ‖u0‖∞ < θ.

Proof. The conclusion follows from Theorem 3.1, by taking θ1 = 0 and θ2 = θ. Indeed,
owing to Assumptions (a2) and (a3), one has

a(θ, x0) =

∫ T
0
eQ(t) sup|ξ|≤θ F (t, ξ)dt−

∫ T
0
eQ(t)F (t, x0)dt

θ2 − c2|x0|2(
∑N
i,j=1 ‖aij‖∞)

∫ T
0
eQ(t)dt

<

(
θ2

c2|x0|2(
∑N
i,j=1 ‖aij‖∞)

∫ T
0
eQ(t)dt

− 1)
∫ T

0
eQ(t)F (t, x0)dt

θ2 − c2|x0|2(
∑N
i,j=1 ‖aij‖∞)

∫ T
0
eQ(t)dt

=

∫ T
0
eQ(t)F (t, x0)dt

c2|x0|2(
∑N
i,j=1 ‖aij‖∞)

∫ T
0
eQ(t)dt

= a(0, x0)

Hence, taking (3) into account, the conclusion follows from Theorem 3.1. �

A consequence of Theorem 3.2 is the following existence result.

Theorem 3.3. Suppose that Assumptions (A1) and (A2) hold. Let b ∈ L1([0, T ])
such that b(t) ≥ 0 a.e. t ∈ [0, T ] and b 6≡ 0, G ∈ C1(RN ,R) such that G(0, . . . , 0) = 0
and

lim
x→0+

max
|ξ|≤x

G(ξ)

|x|2
= +∞. (4)

Then, for each λ ∈ (0, λ∗), where λ∗ :=
1

2c2
∫ T

0
eQ(t)b(t)dt

supθ>0
θ2

max|ξ|≤θ G(ξ) the

problem {
−ü(t)− q(t)u̇(t) +A(t)u(t) = λ∇b(t)G(u(t)) a.e. t ∈ [0, T ],
u(0)− u(T ) = u̇(0)− u̇(T ) = 0

(5)

admits at least a nontrivial periodic solution.

Proof. For fixed λ ∈ (0, λ∗), there exists a positive constant θ such that

λ <
1

2c2
∫ T

0
eQ(t)b(t)dt

θ2

max|ξ|≤θ G(ξ)
.
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Moreover, using (4) we can choose point x0 satisfying |x0| < θ

c((
∑N
i,j=1 ‖aij‖∞)

∫ T
0
eQ(t)dt)

1
2

such that

(
∑N
i,j=1 ‖aij‖∞)

∫ T
0
eQ(t)dt

2λ
∫ T

0
eQ(t)b(t)dt

<
G(x0)

|x0|2
.

Hence, Theorem 3.2 leads to the conclusion. �

Now, we present the following example to illustrate the result.

Example 3.1. Let N = 2 and T = 1. Let A : [0, 1] → R2×2 be the identity matrix

and let G(ξ1, ξ2) = e−(ξ21+ξ22)(ξ1 + ξ2 + ξ2
1 + ξ2

2) for all (ξ1, ξ2) ∈ R2, b(t) = 2t for all
t ∈ [0, 1] and q(t) = 2t− 1 for all t ∈ [0, 1]. It is clear that

lim
x→0+

max
|(ξ1,ξ2)|≤x

G(ξ1, ξ2)

x2
= +∞.

Hence, using Theorem 3.3, for each

λ ∈
(

0,
e

c2(e− 1)
sup
θ>0

θ2

max|(ξ1,ξ2)|≤θ e
−(ξ21+ξ22)(ξ1 + ξ2 + ξ2

1 + ξ2
2)

)
,

the problem (5), in this case, admits at least one nontrivial periodic solution.
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[13] G. D’Agùı, Multiplicity results for nonlinear mixed boundary value problem, Bound. Value

Probl. 2012, 2012:134.
[14] F. Faraci, Multiple periodic solutions for second order systems with changing sign potential, J.

Math. Anal. Appl. 319 (2006), 567–578.



266 A. NAZARI, G.A. AFROUZI, AND S. HEIDARKHANI

[15] F. Faraci, R. Livrea, Infinitely many periodic solutions for a second-order nonautonomous

system, Nonlinear Anal. TMA 54 (2003), 417–429.

[16] J. R. Graef, S. Heidarkhani, L. Kong, Nontrivial periodic solutions for a class of second-order
impulsive Hamiltonian systems, Electron. J. Differ. Eqs. 2015 (2015), no. 204, 1–17.

[17] M.R. Heidari Tavani, G.A. Afrouzi, S. Heidarkhani, Multiple solutions for a class of perturbed

damped vibration problems, J. Math. Computer Sci. 16 (2016), 351–363.
[18] S. Heidarkhani, Existence of non-trivial solutions for systems of n fourth order partial differential

equations, Mathematica Slovaca 64 (2014), no. 5, 1249–1266.

[19] J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New
York, Berlin, Heidelberg, London, Paris, Tokyo, 1989.

[20] P.H. Rabinowitz, Variational methods for Hamiltonian systems, in: Handbook of Dynamical
Systems, vol. 1, North-Holland, 2002, Part 1, Chapter 14, 1091–1127.

[21] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math.

113 (2000), 401–410.
[22] J. Sun, H. Chen, J.J. Nieto, M. Otero-Novoa, The multiplicity of solutions for perturbed second-

order Hamiltonian systems with impulsive effects, Nonlinear Anal. TMA 72 (2010), 4575–4586.

[23] J. Sun, J.J. Nieto, M. Otero-Novoa, On homoclinic orbits for a class of damped vibration
systems, Adv. Differ. Eqs. 2012 (2012), Article 102.

[24] C.-L. Tang, X.-P. Wu, Periodic solutions for a class of nonautonomous subquadratic second

order Hamiltonian systems, J. Math. Anal. Appl. 275 (2002), 870–882.
[25] X. Wu, J. Chen, Existence theorems of periodic solutions for a class of damped vibration

problems, Appl. Math. Comput. 207 (2009), 230–235.

[26] X. Wu, S. Chen, K. Teng, On variational methods for a class of damped vibration problems,
Nonlinear Anal. TMA 68 (2008), 1432–1441.

[27] X. Wu, W. Zhang, Existence and multiplicity of homoclinic solutions for a class of damped

vibration problems, Nonlinear Anal. TMA 74 (2011), 4392–4398.
[28] E. Zeidler, Nonlinear functional analysis and its applications, Springer, Vol. II, Berlin-

Heidelberg-New York 1985.
[29] W. Zou, Variant fountain theorems and their applications, Manuscripta Math. 104 (2001),

343–358.

(Abdollah Nazari) Department of Mathematics, Science and Research branch, Islamic
Azad University, Tehran, Iran

E-mail address: nazari math@yahoo.com

(Ghasem A. Afrouzi) Department of Mathematics, Faculty of Mathematical Sciences,

University of Mazandaran, Babolsar, Iran
E-mail address: afrouzi@umz.ac.ir

(Shapour Heidarkhani) Department of Mathematics, Faculty of Sciences, Razi University,

67149 Kermanshah, Iran
E-mail address: s.heidarkhani@razi.ac.ir


