Radical-Depended Graph of a Commutative Ring

Batool Zarei Jalal Abadi and Hosein Fazaeli Moghimi

Abstract

Let R be a commutative ring with identity and \sqrt{I} be the radical of an ideal I of R. We introduce the radical-depended graph $\mathcal{G}_{I}(R)$ whose vertex set is $\{x \in R \backslash \sqrt{I} \mid x y \in I$ for some $y \in R \backslash \sqrt{I}\}$ and distinct vertices x and y are adjacent if and only if $x y \in I$. In this paper, several properties of $\mathcal{G}_{I}(R)$ are investigated and some results on the parameters of this graph are given. It follows that if I is a quasi primary ideal, then $\mathcal{G}_{I}(R)=\emptyset$. It is shown that if I is a 2 -absorbing ideal of R which is not quasi primary, then $\mathcal{G}_{I}(R)$ is the complete bipartite graph $K_{1,1}$ or $K_{m, n}$ for some $m, n \geq 2$. Moreover, it is proved that $\mathcal{G}_{I}(R)$ is a connected graph with diameter at most 3 , and if it has a cycle, then its girth is at most 4. Also, it is shown that if R is a Noetherian ring, then the clique number of $\mathcal{G}_{I}(R)$ is equal to $|\operatorname{Min}(R / I)|$ for every ideal I of R.

2010 Mathematics Subject Classification. Primary 05C25; Secondary 13A15.
Key words and phrases. radical-depended graph, 2 -absorbing ideal, diameter, girth, clique number.

1. Introduction

The zero-divisor graph of a commutative ring was introduced by I. Beck in [5] and further studied by D. D. Anderson and M. Naseer in [3]. However, they let all the elements of R be vertices of the graph, and they were mainly interested in colorings. We adopt the approach used by D. F. Anderson and P. S. Livingston in [2] and consider only nonzero zero-divisors as vertices of the graph. Let R be a commutative ring with nonzero identity, I a proper ideal of R, and $Z(R)$ the set of zero-divisors of R. The zero-divisor graph of R, denoted by $\Gamma(R)$, is the graph with vertices $Z(R)^{*}=Z(R) \backslash 0$, and distinct vertices x and y are adjacent if and only if $x y=0$. In [12], Redmond introduced an ideal-based zero-divisor graph of R as a generalization of $\Gamma(R)$. Let I be an ideal of R. The ideal-based zero-divisor graph of R is the graph $\Gamma_{I}(R)$ with vertices $\{x \in R \backslash I \mid x y \in I$ for some $y \in R \backslash I\}$, where distinct vertices x and y are adjacent if and only if $x y \in I$. Therefore, if $I=0$, then $\Gamma_{I}(R)=\Gamma(R)$, and I is a prime ideal if and only if $\Gamma_{I}(R)=\emptyset$.

In this paper, we study the radical-depended subgraph $\mathcal{G}_{I}(R)$ of R that is a subgraph of $\Gamma_{\sqrt{I}}(R)$ with the vertices $\{x \in R \backslash \sqrt{I} \mid x y \in I$ for some $y \in R \backslash \sqrt{I}\}$ and distinct vertices x and y are adjacent if and only if $x y \in I$. Therefore, I is a quasi primary ideal (i.e., \sqrt{I} is a prime ideal [9]) if and only if $\mathcal{G}_{I}(R)=\emptyset$, and if I is a radical ideal, then $\mathcal{G}_{I}(R)=\Gamma_{\sqrt{I}}(R)$.

Let us recall some notions and notations from graph theory that will be used later. A graph is said to be connected if for each pair of distinct vertices x and y, there is a
finite sequence of distinct vertices $x=x_{1}, \ldots, x_{n}=y$ such that each pair $\left\{x_{i}, x_{i+1}\right\}$ is an edge. Such a sequence is said to be a path and the distance, $d(x, y)$, between connected vertices x and y is the length of a shortest path connecting them. The diameter of a connected graph G, denoted $\operatorname{diam}(G)$, is the supremum of the distances between vertices (and let $d(x, y)=\infty$ if no such path exists). A cycle in a graph G is a path that begins and ends at the same vertex. The girth of G, written $\operatorname{gr}(G)$, is the length of the shortest cycle in G (and $\operatorname{gr}(G)=\infty$ if G has no cycles). A vertex x of a connected graph G is a cut-point of G if $G \backslash\{x\}$ is not connected. The connectivity of a graph G, denoted by $\kappa(G)$, is defined to be the minimum number of vertices which is necessary to remove from G in order to produce a disconnected graph. A complete graph is a graph where all vertices are adjacent. The complete graph on n vertices is denoted by K_{n}. For a graph G, a complete subgraph of G is called a clique. The clique number, $\omega(G)$, is the greatest integer $n \geq 1$ such that $K_{n} \subseteq G$, and $\omega(G)=\infty$ if $K_{n} \subseteq G$ for all $n \geq 1$. The complete bipartite graph, denoted $K_{m, n}$, is the graph whose vertex set is the disjoint union of two sets, V_{1} and V_{2}, satisfying $\left|V_{1}\right|=m$, $\left|V_{2}\right|=n$, and whose edge set is precisely $\left\{\left\{v_{1}, v_{2}\right\} \mid v_{1} \in V_{1}\right.$ and $\left.v_{2} \in V_{2}\right\}$.

Here is a brief summary of the paper. It is shown that $\mathcal{G}_{I}(R)$ is a connected graph with $\operatorname{diam}\left(\mathcal{G}_{I}(R)\right) \leq 3$ (Theorem 2.3), and if it has a cycle, then $\operatorname{gr}(G) \leq 4$ (Theorem 2.11). This graph has no cut-points (Theorem 2.4), and we provide bounds on $\kappa\left(\mathcal{G}_{I}(R)\right)$ (Theorem 2.5).
A proper ideal I is called n-absorbing if $x_{1} \cdots x_{n+1} \in I$ for $x_{1}, \ldots, x_{n+1} \in R$, then there are n of the x_{i} 's whose product is in I (see [1, 4, 11]). It is shown that if I is a 2-absorbing ideal of R, then $\mathcal{G}_{I}(R)=\emptyset$ or $\mathcal{G}_{I}(R) \cong K_{1,1}$ or $\mathcal{G}_{I}(R) \cong K_{m, n}$ for some $m, n \geq 2$ (Theorem 2.8). Thus, in this case, $\operatorname{diam}\left(\mathcal{G}_{I}(R)\right) \in\{0,1,2\}$ (Corollary 2.9) and $\operatorname{gr}(G) \in\{0,4, \infty\}$ (Remark 2.2).

It is proved that if $I=q_{1} \cap \cdots \cap q_{m}$ is a minimal primary decomposition of an ideal I of R with $n(\leq m)$ isolated prime ideals, then $\omega\left(\mathcal{G}_{I}(R)\right) \leq n$. In particular, if $m=n$, then $\omega\left(\mathcal{G}_{I}(R)\right)=n$ (Theorem 2.13). Thus, if R is a Noetherian ring, then for every ideal I of $R, \omega\left(\mathcal{G}_{I}(R)\right)=|\operatorname{Min}(R / I)|$, where $\operatorname{Min}(R / I)$ is the set of all minimal prime ideals of R / I (Corollary 2.14). It is also obtained that if I is an n-absorbing ideal of R, then $\omega\left(\mathcal{G}_{I}(R)\right)=|\operatorname{Min}(R / I)| \leq n$ (Corollary 2.15).

2. On Radical-Depended Graph

Lemma 2.1. Let R be a ring. If I is a quasi primary ideal, then $\mathcal{G}_{I}(R)=\Gamma_{\sqrt{I}}(R)=$ $\Gamma(R / \sqrt{I})=\emptyset$. In particular, this equality holds when I is an ideal of a zerodimensional ring R.

For a graph G, the vertices set and the edges set of G are denoted by $V(G)$ and $E(G)$ respectively. In the following example, we see that $\Gamma_{\sqrt{I}}(R)$ and its subgraph $\mathcal{G}_{I}(R)$ may or may not isomorphic graphs.
Example 2.1. (1) Let $R=\mathbb{Z}_{24}$ and $I=<12>$. Then $\mathcal{G}_{I}(R) \not \equiv \Gamma_{\sqrt{I}}(R)$, since the vertices $2,10,14,22$ of $\Gamma_{\sqrt{I}}(R)$ are not vertices of $\mathcal{G}_{I}(R)$.
(2) Let $R=\mathbb{Z}$ and $I=12 \mathbb{Z}$. Then $V\left(\Gamma_{\sqrt{I}}(R)\right)=\{6 k+2,6 k+3,6 k+4 \mid k \in \mathbb{Z}\}$, $E\left(\Gamma_{\sqrt{I}}(R)\right)=\left\{\left\{6 k+2,6 k^{\prime}+3\right\} \mid k, k^{\prime} \in \mathbb{Z}\right\} \cup\left\{\left\{6 k+3,6 k^{\prime}+4\right\} \mid k, k^{\prime} \in \mathbb{Z}\right\}$, $V\left(\mathcal{G}_{I}(R)\right)=\{12 k+4,6 k+3,12 k+8 \mid k \in \mathbb{Z}\}$ and $E\left(\mathcal{G}_{I}(R)\right)=\left\{\left\{12 k+4,6 k^{\prime}+3\right\} \mid\right.$ $\left.k, k^{\prime} \in \mathbb{Z}\right\} \cup\left\{\left\{6 k+3,12 k^{\prime}+8\right\} \mid k, k^{\prime} \in \mathbb{Z}\right\}$. It is easy to check that $\varphi: \Gamma_{\sqrt{I}}(R) \rightarrow \mathcal{G}_{I}(R)$
defined by $\varphi(6 k+2)=12 k+4, \varphi(6 k+3)=6 k+3$ and $\varphi(6 k+4)=12 k+8$ is a graph isomorphism.

Let S be a nonempty set of vertices of a graph G. The induced subgraph generated by S, denoted by $\langle S\rangle$, is the subgraph H of G with vertex set S where vertices are adjacent in H precisely when adjacent in G.
Remark 2.1. Let R be a ring, I be an ideal of R and $\operatorname{adj}(x)=\{y+I \in \Gamma(R / I) \mid$ $x y \in I\}$. Let $<\Lambda>$ be the induced subgraph of $\Gamma(R / I)$ generated by

$$
\Lambda=\{x+I \in \Gamma(R / I) \mid x \notin \sqrt{I} \text { and } \operatorname{adj}(x) \nsubseteq \sqrt{I} / I\}
$$

$<\Lambda>$ is also a subgraph of $\Gamma_{\sqrt{I} / I}(R / I)$. In Example 2.1, $2+I$ and $3+I$ are adjacent in $\Gamma_{\sqrt{I} / I}(R / I)$, but they are not adjacent in $\langle\Lambda\rangle$. Hence $<\Lambda>$ may be a proper subgraph of $\Gamma_{\sqrt{I} / I}(R / I)$. It is easy to see that $x+I$ and $y+I$ are adjacent in $<\Lambda>$ if and only if x and y are adjacent in $\mathcal{G}_{I}(R)$. Moreover, if $x+I$ and $y+I$ are adjacent in $\langle\Lambda\rangle$, then $x+i$ and $y+j$ are adjacent in $\langle\Lambda\rangle$ for all $i, j \in I$.
Now, we use $<\Lambda>$ to construct $\mathcal{G}_{I}(R)$. Let $\left\{x_{\alpha}\right\}_{\alpha \in \Delta}$ be the vertex set of $<\Lambda>$. Define a graph G_{i} with vertices $\left\{x_{\alpha}+i \mid \alpha \in \Delta\right\}$ and $x_{\alpha}+i$ and $x_{\beta}+i$ are adjacent in G_{i} if and only if $x_{\alpha}+I$ and $x_{\beta}+I$ are adjacent in $<\Lambda>$. Thus the union of G_{i} 's is the vertex set of $\mathcal{G}_{I}(R)$ and edge set of $\mathcal{G}_{I}(R)$ is (1) all edges of G_{i} 's, (2) for distinct $\alpha, \beta \in \Delta$ and for any $i, j \in I, x_{\alpha}+i$ and $x_{\beta}+j$ are adjacent in $\mathcal{G}_{I}(R)$ if and only if $x_{\alpha}+I$ and $x_{\beta}+I$ are adjacent in $\langle\Lambda\rangle$. Indeed, the relationship between the subgraph $<\Lambda>$ of $\Gamma(R / I)$ and the subgraph $\mathcal{G}_{I}(R)$ of $\Gamma_{I}(R)$ is similar to that between $\Gamma(R / I)$ and $\Gamma_{I}(R)$ which has been expressed in [12, p. 4429]. This subgraph will be used in Theorem 2.2 to characterize $\mathcal{G}_{I}(R)$.

The degree of a vertex v in a graph G is the number of edges of G incident with v. For any nonnegative integer r, the graph G is called r-regular if the degree of each vertex is equal to r. A subgraph H of G is called a spanning subgraph when $V(G)=V(H)$. A 1-regular spanning subgraph H of G is called a 1-factor or a perfect matching of G. A graph G is 1-factorable if the edges of G are partitioned into 1factors of G. Every r-regular bipartite graph is 1-factorable (cf. [6, p. 192]). If the edges of G are partitioned into subgraphs H_{1}, \ldots, H_{n}, then we write $G \cong H_{1} \oplus \cdots \oplus H_{n}$, and if $H_{i} \cong H_{j}$ for all $1 \leq i, j \leq n$, then we write $G \cong n H$, where $H \cong H_{i}$. Using these notions, it has been shown that in [10, Theorem 2.1], $\Gamma_{I}(R) \cong|I|^{2} \Gamma(R / I)$ if I is a radical ideal of R. Now, by a similar method, we give a characterization for $\Gamma_{I}(R)$ when \sqrt{I} is finite, and a characterization for $\mathcal{G}_{I}(R)$ when I is finite.
Theorem 2.2. Let R be a ring and I an ideal of R.
(1) If \sqrt{I} is finite, then $\Gamma_{I}(R) \cong|I|^{2} \Gamma(R / I) \oplus|X| \cdot K_{|I|}$ where $X=\{x+I \in$ $\left.\Gamma(R / I) \mid x^{2} \in I\right\}$. In particular, if I is a 2-absorbing ideal of R, then $X=$ $\Gamma(R / I) \cap(\sqrt{I} / I)$.
(2) If I is finite, then $\mathcal{G}_{I}(R) \cong|I|^{2}<\Lambda>$.

Proof. (1) Let e be the edge of $\Gamma(R / I)$ between the vertices a and b. Since every element of the form $a+i$ is adjacent to every element of the form $b+j$, for all $i, j \in I$, it is easy to see that there exists a subgraph of $\Gamma_{I}(R)$, denoted by $H^{(e)}$, which is isomorphic to the complete bipartite graph $K_{|I|,|I|}$. On the other hand, by [6, p. 192], we have $K_{|I|,|I|} \cong M_{1}^{(e)} \oplus \cdots \oplus M_{|I|}^{(e)}$, where each of $M_{i}^{(e)}$ is a perfect matching of $K_{|I|,|I|}$. Now consider $L_{i}:=\oplus_{e \in E(\Gamma(R / I))} M_{i}^{(e)}$ which is a subgraph of $\Gamma_{I}(R)$. On
the other hand, for all distinct $i, j \in I, a+i$ is adjacent to $a+j$ if and only if $a^{2} \in I$. Thus there exists a subgraph of $\Gamma_{I}(R)$, denoted by N_{a}, which is isomorphic to the complete graph $K_{|I|}$. Hence $\Gamma_{I}(R) \cong L_{1} \oplus \cdots \oplus L_{|I|} \oplus|X| \cdot K_{|I|}$. Now the assertion follows from the fact that each L_{i} is partitioned into $|I|$ edge-disjoint subgraph where each of them is isomorphic to $\Gamma(R / I)$.
The "in particlar" statement follows from the fact that if I is a 2 -absorbing ideal of R, then $\sqrt{I}=\left\{x \in R \mid x^{2} \in I\right\}[4$, Theorem 2.1].
(2) The proof is similar to the proof of (1) by considering $<\Lambda>$ instead of $\Gamma(R / I)$. Note that $X=\left\{x+I \in \Lambda \mid x^{2} \in I\right\}=\emptyset$.

The following theorem presents a result analogous to the case for $\Gamma(R)$ found in [2, Theorem 2.3] and for $\Gamma_{I}(R)$ found in [12, Theorem 2.4].
Theorem 2.3. Let R be a ring and I be an ideal of R. Then $\mathcal{G}_{I}(R)$ is a connected graph and $\operatorname{diam}\left(\mathcal{G}_{I}(R)\right) \leq 3$.
Proof. Let I be an ideal of a ring R, and x and y be distinct vertices of $\mathcal{G}_{I}(R)$. If $x y \in$ I, then $x-y$ is a path in $\mathcal{G}_{I}(R)$. Let $x y \notin I$. Then there exist $a, b \in R \backslash(\sqrt{I} \cup\{x, y\})$ such that $a x \in I$ and $b y \in I$. If $a=b$, then $x-a-y$ is a path in $\mathcal{G}_{I}(R)$. If $a \neq b$ and $a b \in \sqrt{I}$, i.e. $a^{n} b^{n} \in I$ for some positive integer n, then we have a path $x-a^{n}-b^{n}-y$ (for when $a^{n} \neq b^{n}$) or a path $x-a^{n}-y$ in $\mathcal{G}_{I}(R)$. If $a \neq b$ and $a b \notin \sqrt{I}$, then $x-a b-y$ is a path in $\mathcal{G}_{I}(R)$.
Theorem 2.4. If I is a nonzero proper ideal of R, then $\mathcal{G}_{I}(R)$ has no cut-points.
Proof. Assume that the vertex x of $\mathcal{G}_{I}(R)$ is a cut-point. Then there exist vertices u, w such that x lies on every path from u to w. By Theorem 2.3, a shortest path from u to w in $\mathcal{G}_{I}(R)$ is of the form $u-x-w$ or $u-x-y-w$ for some $y \in \mathcal{G}_{I}(R)$. In each of these paths, we can replace x by $x+i$ for each $0 \neq i \in I$, since every vertex adjacent to x is adjacent to $x+i$ and distinct from $x+i(x \notin \sqrt{I})$, a contradiction.

The next result should be compared with [12, Theorem 3.3].
Theorem 2.5. Let R be a ring, I be a nonzero proper ideal of R which is not quasi primary and Λ be as in Remark 2.1. Then $|I|-1 \leq \kappa\left(\mathcal{G}_{I}(R)\right) \leq|I| \kappa(<\Lambda>)$. In particular, $\kappa\left(\mathcal{G}_{I}(R)\right)=\infty$ if I is infinite.

Proof. First we show that $\kappa\left(\mathcal{G}_{I}(R)\right) \leq|I| \kappa(<\Lambda>)$. Suppose that $<\Lambda>$ is disconnected by removing the vertices $a_{1}+I, \ldots, a_{k}+I$. Define H to be the graph obtained form $\mathcal{G}_{I}(R)$ by removing the set $\left\{a_{\alpha}+i \mid 1 \leq \alpha \leq k, i \in I\right\}$, which has $k \cdot|I|$ elements.

By way of contradiction assume that H is connected. Suppose that $b+I$ is not connected to $c+I$ after $a_{1}+I, \ldots, a_{k}+I$ are removed from $<\Lambda>$. Then b and c are vertices of H. Suppose that $b-x_{1}-\cdots-x_{t}-c$ is a path in H. If $x_{i}+I=x_{i+1}+I$ for some $1 \leq i \leq t$, then $x_{i}^{2} \in I$, which is a contradiction $\left(x_{i} \notin \sqrt{I}\right)$. Thus $b+I-x_{1}+I-\cdots-x_{t}+I-c+I$ is a path in $<\Lambda>$ after removing $a_{1}+I, \ldots, a_{k}+I$. This is a contradiction. Hence H is disconnected and we have $\kappa\left(\mathcal{G}_{I}(R)\right) \leq|I| \kappa(<\Lambda>)$.

Now we show that $|I|-1 \leq \kappa\left(\mathcal{G}_{I}(R)\right)$. If I is finite, set $t=|I|-1$; otherwise let t be any positive integer. Let a_{1}, \ldots, a_{t} be any collection of vertices of $\mathcal{G}_{I}(R)$. Define the graph $H=\mathcal{G}_{I}(R)-\left\{a_{1}, \ldots, a_{t}\right\}$.
Let x, y be two vertices of H. We show that there is a path between x and y in H.

By Theorem 2.3, $\operatorname{diam}\left(\mathcal{G}_{I}(R)\right) \leq 3$. Therefore, we have three cases:
Case 1: $d(x, y)=1$; so we are done.
Case 2: $d(x, y)=2$. Let $x-v-y$ be a shortest path from x to y in $\mathcal{G}_{I}(R)$. If $v \neq a_{\alpha}$ for any $1 \leq \alpha \leq t$, then this is also a path in H. Assume that $v=a_{\alpha}$ for some $1 \leq \alpha \leq t$. Since the set $\left\{a_{\alpha}+i \mid i \in I\right\}$ has $|I|$ element, we can choose $u \in\left\{a_{\alpha}+i \mid i \in I\right\}$ such that $u \neq a_{\beta}$ for any $1 \leq \beta \leq t$. Since $x v \in I$ and $v y \in I$, $x u \in I$ and $u y \in I$. Hence $x-u-y$ is a path in H.
Case 3: $d(x, y)=3$. Let $x-u-v-y$ be a shortest path frome x to y in $\mathcal{G}_{I}(R)$. Since $u, v \in R \backslash \sqrt{I}, u+I \neq v+I$. Thus, since $|I|>t$, we can choose $a \in\{u+i \mid i \in I\}$ and $b \in\{v+i \mid i \in I\}$ such that $a, b \notin\left\{a_{1}, \ldots, a_{t}\right\}$. Now $x u \in I, u v \in I$ and $v y \in I$ implies that $x a \in I, a b \in I$ and $b y \in I$. Hence $x-a-b-y$ is a path from x to y in H.
Hence in all cases H is connected.
Corollary 2.6. Let R be a ring, I be a finite ideal of R and Λ be as in Remark 2.1. Then $|I|-1 \leq \kappa\left(|I|^{2}<\Lambda>\right) \leq|I| \kappa(<\Lambda>)$.
Proof. It follows from Theorem 2.2 (2) and Theorem 2.5.
Theorem 2.7. ([4, Theorem 2.4]) Let I be a 2-absorbing ideal of R. Then one of the following statements must hold:
(1) $\sqrt{I}=p$ is a prime ideal of R such that $p^{2} \subseteq I$.
(2) $\sqrt{I}=p_{1} \cap p_{2}, p_{1} p_{2} \subseteq I$, and $(\sqrt{I})^{2} \subseteq I$, where p_{1}, p_{2} are the only distinct prime ideals of R that are minimal over I.

Theorem 2.8. Let R be a ring and I be a 2-absorbing ideal of R. Then $\mathcal{G}_{I}(R)=\emptyset$ or $\mathcal{G}_{I}(R) \cong K_{1,1}$ or $\mathcal{G}_{I}(R) \cong K_{m, n}$ for some $m, n \geq 2$.
Proof. Let I be a 2-absorbing ideal of R such that $\mathcal{G}_{I}(R) \neq \emptyset$. Then \sqrt{I} is not a prime ideal and so, by Theorem $2.7, \sqrt{I}=p_{1} \cap p_{2}$ and $p_{1} p_{2} \subseteq I$ where p_{1}, p_{2} are the only distinct prime ideals of R which are minimal over I. Now for $x, y \in R \backslash \sqrt{I}$ with $x y \in I$, we have $x y \in p_{1}$ and $x y \in p_{2}$. Since p_{1} and p_{2} are prime, we have $x \in p_{1}$ or $y \in p_{1}$ and $x \in p_{2}$ or $y \in p_{2}$ and $x, y \notin p_{1} \cap p_{2}$. Without loss of generality, we may assume that $x \in p_{1} \backslash p_{2}$ and $y \in p_{2} \backslash p_{1}$. Since $p_{1} p_{2} \subseteq I, \mathcal{G}_{I}(R)$ is a complete bipartite graph with parts $p_{1} \backslash p_{2}$ and $p_{2} \backslash p_{1}$. Let $\left|p_{1} \backslash p_{2}\right|=m$ and $\left|p_{2} \backslash p_{1}\right|=n$. If $m=1$ and $n \geq 2$, or $n=1$ and $m \geq 2$, the $\mathcal{G}_{I}(R)$ is a star graph, a contradiction to Theorem 2.4. Thus $\mathcal{G}_{I}(R) \cong K_{1,1}$ or $\mathcal{G}_{I}(R) \cong K_{m, n}$ for some $m, n \geq 2$.

Corollary 2.9. Let R be a ring and I a 2-absorbing ideal of R. Then $\operatorname{diam}\left(\mathcal{G}_{I}(R)\right)$ ≤ 2.

Corollary 2.10. Let R be a ring and I a 2 -absorbing ideal of R. If I is not a radical ideal, then $\mathcal{G}_{I}(R)=\emptyset$ or $\mathcal{G}_{I}(R) \cong K_{m, n}$ for some $m, n \geq 2$.
Proof. Let $\mathcal{G}_{I}(R) \neq \emptyset$. Thus $\sqrt{I}=p_{1} \cap p_{2}, p_{1} p_{2} \subseteq I$ where p_{1}, p_{2} are the only distinct prime ideals of R which are minimal over I and $p_{1} p_{2} \subseteq I$. By the proof of Theorem 2.8, it suffices to show that $\left|p_{1} \backslash p_{2}\right| \neq 1$ and $\left|p_{2} \backslash p_{1}\right| \neq 1$. Otherwise, if for instance $\left|p_{1} \backslash p_{2}\right|=1$, then $p_{1}=\{x\} \cup \sqrt{I}$ for some $x \in R$. Thus for any $r \in R \backslash p_{2}$, we have $r x \in p_{1} \backslash \sqrt{I}$. Hence $r x=x$ and so $(1-r) x=0 \in p_{2}$. Therefore $1-r \in p_{2}$. This means that for any $r \in R$ either $r+p_{2}=p_{2}$ or $r+p_{2}=1+p_{2}$. Thus R / p_{2} is a field
and hence p_{2} is a maximal ideal of R. It implies that p_{1} and p_{2} are comaximal and so by Theorem 2.7, $\sqrt{I}=p_{1} \cap p_{2}=p_{1} p_{2} \subseteq I$, which is a contradiction.

A graph theoretical result says that if a grph G contains a cycle, then $\operatorname{gr}(G) \leq$ $2 \operatorname{diam}(G)+1$ [8, Proposition 1.3.2]. By using this fact and Theorem 2.3, we have $\operatorname{gr}\left(\mathcal{G}_{I}(R)\right) \leq 7$. In $[7$, Theorem 1.6], it has been shown that $\operatorname{gr}(\Gamma(R)) \leq 4$. By combining this result and the fact that $\Gamma_{I}(R)$ contains $|I|$ disjoint subgraphs isomorphic to $\Gamma(R / I)$ [12, Corollary 2.7], we conclude that if $\Gamma_{I}(R)$ has a cycle, then $\operatorname{gr}\left(\Gamma_{I}(R)\right) \leq 4$. This can be compared with the following result.

Theorem 2.11. Let I be an ideal of a ring R. If $\mathcal{G}_{I}(R)$ contains a cycle, then $\operatorname{gr}\left(\mathcal{G}_{I}(R)\right) \leq 4$.
Proof. Let $x_{0}-x_{1}-\cdots-x_{n}-x_{0}$ with $n \geq 4$ be a cycle in $\mathcal{G}_{I}(R)$. Then we have two cases:
Case 1: Let $x_{i} x_{j} \notin I$ for any $j>i+1$ such that either $0 \leq i<j \leq n-1$ or $1 \leq i<j \leq n$. Then
(a) If $x_{1} x_{n-1}=x_{0}$ or x_{n}, then $x_{0}^{2} \in I$ or $x_{n}^{2} \in I$, which is a contradiction.
(b) Let $x_{1} x_{n-1} \neq x_{i}(i=0, n)$. If $x_{1} x_{n-1} \notin \sqrt{I}$, then $x_{0}-\left(x_{1} x_{n-1}\right)-x_{n}-x_{0}$ is a cycle of length 3 in $\mathcal{G}_{I}(R)$. Now assume that $x_{1} x_{n-1} \in \sqrt{I}$. Thus there exists a positive integer t such that $x_{1}^{t} x_{n-1}^{t} \in I$. If $x_{1}^{t} \neq x_{0}$ and $x_{n-1}^{t} \neq x_{n}$, then $x_{0}-x_{1}^{t}-x_{n-1}^{t}-x_{n}-x_{0}$ is a cycle of length 4 in $\mathcal{G}_{I}(R)$. Otherwise, $x_{0}-x_{n-1}^{t}-x_{n}-x_{0}$ or $x_{0}-x_{1}^{t}-x_{n}-x_{0}$ is a cycle of length 3 in $\mathcal{G}_{I}(R)$.
Case 2: Let $x_{i} x_{j} \in I$ for some i, j with the conditions of Case 1. Then we can replace the path $x_{i}-x_{i+1}-\cdots-x_{j}$ by the path $x_{i}-x_{j}$ in the cycle $x_{0}-x_{1}-\cdots-x_{n}-x_{0}$, to obtain a shorter cycle and use Case 1.

Remark 2.2. Let R be a ring and I be an ideal of R. If I is a 2 -absorbing ideal, then by Theorem $2.8, \mathcal{G}_{I}(R)=\emptyset$ or $\mathcal{G}_{I}(R) \cong K_{1,1}$ or $\mathcal{G}_{I}(R) \cong K_{m, n}$ for some $m, n \geq 2$ and so $\operatorname{gr}\left(\mathcal{G}_{I}(R)\right)=0$ or $\operatorname{gr}\left(\mathcal{G}_{I}(R)\right)=\infty$ or $\operatorname{gr}\left(\mathcal{G}_{I}(R)\right)=4$. If I is a 2 -absorbing ideal which is not radical, then $\operatorname{gr}\left(\mathcal{G}_{I}(R)\right)=0$ or $\operatorname{gr}\left(\mathcal{G}_{I}(R)\right)=4$ by Corollary 2.10. In particular, if I is a 2 -absorbing ideal which is neither radical nor quasi primary, then $\operatorname{gr}\left(\mathcal{G}_{I}(R)\right)=4$.

Recall that the number of graph vertices of the largest complete subgraph of a graph G, denoted by $\omega(G)$, is the clique number of G.
Lemma 2.12. Let $I \subseteq J$ be two ideals of R such that $\sqrt{I}=\sqrt{J}$. Then $\mathcal{G}_{I}(R)$ is a subgraph of $\mathcal{G}_{J}(R)$. In particular $\omega\left(\mathcal{G}_{I}(R)\right) \leq \omega\left(\mathcal{G}_{J}(R)\right)$.
Proof. Let x and y be two adjacent vertices in $\mathcal{G}_{I}(R)$. Then $x, y \in R \backslash \sqrt{I}=R \backslash \sqrt{J}$ and $x y \in I \subseteq J$. Hence x and y are adjacent vertices in $\mathcal{G}_{J}(R)$.
The "in particular" statement is clear, since every clique in $\mathcal{G}_{I}(R)$ can be extended to a clique in $\mathcal{G}_{J}(R)$.

Theorem 2.13. Let R be a ring and $I=q_{1} \cap \cdots \cap q_{m}$ be a minimal primary decomposition of the ideal I of R with $n(\leq m)$ isolated prime ideals. Then $\omega\left(\mathcal{G}_{I}(R)\right) \leq n$. In particular if $m=n$, then $\omega\left(\mathcal{G}_{I}(R)\right)=n$.
Proof. Let $\sqrt{q_{i}}=p_{i}(1 \leq i \leq m)$, where p_{i} 's are prime ideals of R. Without loss of generality we suppose that p_{1}, \ldots, p_{n} are isolated prime ideals of I. Set $J=$ $q_{1} \cap \cdots \cap q_{n}$. Then $I \subseteq J$ and $\sqrt{I}=\sqrt{J}$. By Lemma 2.12, $\omega\left(\mathcal{G}_{I}(R)\right) \leq \omega\left(\mathcal{G}_{J}(R)\right)$.

Now we show that $\omega\left(\mathcal{G}_{J}(R)\right)=n$. This also proves the last part of theorem. Since p_{1}, \ldots, p_{n} are isolated prime ideals of $I, \sqrt{J}=p_{1} \cap \cdots \cap p_{n}$ and for all $1 \leq j \leq n$, $\sqrt{J} \neq \hat{p}_{j}$ where $\hat{p}_{j}=\cap\left\{p_{i} \mid 1 \leq i \leq n, i \neq j\right\}$.

Consider $x_{j} \in \hat{p}_{j} \backslash p_{j}$ for all $1 \leq j \leq n$. Then $x_{i} x_{j} \in \sqrt{J}$ for all $1 \leq i \neq j \leq n$, so there exists a positive integer $t_{i j}$ such that $\left(x_{i} x_{j}\right)^{t_{i j}} \in J$. Therefore $\left\{x_{1}^{t}, \ldots, x_{n}^{t}\right\}$ is a clique in $\mathcal{G}_{J}(R)$ for $t=\max \left\{t_{i j} \mid 1 \leq i, j \leq n, i \neq j\right\}$. Hence, $\omega\left(\mathcal{G}_{J}(R)\right) \geq n$. Now we must show that $\omega\left(\mathcal{G}_{J}(R)\right) \leq n$. In fact, by induction on n, we show that if J is an ideal of R such that $\sqrt{J}=\cap\left\{p_{i} \mid 1 \leq i \leq n\right\}$ and for each $1 \leq j \leq n, \sqrt{J} \neq \hat{p}_{j}$, then $\omega\left(\mathcal{G}_{J}(R)\right) \leq n$. For $n=2$, by Theorem 2.8, $\mathcal{G}_{J}(R)$ is a bipartite graph, hence $\omega\left(\mathcal{G}_{J}(R)\right)=2$. Suppose $n>2$ and the result is true for any integer less than n. Let $\sqrt{J}=\cap\left\{p_{i} \mid 1 \leq i \leq n\right\}$ and for each $1 \leq j \leq n, \sqrt{J} \neq \hat{p}_{j}$. Let $\left\{x_{1}, \ldots, x_{k}\right\}$ be a clique in $\mathcal{G}_{J}(R)$. Hence, $x_{1} x_{j} \in J \subseteq p_{1}$ for any $2 \leq j \leq k$. Without loss of generality, suppose that $x_{1} \notin p_{1}$. Therefore, $x_{2}, \ldots, x_{k} \in p_{1}$, so $x_{2}, \ldots, x_{k} \notin \hat{p}_{1}$. Let K be an ideal of R such that $\sqrt{K}=\hat{p}_{1}$. Then by induction hypothesis $\omega\left(\mathcal{G}_{K}(R)\right) \leq n-1$. Since $\left\{x_{1}, \ldots, x_{k}\right\}$ is a clique in $\mathcal{G}_{J}(R)$, for all $2 \leq i \neq j \leq n, x_{i} x_{j} \in J \subseteq \sqrt{J} \subseteq \sqrt{K}$. Then there exists a positive integer $t_{i j}$ such that $\left(x_{i} x_{j}\right)^{t_{i j}} \in K$. Therefore $\left\{x_{2}^{t}, \ldots, x_{k}^{t}\right\}$ is a clique in $\mathcal{G}_{K}(R)$ for $t=\max \left\{t_{i j} \mid 2 \leq i, j \leq k, i \neq j\right\}$. Thus $k-1 \leq n-1$, and hence $\omega\left(\mathcal{G}_{J}(R)\right) \leq n$.

Corollary 2.14. Let R be a Noetherian ring and $\operatorname{Min}(R)$ be the set of minimal prime ideals of R. Then $\omega\left(\mathcal{G}_{I}(R)\right)=|\operatorname{Min}(R / I)|$ for each ideal I of R.

Proof. Since R is Noetherian, $|\operatorname{Min}(R / I)|$ is finite for each ideal I of R. Therefore, \sqrt{I} is a finite intersection of minimal prime ideals of I. Now, the result follows from the proof of Theorem 2.13.

If I is a 2-absorbing ideal, then by Theorem 2.8, $\omega\left(\mathcal{G}_{I}(R)\right)=0$ or $\omega\left(\mathcal{G}_{I}(R)\right)=2$. We can generalize this result as follows.
Corollary 2.15. Let R be a ring and I be an n-absorbing ideal of R. Then $\omega\left(\mathcal{G}_{I}(R)\right)=|\operatorname{Min}(R / I)| \leq n$.

Proof. It follows from combining [1, Theorem 2.5] and the proof of Theorem 2.13.
Theorem 2.16. Let R be a ring, I be an ideal of R and Λ be as in Remark 2.1. Then $\omega\left(\mathcal{G}_{I}(R)\right)=\omega(<\Lambda>)$.
Proof. Since $\mathcal{G}_{I}(R)$ contains copies of $\langle\Lambda\rangle, \omega(<\Lambda>) \leq \omega\left(\mathcal{G}_{I}(R)\right)$. It is enough to consider the case where $\omega(<\Lambda>)=n<\infty$. Assume that $H=<\left\{a_{1}, a_{2}, \ldots, a_{n+1}\right\}>$ is a complete subgraph of $\mathcal{G}_{I}(R)$ and H^{*} is the subgraph of $\left.<\Lambda\right\rangle$ on the vertices $a_{1}+I, a_{2}+I, \ldots, a_{n+1}+I$. Note that vertices x and y are adjacent in $\mathcal{G}_{I}(R)$ if and only if $x+I$ and $y+I$ are adjacent in $<\Lambda\rangle$. Thus H^{*} is a complement subgraph of $\langle\Lambda\rangle$. Hence $a_{j}+I=a_{k}+I$ for some $1 \leq j \neq k \leq n+1$. Therefore, $a_{j} a_{k} \in I$ implies that $a_{j}^{2} \in I$, which is a contradiction.

References

[1] D.F. Anderson, A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011), 1646-1672.
[2] D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447.
[3] D.D. Anderson, M. Naseer, Becks coloring of a commutative ring, J. Algebra 159 (1993), 500514.
[4] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), 417-429.
[5] I. Beck, Coloring of commutative rings, J. Algebra 116 (1998), 208-226.
[6] G. Chartrand, O. R. Oellermann, Applied and algorithmic graph theory, McGraw-Hill, Inc., New York, 1993.
[7] F. DeMeyer and K. Schneider, Automorphisms and zero-divisor graphs of commutative rings, International J. of Commutative Rings 1 (2002), 93-106.
[8] R. Diestel, Graph theory, Springer-Verlag, New York, 1997.
[9] L. Fuchs, On quasi-primary ideals, Acta Sci. Math. (Szeged) 11 (1947), 174-183.
[10] H.R. Maimani, M.R. Pournaki, S. Yassemi, Zero-divisor graph with respect to an ideal, Comm. Algebra 34 (2006), 923-929.
[11] H.F. Moghimi, S.R. Naghani, On n-absorbing ideals and the n-krull dimension of a commutative ring, J. Korean. Math. Soc. 53 (2016), no. 6, 1225-1236.
[12] S.P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra 31 (2003), 4425-4443.
(Batool Zarei Jalal Abadi, Hosein Fazaeli Moghimi) Department of Mathematics, University of Birjand, P. O. Box 97175-615, Birjand, Iran
E-mail address: zareijalalabadi@birjand.ac.ir, hfazaeli@birjand.ac.ir

