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Radical-Depended Graph of a Commutative Ring

BATOOL ZAREI JALAL ABADI AND HOSEIN FAZAELI MOGHIMI

ABSTRACT. Let R be a commutative ring with identity and v/T be the radical of an ideal I of
R. We introduce the radical-depended graph Gj(R) whose vertex set is {x € R\ VI | zy € I
for some y € R\ v/I} and distinct vertices & and y are adjacent if and only if zy € I. In this
paper, several properties of Gy (R) are investigated and some results on the parameters of this
graph are given. It follows that if I is a quasi primary ideal, then G;(R) = (. It is shown that
if I is a 2-absorbing ideal of R which is not quasi primary, then Gy (R) is the complete bipartite
graph K11 or Ky, for some m,n > 2. Moreover, it is proved that G;(R) is a connected
graph with diameter at most 3, and if it has a cycle, then its girth is at most 4. Also, it is
shown that if R is a Noetherian ring, then the clique number of G;(R) is equal to | Min(R/I)|
for every ideal I of R.
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1. Introduction

The zero-divisor graph of a commutative ring was introduced by I. Beck in [5] and
further studied by D. D. Anderson and M. Naseer in [3]. However, they let all the ele-
ments of R be vertices of the graph, and they were mainly interested in colorings. We
adopt the approach used by D. F. Anderson and P. S. Livingston in [2] and consider
only nonzero zero-divisors as vertices of the graph. Let R be a commutative ring with
nonzero identity, I a proper ideal of R, and Z(R) the set of zero-divisors of R. The
zero-divisor graph of R, denoted by I'(R), is the graph with vertices Z(R)* = Z(R)\0,
and distinct vertices x and y are adjacent if and only if xy = 0. In [12], Redmond
introduced an ideal-based zero-divisor graph of R as a generalization of I'(R). Let I
be an ideal of R. The ideal-based zero-divisor graph of R is the graph I';(R) with
vertices {x € R\ I | zy € I for some y € R\ I}, where distinct vertices = and y are
adjacent if and only if xy € I. Therefore, if I = 0, then I';(R) = T'(R), and I is a
prime ideal if and only if T';(R) = ).

In this paper, we study the radical-depended subgraph G;(R) of R that is a sub-
graph of I' 7(R) with the vertices {z € R\ VI | zy € I for some y € R\ I} and
distinct vertices « and y are adjacent if and only if zy € I. Therefore, I is a quasi
primary ideal (i.e., VT is a prime ideal [9]) if and only if G;(R) = 0, and if I is a
radical ideal, then Gr(R) =T ;(R).

Let us recall some notions and notations from graph theory that will be used later.
A graph is said to be connected if for each pair of distinct vertices x and y, there is a
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finite sequence of distinct vertices © = x1,...,x, = y such that each pair {x;, z;41}
is an edge. Such a sequence is said to be a path and the distance, d(z,y), between
connected vertices x and y is the length of a shortest path connecting them. The
diameter of a connected graph G, denoted diam(G), is the supremum of the distances
between vertices (and let d(z,y) = oo if no such path exists). A cycle in a graph G is
a path that begins and ends at the same vertex. The girth of G, written gr(G), is the
length of the shortest cycle in G (and gr(G) = oo if G has no cycles). A vertex x of a
connected graph G is a cut-point of G if G\ {z} is not connected. The connectivity of
a graph G, denoted by x(G), is defined to be the minimum number of vertices which
is necessary to remove from G in order to produce a disconnected graph. A complete
graph is a graph where all vertices are adjacent. The complete graph on n vertices
is denoted by K,,. For a graph G, a complete subgraph of G is called a clique. The
clique number, w(G), is the greatest integer n > 1 such that K,, C G, and w(G) = o0
if K, C G for all n > 1. The complete bipartite graph, denoted K,, ., is the graph
whose vertex set is the disjoint union of two sets, V; and V3, satisfying |Vi| = m,
|[V2| = n, and whose edge set is precisely {{v1,v2} | v1 € V] and vs € Va}.

Here is a brief summary of the paper. It is shown that G;(R) is a connected graph

with diam(G;(R)) < 3 (Theorem 2.3), and if it has a cycle, then gr(G) < 4 (Theo-
rem 2.11). This graph has no cut-points (Theorem 2.4), and we provide bounds on
k(G1(R)) (Theorem 2.5).
A proper ideal I is called n-absorbing if z1 - 2,41 € I for z1,...,2,41 € R, then
there are n of the x;’s whose product is in I (see [1, 4, 11]). It is shown that if T is a
2-absorbing ideal of R, then G;(R) = 0 or G;(R) = K; 1 or G;(R) = K, for some
m,n > 2 (Theorem 2.8). Thus, in this case, diam(G;(R)) € {0, 1,2} (Corollary 2.9)
and gr(G) € {0,4, 00} (Remark 2.2).

It is proved that if I = ¢; N --- N g, is a minimal primary decomposition of an
ideal T of R with n(< m) isolated prime ideals, then w(G;(R)) < n. In particular, if
m = n, then w(Gr(R)) = n (Theorem 2.13). Thus, if R is a Noetherian ring, then for
every ideal I of R, w(G;(R)) = |Min(R/I)|, where Min(R/I) is the set of all minimal
prime ideals of R/I (Corollary 2.14). It is also obtained that if I is an n-absorbing
ideal of R, then w(G;(R)) = |Min(R/I)| < n (Corollary 2.15).

2. On Radical-Depended Graph

Lemma 2.1. Let R be a ring. If I is a quasi primary ideal, then G1(R) =T 7(R) =

F(R/\ﬁ) = (0. In particular, this equality holds when I is an ideal of a zero-
dimensional ring R.

For a graph G, the vertices set and the edges set of G are denoted by V(G) and
E(G) respectively. In the following example, we see that I' 7(R) and its subgraph
Gr(R) may or may not isomorphic graphs.

Example 2.1. (1) Let R = Zoy and I =< 12 >. Then G(R) 2 I' ;7(R), since the
vertices 2, 10, 14,22 of I' 7(R) are not vertices of Gr(R).

(2) Let R = Z and I = 12Z. Then V(T 7(R)) = {6k + 2,6k + 3,6k +4 | k € Z},
E(T ;7(R) = {{6k + 2,6k + 3} | k,k' € Z} U {{6k + 3,6k' + 4} | k, k' € Z},
V(G (R)) = {12k + 4,6k + 3,12k + 8 | k € Z} and E(G/(R)) = {{12k + 4,6k + 3} |
kK € ZYU{{6k+3,12k'+8} | k, k" € Z}. It is easy to check that ¢ : I' 7(R) = G;(R)
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defined by ¢(6k + 2) = 12k + 4, ¢(6k + 3) = 6k + 3 and ¢(6k +4) = 12k + 8 is a
graph isomorphism.

Let S be a nonempty set of vertices of a graph G. The induced subgraph generated
by S, denoted by < S >, is the subgraph H of G with vertex set S where vertices are
adjacent in H precisely when adjacent in G.

Remark 2.1. Let R be a ring, I be an ideal of R and adj(z) = {y+1 € T'(R/I) |
ay € I'}. Let < A > be the induced subgraph of I'(R/I) generated by
A={z+TeT(R/I)|z¢ VI and adj(z) € VI/I}.
< A > is also a subgraph of Fﬁ/I(R/I). In Example 2.1, 2+ I and 3+ I are adjacent
in Fﬁ/I(R/I), but they are not adjacent in < A >. Hence < A > may be a proper
subgraph of I' 7, (R/I). It is easy to see that 2 + I and y + I are adjacent in < A >
if and only if « and y are adjacent in G;(R). Moreover, if =+ I and y+ I are adjacent
in <A >, then  + 14 and y + j are adjacent in < A > for all 4,5 € I.
Now, we use < A > to construct G;(R). Let {zq}aca be the vertex set of < A >.
Define a graph G; with vertices {zo + i | @ € A} and x, + ¢ and zg + ¢ are adjacent
in G; if and only if o + I and xg + I are adjacent in < A >. Thus the union of
G’s is the vertex set of G;(R) and edge set of Gr(R) is (1) all edges of G;’s, (2) for
distinct o, 8 € A and for any 4,5 € I, 2o + 1 and 23 + j are adjacent in G;(R) if and
only if z, + I and zg + I are adjacent in < A >. Indeed, the relationship between
the subgraph < A > of T'(R/I) and the subgraph G;(R) of T';(R) is similar to that
between I'(R/I) and I';(R) which has been expressed in [12, p. 4429]. This subgraph
will be used in Theorem 2.2 to characterize G;(R).

The degree of a vertex v in a graph G is the number of edges of G incident with
v. For any nonnegative integer r, the graph G is called r-regular if the degree of
each vertex is equal to r. A subgraph H of G is called a spanning subgraph when
V(G) =V(H). A 1-regular spanning subgraph H of G is called a 1-factor or a perfect
matching of G. A graph G is 1-factorable if the edges of G are partitioned into 1-
factors of G. Every r-regular bipartite graph is 1-factorable (cf. [6, p. 192]). If the
edges of GG are partitioned into subgraphs Hy, ..., H,, then we write G &£ H1®- - -®H,,
and if H; = H; for all 1 < 4,5 < n, then we write G = nH, where H = H;. Using
these notions, it has been shown that in [10, Theorem 2.1], T';(R) = [I|*T'(R/1) if I is
a radical ideal of R. Now, by a similar method, we give a characterization for I';(R)
when /T is finite, and a characterization for G 7(R) when T is finite.

Theorem 2.2. Let R be a ring and I an ideal of R.

(1) If VT is finite, then T(R) = |[I|*T(R/I) & |X| - K| where X = {z +1 €
T(R/I) | 2% € I}. In particular, if I is a 2-absorbing ideal of R, then X =
D(R/T) N (VI/I).

(2) If I is finite, then Gr(R) = |I]? < A >.

Proof. (1) Let e be the edge of T'(R/I) between the vertices a and b. Since every

element of the form a4 is adjacent to every element of the form b+ j, for all 4,5 € I,

it is easy to see that there exists a subgraph of I';(R), denoted by H (¢) which is

isomorphic to the complete bipartite graph K|z,;j. On the other hand, by [6, p.

192], we have K| ;| = Ml(e) oD M‘(Ie‘), where each of Mi(e) is a perfect matching
of K771 Now consider L; := @CEE(F(R/]))Mi(e) which is a subgraph of T';(R). On
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the other hand, for all distinct 4,j € I, a +1i is adjacent to a + j if and only if a? € I.
Thus there exists a subgraph of I';(R), denoted by N,, which is isomorphic to the
complete graph K|7. Hence I'tf(R) = L1 @ ---® L) @ |X]|- K. Now the assertion
follows from the fact that each L; is partitioned into |I| edge-disjoint subgraph where
each of them is isomorphic to I'(R/I).

The “in particlar” statement follows from the fact that if I is a 2-absorbing ideal of
R, then I = {2z € R|2? € I'} [4, Theorem 2.1].

(2) The proof is similar to the proof of (1) by considering < A > instead of I'(R/I).
Note that X ={z+I € A|z? €I} =0. O

The following theorem presents a result analogous to the case for I'(R) found in
[2, Theorem 2.3] and for I';(R) found in [12, Theorem 2.4].

Theorem 2.3. Let R be a ring and I be an ideal of R. Then Gr(R) is a connected
graph and diam(G;(R)) < 3.

Proof. Let I be an ideal of a ring R, and x and y be distinct vertices of G;(R). If zy €
I, then 2—y is a path in G;(R). Let xy ¢ I. Then there exist a,b € R\ (VIU{z,y})
such that ax € T and by € I. If a = b, then z—a—y is a path in G;(R). If a # b and
abe VI, ie. a™b" € I for some positive integer n, then we have a path z—a"—b"—y
(for when a™ # b™) or a path 2—a"—y in G;(R). If a # b and ab ¢ /T, then z—ab—y
is a path in G;(R). O

Theorem 2.4. If I is a nonzero proper ideal of R, then Gr(R) has no cut-points.

Proof. Assume that the vertex x of Gr(R) is a cut-point. Then there exist vertices
u,w such that x lies on every path from v to w. By Theorem 2.3, a shortest path
from u to w in Gr(R) is of the form u— 2 —w or u—x —y —w for some y € G;(R). In
each of these paths, we can replace x by = + i for each 0 # i € I, since every vertex
adjacent to z is adjacent to x+4 and distinct from x+i (x ¢ v/I), a contradiction. [J

The next result should be compared with [12, Theorem 3.3].

Theorem 2.5. Let R be a ring, I be a nonzero proper ideal of R which is not quasi
primary and A be as in Remark 2.1. Then |I| — 1 < k(G1(R)) < |I|s(< A >). In
particular, k(Gr(R)) = oo if I is infinite.

Proof. First we show that x(Gr(R)) < |I|k(< A >). Suppose that < A > is discon-
nected by removing the vertices a1 + I, ..., ax + I. Define H to be the graph obtained
form Gr(R) by removing the set {aq +4 |1 < a < k,i € I}, which has k- |I| elements.

By way of contradiction assume that H is connected. Suppose that b + I is
not connected to ¢ + I after a; + I,...,a; + I are removed from < A >. Then
b and c are vertices of H. Suppose that b —z; — -+ — xy — c is a path in H. If
x;+ 1T = x4 +1 for some 1 < i < t, then 22 € I, which is a contradiction (z; ¢ v/T).
Thus b+ I -2y +1— -+ —x,+1 —c+ 1 is a path in < A > after removing
a1+ I,...,a; + I. This is a contradiction. Hence H is disconnected and we have
R(G1(R)) < |TIk(< A >).

Now we show that |I| — 1 < k(Gr(R)). If I is finite, set t = |I| — 1; otherwise let ¢
be any positive integer. Let aq,...,a; be any collection of vertices of Gr(R). Define
the graph H = G;(R) — {a1,...,at}.

Let x,y be two vertices of H. We show that there is a path between x and y in H.
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By Theorem 2.3, diam(G;(R)) < 3. Therefore, we have three cases:

Case 1: d(x,y) = 1; so we are done.

Case 2: d(x,y) = 2. Let © — v — y be a shortest path from z to y in Gr(R). If
v # an for any 1 < a < ¢, then this is also a path in H. Assume that v = a,
for some 1 < o < t. Since the set {a, + 4 | ¢ € I} has |I| element, we can choose
u € {aq +1i | i€ I} such that u # ag for any 1 < < ¢. Since zv € I and vy € I,
zu € I and uy € I. Hence x — u — y is a path in H.

Case 3: d(z,y) = 3. Let x —u—v—y be a shortest path frome z to y in G;(R). Since
u,v € R\ VI, u+ I # v+ I. Thus, since |I| > t, we can choose a € {u+i | i € I}
and b € {v+i|i€ I} such that a,b ¢ {a1,...,a;}. Now au € I,uv € I and vy € T
implies that za € I,ab € I and by € I. Hence x —a — b — y is a path from z to y in
H.

Hence in all cases H is connected. O

Corollary 2.6. Let R be a ring, I be a finite ideal of R and A be as in Remark 2.1.
Then |I| =1 < w(|I|> < A >) < |I|k(< A >).

Proof. Tt follows from Theorem 2.2 (2) and Theorem 2.5. O

Theorem 2.7. ([4, Theorem 2.4]) Let I be a 2-absorbing ideal of R. Then one of the
following statements must hold:
(1) VI =p is a prime ideal of R such that p> C I.
(2) VI =p1 Npa, pip2 C I, and (VI)? C I, where py,py are the only distinct prime
ideals of R that are minimal over I.

Theorem 2.8. Let R be a ring and I be a 2-absorbing ideal of R. Then G;(R) =0
or Gi(R) = K11 or Gi(R) 2 K, , for some m,n > 2.

Proof. Let I be a 2-absorbing ideal of R such that G;(R) # @. Then /T is not a
prime ideal and so, by Theorem 2.7, /T = p; N ps and p1py C I where py,ps are the
only distinct prime ideals of R which are minimal over I. Now for 2,y € R\ VT with
xy € I, we have xy € p; and xy € py. Since p; and ps are prime, we have x € p; or
y€prand x € py or y € pa and x,y ¢ p1 N py. Without loss of generality, we may
assume that « € p; \ p2 and y € pa \ p1. Since p1p2 C I, G (R) is a complete bipartite
graph with parts p; \ p2 and p \ p1. Let |p; \ p2| = m and |p2 \ p1| =n. If m =1 and
n > 2 orn=1and m > 2, the G;(R) is a star graph, a contradiction to Theorem
2.4. Thus G;(R) =2 K; 1 or G;(R) & K, ,, for some m,n > 2. O

Corollary 2.9. Let R be a ring and I a 2-absorbing ideal of R. Then diam(Gr(R))
<2.

Corollary 2.10. Let R be a ring and I a 2-absorbing ideal of R. If I is not a radical
ideal, then Gr(R) =0 or G;(R) & K, for some m,n > 2.

Proof. Let Gi(R) # 0. Thus VI = p; Npa, p1p2 C I where py, ps are the only distinct
prime ideals of R which are minimal over I and pips C I. By the proof of Theorem
2.8, it suffices to show that |p; \ p2| # 1 and |p2 \ p1| # 1. Otherwise, if for instance
Ip1 \ p2| = 1, then p; = {z} U+/T for some = € R. Thus for any 7 € R\ py, we have
re € p1\ VI. Hence rz = z and so (1 —7r)x =0 € py. Therefore 1 —r € py. This
means that for any r € R either r + py = py or 7 + pa = 1 + pa. Thus R/ps is a field
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and hence py is a maximal ideal of R. It implies that p; and p, are comaximal and
so by Theorem 2.7, /T = p1 N py = p1p2 C I, which is a contradiction. O

A graph theoretical result says that if a grph G contains a cycle, then gr(G) <
2diam(G) + 1 [8, Proposition 1.3.2]. By using this fact and Theorem 2.3, we have
gr(Gr(R)) < 7. In [7, Theorem 1.6], it has been shown that gr(T'(R)) < 4. By combin-
ing this result and the fact that I';(R) contains |I| disjoint subgraphs isomorphic to
I'(R/I) [12, Corollary 2.7], we conclude that if I'y(R) has a cycle, then gr(I';(R)) < 4.
This can be compared with the following result.

Theorem 2.11. Let I be an ideal of a ring R. If Gi(R) contains a cycle, then
gr(gr(R)) < 4.

Proof. Let xg —x1 — -+ — x, — 2o with n > 4 be a cycle in G;(R). Then we have two
cases:

Case 1: Let x;x; ¢ I for any j > ¢+ 1 such that either 0 < i < j < n—1or
1<i<j<n. Then

(a) If z12,_1 = mg or @, then 23 € I or 22 € I, which is a contradiction.

(b) Let z12, 1 # (i = 0,n). If 12,1 & VI, then 29— (212,_1) —,, — 2 is a cycle
of length 3 in G;(R). Now assume that 212, € v/I. Thus there exists a positive
integer ¢ such that x{zt,_, € I. If 2! # xp and 2!, _| # =, then zo—azt —x!_| -z, —x0
is a cycle of length 4 in G;(R). Otherwise, zog — x!,_; — x, — xo or 19 — 2} — x,, — 70
is a cycle of length 3 in Gr(R).

Case 2: Let z;2; € I for some ¢, j with the conditions of Case 1. Then we can replace
the path x; — ;41 — - -- — x; by the path z; — z; in the cycle g — 21y —--- — 2, — 20,
to obtain a shorter cycle and use Case 1. (I

Remark 2.2. Let R be aring and I be an ideal of R. If I is a 2-absorbing ideal, then
by Theorem 2.8, G;(R) = 0 or G;(R) = Ky, or G;(R) = K,,,, for some m,n > 2
and so gr(Gr(R)) = 0 or gr(Gr(R)) = oo or gr(Gr(R)) = 4. If I is a 2-absorbing
ideal which is not radical, then gr(G;(R)) = 0 or gr(G;(R)) = 4 by Corollary 2.10. In
particular, if I is a 2-absorbing ideal which is neither radical nor quasi primary, then
gr(Gr(R)) = 4.

Recall that the number of graph vertices of the largest complete subgraph of a
graph G, denoted by w(G), is the clique number of G.

Lemma 2.12. Let I C J be two ideals of R such that /I = \/J. Then Gi(R) is a
subgraph of Gj(R). In particular w(Gr(R)) < w(Gs(R)).

Proof. Let x and y be two adjacent vertices in G;(R). Then z,y € R\ VI = R\ V.J
and zy € I C J. Hence z and y are adjacent vertices in G;(R).

The “in particular” statement is clear, since every clique in Gr(R) can be extended
to a clique in G;(R). O

Theorem 2.13. Let R be a ring and I = g1 N -+ - N @y be a minimal primary decom-
position of the ideal I of R with n(< m) isolated prime ideals. Then w(Gr(R)) < n.
In particular if m = n, then w(Gr(R)) = n.

Proof. Let \/q; = pi (1 < i < m), where p;’s are prime ideals of R. Without loss
of generality we suppose that pp,...,p, are isolated prime ideals of I. Set J =
@1N---Ngp. Then I C J and VT = +/J. By Lemma 2.12, w(Gr(R)) < w(Gs(R)).
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Now we show that w(G;(R)) = n. This also proves the last part of theorem. Since
P1,...,Pn are isolated prime ideals of I, v.JJ = p; N---Np, and for all 1 < j < n,
V'J # pj where p; = N{pi | 1 <i <n,i# j}.

Consider z; € p; \ p; for all 1 < j < n. Then z;z; € VJforalll<i##j<n,so
there exists a positive integer ¢;; such that (x;z;)" € J. Therefore {z!,... 2%} is a
clique in G;(R) for ¢t = max{t;; | 1 <i¢,j < n,i # j}. Hence, w(Gs(R)) > n. Now
we must show that w(G;(R)) < n. In fact, by induction on n, we show that if J is
an ideal of R such that v/J = N{p; | 1 <4 < n} and for each 1 < j < n, V.J # Dj,
then w(Gs(R)) < n. For n = 2, by Theorem 2.8, G;(R) is a bipartite graph, hence
w(Gs(R)) = 2. Suppose n > 2 and the result is true for any integer less than n. Let
VJ =n{p; |1 <i<n}and for each 1 < j < n, VJ # p;. Let {xy,...,2;} be a
clique in G;(R). Hence, z12; € J C py for any 2 < j < k. Without loss of generality,
suppose that x1 ¢ p;. Therefore, zo,..., 25 € p1, SO Z2,...,2, ¢ p1. Let K be an
ideal of R such that v/K = p;. Then by induction hypothesis w(Gx (R)) < n—1. Since
{z1,...,2x} isaclique in G;(R), for all 2 < i # j <n, z;z; € J C VJ C VK. Then
there exists a positive integer ¢;; such that (z;2;)' € K. Therefore {x},..., 2%} is a
clique in Gg (R) for t = max{t;; |2 <4i,j <k,i# j}. Thus k —1 <n — 1, and hence
w(Gs(R)) <n.

O

Corollary 2.14. Let R be a Noetherian ring and Min(R) be the set of minimal prime
ideals of R. Then w(Gr(R)) = | Min(R/I)| for each ideal I of R.

Proof. Since R is Noetherian, | Min(R/I)| is finite for each ideal I of R. Therefore,
VT is a finite intersection of minimal prime ideals of I. Now, the result follows from
the proof of Theorem 2.13. O

If I is a 2-absorbing ideal, then by Theorem 2.8, w(G;(R)) = 0 or w(Gr(R)) = 2.
We can generalize this result as follows.

Corollary 2.15. Let R be a ring and I be an n-absorbing ideal of R . Then
w(Gr(R)) = [Min(R/I)| < n.

Proof. Tt follows from combining [1, Theorem 2.5] and the proof of Theorem 2.13. O

Theorem 2.16. Let R be a ring, I be an ideal of R and A be as in Remark 2.1.
Then w(Gr(R)) = w(< A >).

Proof. Since Gr(R) contains copies of < A >, w(< A >) < w(Gr(R)). It is enough to
consider the case where w(< A >) = n < co. Assume that H =< {a1,ag,...,an+1} >
is a complete subgraph of Gr(R) and H* is the subgraph of < A > on the vertices
ar+ I,as +1I,... ,a,11 + I. Note that vertices z and y are adjacent in Gr(R) if and
only if x + I and y + I are adjacent in < A >. Thus H* is a complement subgraph
of <A >. Hence a; +1 = ap + I for some 1 < j # k < n+ 1. Therefore, ajar € I
implies that a? € I, which is a contradiction. O
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