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Radical-Depended Graph of a Commutative Ring

Batool Zarei Jalal Abadi and Hosein Fazaeli Moghimi

Abstract. Let R be a commutative ring with identity and
√
I be the radical of an ideal I of

R. We introduce the radical-depended graph GI(R) whose vertex set is {x ∈ R \
√
I | xy ∈ I

for some y ∈ R \
√
I} and distinct vertices x and y are adjacent if and only if xy ∈ I. In this

paper, several properties of GI(R) are investigated and some results on the parameters of this

graph are given. It follows that if I is a quasi primary ideal, then GI(R) = ∅. It is shown that

if I is a 2-absorbing ideal of R which is not quasi primary, then GI(R) is the complete bipartite
graph K1,1 or Km,n for some m,n ≥ 2. Moreover, it is proved that GI(R) is a connected

graph with diameter at most 3, and if it has a cycle, then its girth is at most 4. Also, it is
shown that if R is a Noetherian ring, then the clique number of GI(R) is equal to |Min(R/I)|
for every ideal I of R.
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1. Introduction

The zero-divisor graph of a commutative ring was introduced by I. Beck in [5] and
further studied by D. D. Anderson and M. Naseer in [3]. However, they let all the ele-
ments of R be vertices of the graph, and they were mainly interested in colorings. We
adopt the approach used by D. F. Anderson and P. S. Livingston in [2] and consider
only nonzero zero-divisors as vertices of the graph. Let R be a commutative ring with
nonzero identity, I a proper ideal of R, and Z(R) the set of zero-divisors of R. The
zero-divisor graph of R, denoted by Γ(R), is the graph with vertices Z(R)∗ = Z(R)\0,
and distinct vertices x and y are adjacent if and only if xy = 0. In [12], Redmond
introduced an ideal-based zero-divisor graph of R as a generalization of Γ(R). Let I
be an ideal of R. The ideal-based zero-divisor graph of R is the graph ΓI(R) with
vertices {x ∈ R \ I | xy ∈ I for some y ∈ R \ I}, where distinct vertices x and y are
adjacent if and only if xy ∈ I. Therefore, if I = 0, then ΓI(R) = Γ(R), and I is a
prime ideal if and only if ΓI(R) = ∅.

In this paper, we study the radical-depended subgraph GI(R) of R that is a sub-

graph of Γ√I(R) with the vertices {x ∈ R \
√
I | xy ∈ I for some y ∈ R \

√
I} and

distinct vertices x and y are adjacent if and only if xy ∈ I. Therefore, I is a quasi
primary ideal (i.e.,

√
I is a prime ideal [9]) if and only if GI(R) = ∅, and if I is a

radical ideal, then GI(R) = Γ√I(R).
Let us recall some notions and notations from graph theory that will be used later.

A graph is said to be connected if for each pair of distinct vertices x and y, there is a
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finite sequence of distinct vertices x = x1, . . . , xn = y such that each pair {xi, xi+1}
is an edge. Such a sequence is said to be a path and the distance, d(x, y), between
connected vertices x and y is the length of a shortest path connecting them. The
diameter of a connected graph G, denoted diam(G), is the supremum of the distances
between vertices (and let d(x, y) =∞ if no such path exists). A cycle in a graph G is
a path that begins and ends at the same vertex. The girth of G, written gr(G), is the
length of the shortest cycle in G (and gr(G) =∞ if G has no cycles). A vertex x of a
connected graph G is a cut-point of G if G\{x} is not connected. The connectivity of
a graph G, denoted by κ(G), is defined to be the minimum number of vertices which
is necessary to remove from G in order to produce a disconnected graph. A complete
graph is a graph where all vertices are adjacent. The complete graph on n vertices
is denoted by Kn. For a graph G, a complete subgraph of G is called a clique. The
clique number, ω(G), is the greatest integer n ≥ 1 such that Kn ⊆ G, and ω(G) =∞
if Kn ⊆ G for all n ≥ 1. The complete bipartite graph, denoted Km,n, is the graph
whose vertex set is the disjoint union of two sets, V1 and V2, satisfying |V1| = m,
|V2| = n, and whose edge set is precisely {{v1, v2} | v1 ∈ V1 and v2 ∈ V2}.

Here is a brief summary of the paper. It is shown that GI(R) is a connected graph
with diam(GI(R)) ≤ 3 (Theorem 2.3), and if it has a cycle, then gr(G) ≤ 4 (Theo-
rem 2.11). This graph has no cut-points (Theorem 2.4), and we provide bounds on
κ(GI(R)) (Theorem 2.5).
A proper ideal I is called n-absorbing if x1 · · ·xn+1 ∈ I for x1, . . . , xn+1 ∈ R, then
there are n of the xi’s whose product is in I (see [1, 4, 11]). It is shown that if I is a
2-absorbing ideal of R, then GI(R) = ∅ or GI(R) ∼= K1,1 or GI(R) ∼= Km,n for some
m,n ≥ 2 (Theorem 2.8). Thus, in this case, diam(GI(R)) ∈ {0, 1, 2} (Corollary 2.9)
and gr(G) ∈ {0, 4,∞} (Remark 2.2).

It is proved that if I = q1 ∩ · · · ∩ qm is a minimal primary decomposition of an
ideal I of R with n(≤ m) isolated prime ideals, then ω(GI(R)) ≤ n. In particular, if
m = n, then ω(GI(R)) = n (Theorem 2.13). Thus, if R is a Noetherian ring, then for
every ideal I of R, ω(GI(R)) = |Min(R/I)|, where Min(R/I) is the set of all minimal
prime ideals of R/I (Corollary 2.14). It is also obtained that if I is an n-absorbing
ideal of R, then ω(GI(R)) = |Min(R/I)| ≤ n (Corollary 2.15).

2. On Radical-Depended Graph

Lemma 2.1. Let R be a ring. If I is a quasi primary ideal, then GI(R) = Γ√I(R) =

Γ(R/
√
I) = ∅. In particular, this equality holds when I is an ideal of a zero-

dimensional ring R.

For a graph G, the vertices set and the edges set of G are denoted by V (G) and
E(G) respectively. In the following example, we see that Γ√I(R) and its subgraph
GI(R) may or may not isomorphic graphs.

Example 2.1. (1) Let R = Z24 and I =< 12 >. Then GI(R) � Γ√I(R), since the
vertices 2, 10, 14, 22 of Γ√I(R) are not vertices of GI(R).
(2) Let R = Z and I = 12Z. Then V (Γ√I(R)) = {6k + 2, 6k + 3, 6k + 4 | k ∈ Z},
E(Γ√I(R)) =

{
{6k + 2, 6k′ + 3} | k, k′ ∈ Z} ∪

{
{6k + 3, 6k′ + 4} | k, k′ ∈ Z

}
,

V (GI(R)) = {12k + 4, 6k + 3, 12k + 8 | k ∈ Z} and E(GI(R)) =
{
{12k + 4, 6k′ + 3} |

k, k′ ∈ Z}∪
{
{6k+3, 12k′+8} | k, k′ ∈ Z

}
. It is easy to check that ϕ : Γ√I(R)→ GI(R)
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defined by ϕ(6k + 2) = 12k + 4, ϕ(6k + 3) = 6k + 3 and ϕ(6k + 4) = 12k + 8 is a
graph isomorphism.

Let S be a nonempty set of vertices of a graph G. The induced subgraph generated
by S, denoted by < S >, is the subgraph H of G with vertex set S where vertices are
adjacent in H precisely when adjacent in G.

Remark 2.1. Let R be a ring, I be an ideal of R and adj(x) = {y + I ∈ Γ(R/I) |
xy ∈ I}. Let < Λ > be the induced subgraph of Γ(R/I) generated by

Λ = {x+ I ∈ Γ(R/I) | x /∈
√
I and adj(x) *

√
I/I}.

< Λ > is also a subgraph of Γ√I/I(R/I). In Example 2.1, 2+I and 3+I are adjacent

in Γ√I/I(R/I), but they are not adjacent in < Λ >. Hence < Λ > may be a proper

subgraph of Γ√I/I(R/I). It is easy to see that x+ I and y+ I are adjacent in < Λ >

if and only if x and y are adjacent in GI(R). Moreover, if x+ I and y+ I are adjacent
in < Λ >, then x+ i and y + j are adjacent in < Λ > for all i, j ∈ I.
Now, we use < Λ > to construct GI(R). Let {xα}α∈∆ be the vertex set of < Λ >.
Define a graph Gi with vertices {xα + i | α ∈ ∆} and xα + i and xβ + i are adjacent
in Gi if and only if xα + I and xβ + I are adjacent in < Λ >. Thus the union of
Gi’s is the vertex set of GI(R) and edge set of GI(R) is (1) all edges of Gi’s, (2) for
distinct α, β ∈ ∆ and for any i, j ∈ I, xα + i and xβ + j are adjacent in GI(R) if and
only if xα + I and xβ + I are adjacent in < Λ >. Indeed, the relationship between
the subgraph < Λ > of Γ(R/I) and the subgraph GI(R) of ΓI(R) is similar to that
between Γ(R/I) and ΓI(R) which has been expressed in [12, p. 4429]. This subgraph
will be used in Theorem 2.2 to characterize GI(R).

The degree of a vertex v in a graph G is the number of edges of G incident with
v. For any nonnegative integer r, the graph G is called r-regular if the degree of
each vertex is equal to r. A subgraph H of G is called a spanning subgraph when
V (G) = V (H). A 1-regular spanning subgraph H of G is called a 1-factor or a perfect
matching of G. A graph G is 1-factorable if the edges of G are partitioned into 1-
factors of G. Every r-regular bipartite graph is 1-factorable (cf. [6, p. 192]). If the
edges ofG are partitioned into subgraphsH1, . . . ,Hn, then we writeG ∼= H1⊕· · ·⊕Hn,
and if Hi

∼= Hj for all 1 ≤ i, j ≤ n, then we write G ∼= nH, where H ∼= Hi. Using
these notions, it has been shown that in [10, Theorem 2.1], ΓI(R) ∼= |I|2Γ(R/I) if I is
a radical ideal of R. Now, by a similar method, we give a characterization for ΓI(R)

when
√
I is finite, and a characterization for GI(R) when I is finite.

Theorem 2.2. Let R be a ring and I an ideal of R.
(1) If

√
I is finite, then ΓI(R) ∼= |I|2Γ(R/I) ⊕ |X| · K|I| where X = {x + I ∈

Γ(R/I) | x2 ∈ I}. In particular, if I is a 2-absorbing ideal of R, then X =

Γ(R/I) ∩ (
√
I/I).

(2) If I is finite, then GI(R) ∼= |I|2 < Λ >.

Proof. (1) Let e be the edge of Γ(R/I) between the vertices a and b. Since every
element of the form a+ i is adjacent to every element of the form b+ j, for all i, j ∈ I,
it is easy to see that there exists a subgraph of ΓI(R), denoted by H(e), which is
isomorphic to the complete bipartite graph K|I|,|I|. On the other hand, by [6, p.

192], we have K|I|,|I| ∼= M
(e)
1 ⊕ · · · ⊕M (e)

|I| , where each of M
(e)
i is a perfect matching

of K|I|,|I|. Now consider Li := ⊕e∈E(Γ(R/I))M
(e)
i which is a subgraph of ΓI(R). On
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the other hand, for all distinct i, j ∈ I, a+ i is adjacent to a+ j if and only if a2 ∈ I.
Thus there exists a subgraph of ΓI(R), denoted by Na, which is isomorphic to the
complete graph K|I|. Hence ΓI(R) ∼= L1 ⊕ · · · ⊕ L|I| ⊕ |X| ·K|I|. Now the assertion
follows from the fact that each Li is partitioned into |I| edge-disjoint subgraph where
each of them is isomorphic to Γ(R/I).
The “in particlar” statement follows from the fact that if I is a 2-absorbing ideal of
R, then

√
I = {x ∈ R | x2 ∈ I} [4, Theorem 2.1].

(2) The proof is similar to the proof of (1) by considering < Λ > instead of Γ(R/I).
Note that X = {x+ I ∈ Λ | x2 ∈ I} = ∅. �

The following theorem presents a result analogous to the case for Γ(R) found in
[2, Theorem 2.3] and for ΓI(R) found in [12, Theorem 2.4].

Theorem 2.3. Let R be a ring and I be an ideal of R. Then GI(R) is a connected
graph and diam(GI(R)) ≤ 3.

Proof. Let I be an ideal of a ring R, and x and y be distinct vertices of GI(R). If xy ∈
I, then x−y is a path in GI(R). Let xy /∈ I. Then there exist a, b ∈ R \ (

√
I ∪ {x, y})

such that ax ∈ I and by ∈ I. If a = b, then x−a−y is a path in GI(R). If a 6= b and

ab ∈
√
I, i.e. anbn ∈ I for some positive integer n, then we have a path x−an−bn−y

(for when an 6= bn) or a path x−an−y in GI(R). If a 6= b and ab /∈
√
I, then x−ab−y

is a path in GI(R). �

Theorem 2.4. If I is a nonzero proper ideal of R, then GI(R) has no cut-points.

Proof. Assume that the vertex x of GI(R) is a cut-point. Then there exist vertices
u,w such that x lies on every path from u to w. By Theorem 2.3, a shortest path
from u to w in GI(R) is of the form u−x−w or u−x− y−w for some y ∈ GI(R). In
each of these paths, we can replace x by x + i for each 0 6= i ∈ I, since every vertex
adjacent to x is adjacent to x+i and distinct from x+i (x /∈

√
I), a contradiction. �

The next result should be compared with [12, Theorem 3.3].

Theorem 2.5. Let R be a ring, I be a nonzero proper ideal of R which is not quasi
primary and Λ be as in Remark 2.1. Then |I| − 1 ≤ κ(GI(R)) ≤ |I|κ(< Λ >). In
particular, κ(GI(R)) =∞ if I is infinite.

Proof. First we show that κ(GI(R)) ≤ |I|κ(< Λ >). Suppose that < Λ > is discon-
nected by removing the vertices a1 +I, . . . , ak+I. Define H to be the graph obtained
form GI(R) by removing the set {aα+ i | 1 ≤ α ≤ k, i ∈ I}, which has k · |I| elements.

By way of contradiction assume that H is connected. Suppose that b + I is
not connected to c + I after a1 + I, . . . , ak + I are removed from < Λ >. Then
b and c are vertices of H. Suppose that b − x1 − · · · − xt − c is a path in H. If
xi + I = xi+1 + I for some 1 ≤ i ≤ t, then x2

i ∈ I, which is a contradiction (xi /∈
√
I).

Thus b + I − x1 + I − · · · − xt + I − c + I is a path in < Λ > after removing
a1 + I, . . . , ak + I. This is a contradiction. Hence H is disconnected and we have
κ(GI(R)) ≤ |I|κ(< Λ >).

Now we show that |I| − 1 ≤ κ(GI(R)). If I is finite, set t = |I| − 1; otherwise let t
be any positive integer. Let a1, . . . , at be any collection of vertices of GI(R). Define
the graph H = GI(R)− {a1, . . . , at}.
Let x, y be two vertices of H. We show that there is a path between x and y in H.
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By Theorem 2.3, diam(GI(R)) ≤ 3. Therefore, we have three cases:
Case 1: d(x, y) = 1; so we are done.
Case 2: d(x, y) = 2. Let x − v − y be a shortest path from x to y in GI(R). If
v 6= aα for any 1 ≤ α ≤ t, then this is also a path in H. Assume that v = aα
for some 1 ≤ α ≤ t. Since the set {aα + i | i ∈ I} has |I| element, we can choose
u ∈ {aα + i | i ∈ I} such that u 6= aβ for any 1 ≤ β ≤ t. Since xv ∈ I and vy ∈ I,
xu ∈ I and uy ∈ I. Hence x− u− y is a path in H.
Case 3: d(x, y) = 3. Let x−u−v−y be a shortest path frome x to y in GI(R). Since

u, v ∈ R \
√
I, u + I 6= v + I. Thus, since |I| > t, we can choose a ∈ {u + i | i ∈ I}

and b ∈ {v + i | i ∈ I} such that a, b /∈ {a1, . . . , at}. Now xu ∈ I, uv ∈ I and vy ∈ I
implies that xa ∈ I, ab ∈ I and by ∈ I. Hence x− a− b− y is a path from x to y in
H.
Hence in all cases H is connected. �

Corollary 2.6. Let R be a ring, I be a finite ideal of R and Λ be as in Remark 2.1.
Then |I| − 1 ≤ κ(|I|2 < Λ >) ≤ |I|κ(< Λ >).

Proof. It follows from Theorem 2.2 (2) and Theorem 2.5. �

Theorem 2.7. ([4, Theorem 2.4]) Let I be a 2-absorbing ideal of R. Then one of the
following statements must hold:
(1)
√
I = p is a prime ideal of R such that p2 ⊆ I.

(2)
√
I = p1 ∩ p2, p1p2 ⊆ I, and (

√
I)2 ⊆ I, where p1, p2 are the only distinct prime

ideals of R that are minimal over I.

Theorem 2.8. Let R be a ring and I be a 2-absorbing ideal of R. Then GI(R) = ∅
or GI(R) ∼= K1,1 or GI(R) ∼= Km,n for some m,n ≥ 2.

Proof. Let I be a 2-absorbing ideal of R such that GI(R) 6= ∅. Then
√
I is not a

prime ideal and so, by Theorem 2.7,
√
I = p1 ∩ p2 and p1p2 ⊆ I where p1, p2 are the

only distinct prime ideals of R which are minimal over I. Now for x, y ∈ R \
√
I with

xy ∈ I, we have xy ∈ p1 and xy ∈ p2. Since p1 and p2 are prime, we have x ∈ p1 or
y ∈ p1 and x ∈ p2 or y ∈ p2 and x, y /∈ p1 ∩ p2. Without loss of generality, we may
assume that x ∈ p1 \ p2 and y ∈ p2 \ p1. Since p1p2 ⊆ I, GI(R) is a complete bipartite
graph with parts p1 \ p2 and p2 \ p1. Let |p1 \ p2| = m and |p2 \ p1| = n. If m = 1 and
n ≥ 2, or n = 1 and m ≥ 2, the GI(R) is a star graph, a contradiction to Theorem
2.4. Thus GI(R) ∼= K1,1 or GI(R) ∼= Km,n for some m,n ≥ 2. �

Corollary 2.9. Let R be a ring and I a 2-absorbing ideal of R. Then diam(GI(R))
≤ 2.

Corollary 2.10. Let R be a ring and I a 2-absorbing ideal of R. If I is not a radical
ideal, then GI(R) = ∅ or GI(R) ∼= Km,n for some m,n ≥ 2.

Proof. Let GI(R) 6= ∅. Thus
√
I = p1 ∩ p2, p1p2 ⊆ I where p1, p2 are the only distinct

prime ideals of R which are minimal over I and p1p2 ⊆ I. By the proof of Theorem
2.8, it suffices to show that |p1 \ p2| 6= 1 and |p2 \ p1| 6= 1. Otherwise, if for instance

|p1 \ p2| = 1, then p1 = {x} ∪
√
I for some x ∈ R. Thus for any r ∈ R \ p2, we have

rx ∈ p1 \
√
I. Hence rx = x and so (1 − r)x = 0 ∈ p2. Therefore 1 − r ∈ p2. This

means that for any r ∈ R either r + p2 = p2 or r + p2 = 1 + p2. Thus R/p2 is a field
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and hence p2 is a maximal ideal of R. It implies that p1 and p2 are comaximal and
so by Theorem 2.7,

√
I = p1 ∩ p2 = p1p2 ⊆ I, which is a contradiction. �

A graph theoretical result says that if a grph G contains a cycle, then gr(G) ≤
2 diam(G) + 1 [8, Proposition 1.3.2]. By using this fact and Theorem 2.3, we have
gr(GI(R)) ≤ 7. In [7, Theorem 1.6], it has been shown that gr(Γ(R)) ≤ 4. By combin-
ing this result and the fact that ΓI(R) contains |I| disjoint subgraphs isomorphic to
Γ(R/I) [12, Corollary 2.7], we conclude that if ΓI(R) has a cycle, then gr(ΓI(R)) ≤ 4.
This can be compared with the following result.

Theorem 2.11. Let I be an ideal of a ring R. If GI(R) contains a cycle, then
gr(GI(R)) ≤ 4.

Proof. Let x0− x1− · · · − xn− x0 with n ≥ 4 be a cycle in GI(R). Then we have two
cases:
Case 1: Let xixj /∈ I for any j > i + 1 such that either 0 ≤ i < j ≤ n − 1 or
1 ≤ i < j ≤ n. Then
(a) If x1xn−1 = x0 or xn, then x2

0 ∈ I or x2
n ∈ I, which is a contradiction.

(b) Let x1xn−1 6= xi (i = 0, n). If x1xn−1 /∈
√
I, then x0−(x1xn−1)−xn−x0 is a cycle

of length 3 in GI(R). Now assume that x1xn−1 ∈
√
I. Thus there exists a positive

integer t such that xt1x
t
n−1 ∈ I. If xt1 6= x0 and xtn−1 6= xn, then x0−xt1−xtn−1−xn−x0

is a cycle of length 4 in GI(R). Otherwise, x0 − xtn−1 − xn − x0 or x0 − xt1 − xn − x0

is a cycle of length 3 in GI(R).
Case 2: Let xixj ∈ I for some i, j with the conditions of Case 1. Then we can replace
the path xi− xi+1− · · · − xj by the path xi− xj in the cycle x0− x1− · · · − xn− x0,
to obtain a shorter cycle and use Case 1. �

Remark 2.2. Let R be a ring and I be an ideal of R. If I is a 2-absorbing ideal, then
by Theorem 2.8, GI(R) = ∅ or GI(R) ∼= K1,1 or GI(R) ∼= Km,n for some m,n ≥ 2
and so gr(GI(R)) = 0 or gr(GI(R)) = ∞ or gr(GI(R)) = 4. If I is a 2-absorbing
ideal which is not radical, then gr(GI(R)) = 0 or gr(GI(R)) = 4 by Corollary 2.10. In
particular, if I is a 2-absorbing ideal which is neither radical nor quasi primary, then
gr(GI(R)) = 4.

Recall that the number of graph vertices of the largest complete subgraph of a
graph G, denoted by ω(G), is the clique number of G.

Lemma 2.12. Let I ⊆ J be two ideals of R such that
√
I =
√
J . Then GI(R) is a

subgraph of GJ(R). In particular ω(GI(R)) ≤ ω(GJ(R)).

Proof. Let x and y be two adjacent vertices in GI(R). Then x, y ∈ R \
√
I = R \

√
J

and xy ∈ I ⊆ J . Hence x and y are adjacent vertices in GJ(R).
The “in particular” statement is clear, since every clique in GI(R) can be extended
to a clique in GJ(R). �

Theorem 2.13. Let R be a ring and I = q1 ∩ · · · ∩ qm be a minimal primary decom-
position of the ideal I of R with n(≤ m) isolated prime ideals. Then ω(GI(R)) ≤ n.
In particular if m = n, then ω(GI(R)) = n.

Proof. Let
√
qi = pi (1 ≤ i ≤ m), where pi’s are prime ideals of R. Without loss

of generality we suppose that p1, . . . , pn are isolated prime ideals of I. Set J =
q1 ∩ · · · ∩ qn. Then I ⊆ J and

√
I =

√
J . By Lemma 2.12, ω(GI(R)) ≤ ω(GJ(R)).
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Now we show that ω(GJ(R)) = n. This also proves the last part of theorem. Since

p1, . . . , pn are isolated prime ideals of I,
√
J = p1 ∩ · · · ∩ pn and for all 1 ≤ j ≤ n,√

J 6= p̂j where p̂j = ∩{pi | 1 ≤ i ≤ n, i 6= j}.
Consider xj ∈ p̂j \ pj for all 1 ≤ j ≤ n. Then xixj ∈

√
J for all 1 ≤ i 6= j ≤ n, so

there exists a positive integer tij such that (xixj)
tij ∈ J . Therefore {xt1, . . . , xtn} is a

clique in GJ(R) for t = max{tij | 1 ≤ i, j ≤ n, i 6= j}. Hence, ω(GJ(R)) ≥ n. Now
we must show that ω(GJ(R)) ≤ n. In fact, by induction on n, we show that if J is

an ideal of R such that
√
J = ∩{pi | 1 ≤ i ≤ n} and for each 1 ≤ j ≤ n,

√
J 6= p̂j ,

then ω(GJ(R)) ≤ n. For n = 2, by Theorem 2.8, GJ(R) is a bipartite graph, hence
ω(GJ(R)) = 2. Suppose n > 2 and the result is true for any integer less than n. Let√
J = ∩{pi | 1 ≤ i ≤ n} and for each 1 ≤ j ≤ n,

√
J 6= p̂j . Let {x1, . . . , xk} be a

clique in GJ(R). Hence, x1xj ∈ J ⊆ p1 for any 2 ≤ j ≤ k. Without loss of generality,
suppose that x1 /∈ p1. Therefore, x2, . . . , xk ∈ p1, so x2, . . . , xk /∈ p̂1. Let K be an
ideal of R such that

√
K = p̂1. Then by induction hypothesis ω(GK(R)) ≤ n−1. Since

{x1, . . . , xk} is a clique in GJ(R), for all 2 ≤ i 6= j ≤ n, xixj ∈ J ⊆
√
J ⊆
√
K. Then

there exists a positive integer tij such that (xixj)
tij ∈ K. Therefore {xt2, . . . , xtk} is a

clique in GK(R) for t = max{tij | 2 ≤ i, j ≤ k, i 6= j}. Thus k − 1 ≤ n− 1, and hence
ω(GJ(R)) ≤ n.

�

Corollary 2.14. Let R be a Noetherian ring and Min(R) be the set of minimal prime
ideals of R. Then ω(GI(R)) = |Min(R/I)| for each ideal I of R.

Proof. Since R is Noetherian, |Min(R/I)| is finite for each ideal I of R. Therefore,√
I is a finite intersection of minimal prime ideals of I. Now, the result follows from

the proof of Theorem 2.13. �

If I is a 2-absorbing ideal, then by Theorem 2.8, ω(GI(R)) = 0 or ω(GI(R)) = 2.
We can generalize this result as follows.

Corollary 2.15. Let R be a ring and I be an n-absorbing ideal of R . Then
ω(GI(R)) = |Min(R/I)| ≤ n.

Proof. It follows from combining [1, Theorem 2.5] and the proof of Theorem 2.13. �

Theorem 2.16. Let R be a ring, I be an ideal of R and Λ be as in Remark 2.1.
Then ω(GI(R)) = ω(< Λ >).

Proof. Since GI(R) contains copies of < Λ >, ω(< Λ >) ≤ ω(GI(R)). It is enough to
consider the case where ω(< Λ >) = n <∞. Assume that H =< {a1, a2, . . . , an+1} >
is a complete subgraph of GI(R) and H∗ is the subgraph of < Λ > on the vertices
a1 + I, a2 + I, . . . , an+1 + I. Note that vertices x and y are adjacent in GI(R) if and
only if x + I and y + I are adjacent in < Λ >. Thus H∗ is a complement subgraph
of < Λ >. Hence aj + I = ak + I for some 1 ≤ j 6= k ≤ n + 1. Therefore, ajak ∈ I
implies that a2

j ∈ I, which is a contradiction. �
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