
Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 46(2), 2019, Pages 223–235
ISSN: 1223-6934

Homoclinic solutions for a class of damped vibration systems

Khelifi Fathi and Timoumi Mohsen

Abstract. In this paper, we establish a new existence result on homoclinic solutions for a
non periodic damped vibration system

ẍ(t) + q(t)ẋ(t) + V ′(t, x(t)) = 0,

where q is a continuously differentiable function and V ∈ C1(R×RN ,R), V (t, x) = −K(t, x)+

W (t, x). This homoclinic solution is obtained as a limit of solutions of a certain sequence of

nil-boundary value problems which are obtained by the minimax methods.
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1. Introduction

Consider the following damped vibration system

(DV ) ẍ(t) + q(t)ẋ(t) + V ′(t, x(t)) = 0,

where V ∈ C1(R× RN ,R), V ′(t, x) = ∂V
∂x (t, x) and q ∈ C1(R,R).

As usual, we say that a solution x of (DV) is homoclinic (to 0) if x ∈ C2(R,RN ),
x 6= 0, x(t)→ 0 and ẋ(t)→ 0 as t→ ±∞.

It is well known that homoclinic orbits play an important role in analyzing the
chaos of dynamical systems. If a system has the transversely intersected homoclinic
orbits, then it must be chaotic. If it has the smoothly connected homoclinic orbits,
then it cannot stand the perturbation, its perturbed system probably produce chaotic
phenomena. Therefore, it is of practical importance and mathematical significance to
consider the existence of homoclinic orbits of (DV) emanating from 0.

When q(t) = 0 for all t ∈ R, (DV ) is just the following second order Hamiltonian
system

(HS) ẍ(t) +∇V (t, x(t)) = 0.

In last decades, the existence and multiplicity of homoclinic orbits for systems (HS)
have been extensively investigated by many authors see [1],[3]-[18],[20]-[25] and refer-
ences therein.
In 2008, Wu and Zhou [26] studied the existence of solutions of the following damped
vibration problems{

ẍ(t) + q(t)ẋ(t) = Ax(t) +W ′(t, x(t)) = 0 for t ∈ [0, T ]
x(0) = x(T ) = ẋ(0)− eQ(T )ẋ(T ) = 0

(1)
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using variational method.
In 2011, Zhang and Yan [27] studied the existence of homoclinic solutions of a

special case of (DV)

ẍ(t) + cẋ(t)− L(t)x(t) +W ′(t, x(t)) = 0 for t ∈ R , x ∈ RN. (2)

They introduce the concept of fast homoclinic solutions and establish some criteria
to guarantee the existence of fast homoclinic solutions for (2) under the case where
W (t, x) is subquadratic at infinity and c ≥ 0.

In 2013, Peng Chen and X.H.Tang [2] studied the existence and multiplicity of the
following damped vibration problems

ẍ(t) + q(t)ẋ(t)− L(t)x(t) +W ′(t, x(t)) = 0 for t ∈ R , x ∈ RN, (3)

where L(t) and W (t, x) are neither autonomous nor periodic in t.
In the recent paper [11], F.Khelifi and M.Timoumi proved that system (DV) pos-

sesses at least one non trivial even homoclinic solution under some suitable assump-
tions where V is of the type V (t, x) = −K(t, x) +W (t, x).

As far as the case q(t) 6= 0, is concerned, to our best knowledge, there is few research
about the existence of such solutions for (DV) when V is of the type V = −K +W.

In the present paper, we shall study the existence of homoclinic solutions for (DV )
when q(t) 6= 0 and assuming that V (t, x) is not periodic in t and W (t, x) satisfies
a kind of new superquadratic condition which is different from the corresponding
condition in the known results. We obtain the existence of homoclinic solution as the
limit of solutions of a certain sequence of boundary-value problem which are obtained
by the minimax methods.

Our result is presented as follows:

Theorem 1.1. Let M1 = sup{K(t, x), t ∈ R, |x| ≤ 1} < ∞ holds. Moreover,
assume that the following conditions hold:

(K1) K(t, 0) = 0, and there exist constants a > 0 and β ∈]1, 2] such that K(t, x) ≥
a|x|2,K(t, x) ≤ K ′(t, x).x ≤ βK(t, x) ∀(t, x) ∈ R× RN .

(K2) For all (t, x) ∈ R× RN , K ′(t, x)→ 0 as |x| → 0 uniformly in t ∈ R,
(W1) W (t, 0) = 0 and W ′(t, x) = o(|x|) as |x| → 0, uniformly in t, and there exist,

M0 > 0 such that
|W ′(t, x)|
|x|

≤M0,

for any t ∈ R and x ∈ RN .

(W2) W (t, x) − w(t)|x|2 = o(|x|2) as |x| → ∞ uniformly in t, where w ∈ L∞(R,R)
with w∞ = inft∈R w(t) > 2M1M∞

m0
,

where M∞ = sup
t∈R

eQ(t) and m0 = inf
t∈R

eQ(t).

(W3) W (t, x) = 1
2W

′(t, x)x−W (t, x)→∞ as |x| → ∞, and

inf{W (t, x)

|x|2
: t ∈ R; with c ≤ |x| < d} > 0,

for any c, d > 0.

(q) q and Q are bounded functions and q ∈ C1(R,R), where Q(t) =

∫ t

0

q(s)ds.
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Then the system (DV) has at least one nontrivial homoclinic solution x ∈ H1
Q(R,RN )

such that ẋ(t)→ 0 as |t| → +∞.

Remark 1.1. Theorem 1.1 treats the asymptotically quadratic case on W . Consider
the functions

q(t) = sin(t), Q(t) = 1− cos(t),

K(t, x) = (1 + e−|t|)|x|2, W (t, x) = d(t)|x|2
(

1− 1

ln(e+ |x|)

)
,

where d ∈ L∞(R,R) and inft∈R d(t) > 4 + 32π2.
A straightforward computation shows that W and K satisfy the assumptions of

Theorem 1.1, but W does not satisfy the global Ambrosetti-Rabinowitz condition, and
K can not be written in the form 1

2 (L(t)x, x) and does not satisfy the corresponding
results in [1, 4, 10, 13, 19, 22, 24, 25]. Hence, Theorem 1.1 also extends the results in
[7, 21].

2. Proof of the main results

By the idea of [12], we approximate a homoclinic solution of (DV) by a solution of
the following problem:{

ẍ(t) + q(t)ẋ(t)−K ′(t, x(t)) +W ′(t, x(t)) = 0 for t ∈]− T, T [
x(−T ) = x(T ) = 0

(4)

where T is a positive constant.
For 1 ≤ s < ∞, let LsQ(−T, T ;RN ) be the Banach space of measurable functions

x defined on [−T, T ] with values in RN satisfying

∫ T

−T
eQ(t)|x(t)|sdt < ∞, with the

norm

‖x‖LsQ =

(∫ T

−T
eQ(t)|x(t)|sdt

) 1
s

.

The space L2
Q(−T, T ;RN ) provided with the inner product

< x, y >=

∫ T

−T
eQ(t)x(t).y(t)dt, x, y ∈ L2

Q(−T, T ;RN )

is a Hilbert space. Let E be the space defined by

E =
{
x ∈ L2

Q([−T, T ],RN ), ẋ ∈ L2
Q(−[T, T ],RN ), x(−T ) = x(T ) = 0

}
The space E provided with the inner product

〈x, y〉 =

∫ T

−T
eQ(t)[x(t).y(t) + ẋ(t).ẏ(t)]dt,

and the associated norm

‖x‖ =

(∫ T

−T
eQ(t)(|x(t)|2 + |ẋ(t)|2)dt

) 1
2

is a Hilbert space.
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Consider the functional I : E → R defined by

Φ(x) =

∫ T

−T
eQ(t)

[
1

2
|ẋ(t)|2 +K(t, x(t))−W (t, x(t))

]
dt. (5)

It is easy to check that Φ ∈ C1(E,R) and for all x, y ∈ E, we have

Φ′(x)y =

∫ T

−T
eQ(t) [(ẋ(t).ẏ(t) +K ′(t, x(t)).y(t)−W ′(t, x(t)).y(t)] dt. (6)

Moreover, the critical points of Φ in H1
0 ([−T, T ]) are the classical solutions of (DV)

in [−T, T ] satisfying x(T ) = x(−T ) = 0. We will obtain a critical point of Φ by using
an improved version of the Mountain Pass Theorem. For completeness, we give this
theorem.

Recall that a sequence (xj) is a C-sequence for the functional ϕ if ϕ(xj) is bounded
and (1 + ‖xj‖)ϕ′(xj)→ 0. A functional ϕ satisfies the C-condition if and only if any
C-condition for ϕ contains a convergent subsequence.

Lemma 2.1. [19] Let H be a real Banach space and I ∈ C1(H,R) satisfying the
C-condition. If I satisfies the following conditions:

(i) I(0) = 0,
(ii) there exist constants ρ, α > 0 such that I|∂Bρ(0) ≥ α,
(iii) there exists e ∈ H\Bρ(0) such that I(e) ≤ 0.

Then I possesses a critical value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where Bρ(0) is the open ball in H centered in 0, with radius ρ, ∂Bρ(0) as its boundary
and

Γ = {g ∈ C([0, 1], H) : g(0) = 0, g(1) = e}.

Proof. As shown in [4], a deformation lemma can be proved with the C-condition
replacing the usual (PS)-condition, and it turns out that the Mountain Pass Theorem
in [19] holds true under the C-condition. �

By Sobolev’s embedding theorem, H1(R;RN ) is continuously embedded into L∞(R,RN ).
Thus there exists C > 0 such that

‖x‖L∞(R,RN ) ≤ C‖x‖H1 , ∀ x ∈ H1(R;RN ).

Since x ∈ E can be regarded as belonging to H1(R;RN ) if one extends it by zero in
R\[−T, T ], then we have

‖x‖L∞([−T,T ],RN ) ≤ C‖x‖H1 , ∀ x ∈ H1
0 ([−T, T ],RN ),

where C is independent of T > 0.
It follows from the above inequality that

‖x‖L∞([−T,T ],RN ) ≤ C‖x‖H1 ≤ γ2‖x‖, ∀x ∈ E, (7)

where γ2 = C√
m0
.

Note that the inequality (7) holds true with constant C =
√

2 if T > 1
2 ( see [10]).

Subsequently, we may assume this condition is fulfilled.
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Lemma 2.2. Assume that (K1) holds, then

K(t, x) ≤ K(t,
x

|x|
)|x|β , ∀t ∈ R, |x| ≥ 1. (8)

Proof. To prove this lemma it suffices to show that for every x ∈ RN and
t ∈ [−T, T ] the function (0,+∞) → R, s 7→ K(t, s−1x)sβ is nondecreasing; which is
an immediate consequence of (K1). The proof of Lemma 2.2 is complete. �

Lemma 2.3. Under the assumptions of Theorem 1.1, the problem (4) possesses a
nontrivial solution.

Proof. We show that the functional Φ satisfies the (C)-condition. Let

Φ(yj) be bounded and (1 + ‖yj‖)Φ′(yj)→ 0.

Observe that for j large, it follows from (K1) that there exists a constant M such that

M ≥ Φ(yj)−
1

2
Φ′(yj)yj

=

∫ T

−T
eQ(t)(

1

2
W ′(t, yj).yj −W (t, yj))dt+

∫ T

−T
eQ(t)(K(t, yj)−

1

2
K ′(t, yj).yj)dt

≥
∫ T

−T
eQ(t)W (t, yj(t))dt. (9)

By negation, if (yj) is not bounded, passing to a subsequence if necessary we may
assume that ‖yj‖ → +∞ as j → +∞. Set zj =

yj
‖yj‖ , then ‖zj‖ = 1 and by (7) one

has

‖zj‖∞ ≤ γ2. (10)

Note that

Φ′(yj)yj =

∫ T

−T
eQ(t)|ẏj(t)|2dt+

∫ T

−T
eQ(t)K ′(t, yj(t))yj(t)dt

−
∫ T

−T
eQ(t)W ′(t, yj(t))yj(t)dt

≥ a‖yj‖2 −
∫ T

−T
eQ(t)W ′(t, yj(t)).yj(t)dt

≥ ‖yj‖2
(
a−

∫ T

−T
eQ(t)W

′(t, yj(t)).yj(t)

‖yj‖2
dt

)
, (11)

where a = min{1, a} > 0. Thus implies that

lim
j→+∞

∫ T

−T
eQ(t)W

′(t, yj(t)).yj(t)

‖yj‖2
dt ≥ a. (12)

Set for s ≥ 0

h(s) := inf
{
W (t, x)| t ∈ [−T, T ] and x ∈ RN with |x| ≥ s

}
. (13)

By (W3), one has

h(s)→ +∞ as s→ +∞.



228 K. FATHI AND T. MOHSEN

For 0 ≤ l < m, let

Ωj(l,m) = {t ∈ [−T, T ] | l ≤ |yj(t)| < m},

and

Cml = inf

{
W (t, x)

|x|2
, t ∈ [−T, T ] and l ≤ |x| < m

}
. (14)

Then by (W3), Cml > 0. One has

W (t, yj(t)) ≥ Cml |yj(t)|2, for all t ∈ Ωj(l,m). (15)

It follows from (9) that

M ≥
∫ T

−T
eQ(t)W (t, yj)dt

=

∫
Ωj(0,l)

eQ(t)W (t, yj)dt+

∫
Ωj(l,m)

eQ(t)W (t, yj)dt

+

∫
Ωj(m,∞)

eQ(t)W (t, yj(t))dt

≥
∫

Ωj(0,l)

eQ(t)W (t, yj)dt+ Cml

∫
Ωj(l,m)

eQ(t)|yj |2dt

+ m0h(m)|Ωj(m,∞)|, (16)

which implies that

|Ωj(m,∞)| ≤ M

m0h(m)
→ 0 as m→ +∞ uniformly in j, (17)

and for any fixed 0 < l < m∫
Ωj(l,m)

eQ(t)|zj |2dt =
1

‖yj‖2

∫
Ωj(l,m)

eQ(t)|yj |2dt ≤
M

Cml ‖yj‖2
→ 0 (18)

as j → +∞. Moreover, by (7) and (17), we have∫
Ωj(m,∞)

eQ(t)|zj |2dt ≤ ‖zj‖2L∞([−T,T ])|Ωj(m,∞)|M∞

≤ γ2
2M∞|Ωj(m,∞)| → 0, (19)

as m→ +∞ uniformly in j. Let 0 < ε < a
3 , by (W1) there exist lε > 0 such that

|W ′(t, x)| ≤ ε

γ2
2

|x| for all |x| ≤ lε. (20)

Consequently,∫
Ωj(0,lε)

eQ(t) |W ′(t, yj)||zj |2

|yj |
dt ≤ ε

γ2
2

∫
Ωj(0,lε)

|zj |2dt ≤ ε. (21)

By (17), we can take mε large such that∫
Ωj(mε,∞)

eQ(t)|zj |2dt ≤
ε

M0
. (22)
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Hence, by (W1) we obtain∫
Ωj(mε,∞)

eQ(t) |W ′(t, yj)||zj |2

|yj |
dt ≤ M0

∫
Ωj(mε,∞)

eQ(t)|zj |2dt

≤ ε. (23)

By (18) there is j0 such that∫
Ωj(lε,mε)

eQ(t) |W ′(t, yj)||zj |2

|yj |
dt ≤ M0

∫
Ωj(lε,mε)

eQ(t)|zj |2dt

≤ ε, (24)

for all j ≥ j0. Therefore, combining (21)-(24) we have∫ T

−T
eQ(t)W

′(t, yj).yj
‖yj‖2

dt ≤
∫

[−T,T ]\{t∈[−T,T ]/|yj(t)|=0}
eQ(t) |W ′(t, yj)||zj |2

|yj |
dt

≤ 3ε

< a, (25)

which contradicts (12). Hence, (yj) is bounded in ET . In a similar way to Proposition
B.35 in [[15]], we can prove that (yj) has a convergent sub sequence. Hence Φ satisfies
the C-condition.

Now, let us show that Φ satisfies assumption (ii) of Lemma 2.1. By (W1) and (W2),
given 0 < ε < ā

2 , there exists some Cε > 0 such that

|W (t, x)| ≤ ε|x|2 + Cε|x|p (26)

for all x ∈ RN and t ∈ [−T, T ], where p > 2. It follows from (K1), (H6), (7) and (26)
that

Φ(x) =

∫ T

−T
eQ(t)

[
1

2
|ẋ(t)|2 +K(t, x(t))−W (t, x(t))

]
dt

≥
(
a

2
− ε
)
‖x‖2 − 2γp2TCε‖x‖p. (27)

Hence, there exist α > 0 and ρ > 0 such that Φ(x) ≥ α for all x ∈ ET with ‖x‖ = ρ.
We show that Φ satisfies assumption(iii) of Lemma 2.1 . By (W2), there exists

B > 0 such that

W (t, x) ≥ w∞|x|2 −B, ∀t ∈ [−T, T ], x ∈ RN . (28)

Let

e(t) = ξ| sin(ωt)|e1, t ∈ [−T, T ],

where ω = 2π
T , e1 = (1, 0, ..., 0) and ξ ∈ R \ {0}. Clearly, e ∈ ET .



230 K. FATHI AND T. MOHSEN

By (18), (28), and (8) we have

Φ(e) =
1

2

∫ T

−T
eQ(t)|ė(t)|2dt+

∫ T

−T
eQ(t)K(t, e(t))dt−

∫ T

−T
eQ(t)W (t, e(t))dt

=
1

2
ξ2ω2

∫ T

−T
eQ(t)| cos(ωt)|2dt+

∫
{t∈[−T,T ];|e(t)|≤1}

eQ(t)K(t, e(t)|)dt

+

∫
{t∈[−T,T ];|e(t)|≥1}

eQ(t)K(t, e(t))dt−
∫ T

−T
eQ(t)W (t, e(t))dt

≤M∞
2
T 2ω2

∫ T

−T
| cos(ωt)|2dt+M∞M1

∫
{t∈[−T,T ];|e(t)|≥1}

|e(t)|βdt+ 2TM1M∞

−m0w∞ξ
2

∫ T

−T
| sin(ωt)|2dt+ 2TBM∞

≤ξ2(
ω2

2
M∞ +M∞M1 − w∞m0)T + 2TM∞(M1 +B). (29)

Since w∞ > 2M1M∞
mO

and T >
√

2
M1
π, then ω2

2 M∞ + M∞M1 − w∞m0 < 0. So

Φ(e)→ −∞ as ξ →∞. So, we can choose large enough ξ ∈ R such that ‖e‖ > ρ and
Φ(e) < 0.

Clearly Φ(0) = 0; then, by application of Lemma 2.1 there exists a critical point

xT ∈ ET of Φ such that Φ(xT ) ≥ α for all T >
√

2
M1
π. �

Lemma 2.4. xT is bounded uniformly in T >
√

2
M1
π.

Proof. Define the set of paths

ΓT = {g ∈ C([0, 1], ET ) : g(0) = 0, g(1) = e},
then there exists a solution xT of system (11) at which

inf
g∈Γ

max
s∈[0,1]

Φ(g(s)) ≡ DT

is achieved. Let T̂ > T . Since any function in ET can be regarded as belonging to
ET̂ if one extends it by zero in [−T̂ , T̂ ]�[−T, T ], then ΓT ⊂ ΓT̂ and

DT̂ ≤ D 1
2

uniformly in T >

√
2

M1
π. (30)

Notice that Φ′(xT ) = 0, and together with (30), one has

Φ(xT ) ≤ D 1
2
, (1 + ‖xT ‖)‖Φ′(xT )‖ = 0. (31)

The rest of the proof is similar to the that in Lemma 2.3. Hence there exists a constant
M2 > 0, independent of T such that

‖xT ‖ ≤M2, ∀T >

√
2

M1
π. (32)

The proof is complete. �

Take a sequence Tn →∞, and consider the problem (4) on the interval [−Tn, Tn].
By Lemma 2.3 , there exists a nontrivial solution xn = xTn of problem (4).
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Lemma 2.5. Let (xn) be the sequence given above. Then there exists a subsequence
(xnj ) convergent to x0 in C1

loc(R,RN ).

Proof. First we prove that the sequences ‖xn‖L∞
Tn
, ‖ẋn‖L∞

Tn
, and‖ẍn‖L∞

Tn
are bounded.

From (7) and (32), for n large enough, one has

‖xn‖L∞
Tn
≤ γ2M2 = M3. (33)

Suppose that ẋn(t) = (ẋn1
(t), ẋn2

(t), ........., ẋnN (t)) for each t ∈ R. By the Mean
Value theorem, there exists tni ∈ [t− 1, t], for all t ∈ R, such that

ẋni(tni) =

∫ t

t−1

ẋni(s)ds = xni(t) − xni(t − 1) for any i ∈ {1, 2, ....., N}. As (xn)

satisfies

ẍn(t) + q(t)ẋn(t) + V ′(t, xn(t)) = 0, (34)

we obtain

ẋn(t)− ẋn(tni) =q(tni)xn(tni)− q(t)xn(t) +

∫ t

tni

q̇(s)xn(s)ds

−
∫ t

tni

V ′(s, xn(s))ds. (35)

It follows from (35) that there exists M4 > 0 such that

|ẋni(t)| < M4, , ∀ i ∈ {1, 2....., N},∀t ∈ R.
From the above inequality we deduce that there exists M5 > 0 such that

‖ẋn‖L∞
Tn
< M5. (36)

Moreover, using (34), we deduce that there exists M6 > 0 such that

‖ẍn‖L∞
Tn
< M6. (37)

Second, we show that the sequences (xn) and (ẋn) are equicontinuous. In deed, for
any n ∈ N and t1, t2 ∈ R, by (36)

|xn(t1)− xn(t2)| = |
∫ t1

t2

ẋn(s)|ds

≤
∫ t1

t2

|ẋn|(s)ds

≤ M5|t1 − t2|. (38)

Similarly, by (37), one gets

|ẋn(t1)− ẋn(t2)| ≤M6|t1 − t2|. (39)

By using the Arzela-Ascoli Theorem, we obtain the existence of a sub sequence (xnj )
and a function x0 such that

xnj → x0 as j →∞ in C1
loc(R,RN ). (40)

The proof is complete. �

Lemma 2.6. Let x0 : R→ RN be the function given by (40). Then x0 is the homo-
clinic solution of (DV).



232 K. FATHI AND T. MOHSEN

Proof. First we show that x0 is a solution of (DV). Let (xnj ) be the sequence given
by Lemma 2.4, then

ẍnj (t) + q(t)ẋnj (t) + V ′(t, xnj (t)) = 0, (41)

for every j ∈ N and t ∈ [−Tnj , Tnj ]. Take b, c ∈ R with b < c. There exists j0 ∈ R
such that for all j > j0; we get [b, c] ⊂ [−Tnj , Tnj ] and

ẍnj (t) = −q(t)ẋnj (t)− V ′(t, xnj (t)), ∀ t ∈ [b, c]. (42)

Integrating (42) from b to t ∈ [b, c], we have

ẋnj (t)− ẋnj (b) = q(b)xnj (b)− q(t)xnj (t) +

∫ t

b

q̇(s)xn(s)ds

−
∫ t

b

V ′(s, xnj (s))ds, ∀ t ∈ [b, c]. (43)

Since xnj → x0 uniformly on [b, c] and ẋnj → ẋ0 uniformly on [b, c] as j →∞, then,
from (43), we obtain

ẋ0(t)− ẋ0(b) = q(b)x0(b)− q(t)x0(t) +

∫ t

b

q̇(s)x0(s)ds

−
∫ t

b

V ′(s, x0(s))ds, ∀ t ∈ [b, c]. (44)

Because of the arbitrariness of b and c, we conclude that x0 satisfies (DV).

Second, we prove that x0(t)→ 0 as |t| → +∞. By the argument of Lemma 2.5, for
each i ∈ N there is ni ∈ N such that for all n ≥ ni we have∫ Ti

−Ti
eQ(t)(|xn(t)|2 + |ẋn(t)|2)dt ≤ ‖xn‖2 ≤M2

2 . (45)

Letting n→ +∞, we obtain∫ Ti

−Ti
eQ(t)(|x0(t)|2 + |ẋ0(t)|2)dt ≤M2

2 . (46)

As i→ +∞, we have∫ +∞

−∞
eQ(t)(|x0(t)|2 + |ẋ0(t)|2)dt ≤M2

2 . (47)

Hence, we get ∫
|t|≥r

eQ(t)(|x0(t)|2 + |ẋ0(t)|2)dt→ 0 as r → +∞. (48)

By Corollary 2.2 in [10], we have

|x0(t)|2 ≤
∫ t+1

t−1

(|x0(s)|2 + |ẋ0(s)|2)ds (49)

for every t ∈ R. By (48) and (49) we conclude that

x0(t)→ 0 as |t| → ∞. (50)
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We have to show that ẋ0(t)→ 0 as |t| → ∞. By Corollary 2.2 in [10] we have

|ẋ0(t)|2 ≤
∫ t+1

t−1

(|x0(s)|2 + |ẋ0(s)|2)ds+

∫ t+1

t−1

|ẍ0(s)|2ds, (51)

for every t ∈ R. Since x0 ∈ H1
Q(R,RN ) ⊂ H1(R,RN ), we get∫ t+1

t−1

(|x0(s)|2 + |ẋ0(s)|2)ds→ 0 as |t| → ∞. (52)

Hence, it suffices to prove that∫ t+1

t−1

|ẍ0(s)|2ds→ 0 as |t| → ∞. (53)

By (DV), we have∫ t+1

t−1

|ẍ(s)|2ds =

∫ t+1

t−1

|q(s)ẋ(s) + V ′(s, x(s))|2ds

≤ ‖q‖2∞
∫ t+1

t−1

|ẋ(s)|2ds+

∫ t+1

t−1

|V ′(s, x(s))|2ds

+ 2‖q‖∞
(∫ t+1

t−1

|ẋ(s)|2ds
) 1

2
(∫ t+1

t−1

|V ′(s, x(s))|2ds
) 1

2

.

Since

∫ t+1

t−1

|ẋ0(s)|2ds→ 0 as |t| → ∞, x0(t)→ 0 as |t| → ∞ and V ′(t, x0)→ 0 as

|x0| → 0 uniformly in t ∈ R, then (53) follows.

Let us show that x0 is nontrivial. Consider the function Ψ defined by Ψ(0) = 0
and for s > 0

Ψ(s) = max
t∈R,0<|x|≤s

W ′(t, x).x

|x|2
. (54)

Then Ψ is a continuous, non-decreasing function and Ψ(s) ≥ 0 for s ≥ 0. The definition
of Ψ implies that∫ Tn

−Tn
W ′(t, xn(t)).xn(t)dt ≤ Ψ(‖xn‖L∞([−Tn,Tn],RN ))‖xn‖2, (55)

for every n ∈ N. Since Φ′(xn).xn = 0, we have∫ Tn

−Tn
W ′(t, xn(t)).xn(t)dt =

∫ Tn

−Tn
|ẋn(t)|2dt−

∫ Tn

−Tn
(Aẋn(t).xn(t))dt

+

∫ Tn

−Tn
K ′(t, xn(t)).xn(t)dt. (56)
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From (55), (56) and (K1) we obtain

Ψ(‖xn‖L∞([−Tn,Tn],RN ))‖xn‖2 ≥
∫ Tn

−Tn
eQ(t)|ẋn(t)|2dt+

∫ Tn

−Tn
eQ(t)K ′(t, xn(t)).xn(t)dt

≥
∫ Tn

−Tn
eQ(t)|ẋn(t)|2dt+ a

∫ Tn

−Tn
eQ(t)|xn(t)|2dt

≥ min{1, a}‖xn‖2.

Since ‖xn‖ > 0, it follows that

Ψ(‖xn‖L∞([−Tn,Tn],RN )) ≥ min{1, a} > 0. (57)

If ‖xn‖L∞([−Tn,Tn],RN ) → 0 as n→∞, we would have
Ψ(0) ≥ min{1, a} > 0, a contradiction. Passing to a subsequence of (xn) if necessary,
there is a constant M7 > 0 such that

‖xn‖L∞([−Tn,Tn],RN ) ≥M7 (58)

for every n ∈ N. Now, suppose x0 ≡ 0 and let xn be the function defined in Lemma
2.5 , extended by 0 in R \ [−Tn, Tn]. For R > 0 we have

‖xn‖2 =

∫ Tn

−Tn
eQ(t)(|ẋn(t)|2 + |xn(t)|2)dt

=

∫
R
eQ(t)(|ẋn(t)|2 + |xn(t)|2)dt

=

∫ R

−R
eQ(t)(|ẋn(t)|2 + |xn(t)|2)dt+

∫
R\[−R,R]

eQ(t)(|ẋn(t)|2 + |xn(t)|2)dt

→ 0 as n→∞.

which is in contradiction with (33). Hence x0 is nontrivial.

The proof of Theorem is complete. �
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