Uniqueness of entire functions whose difference polynomials sharing a polynomial of certain degree with finite weight

Abhijit Banerjee and Sujoy Majumder

Abstract

The purpose of the paper is to study the possible uniqueness relation of entire functions when the difference polynomial generated by them sharing a non zero polynomial of certain degree. The result obtained in the paper will improve and generalize a number of recent results in a compact and convenient way.

2010 Mathematics Subject Classification. 30D35.
Key words and phrases. Entire function, difference polynomial, uniqueness, weighted sharing.

1. Introduction, Definitions and Results

In this paper by meromorphic functions we shall always mean meromorphic functions in the complex plane.

Let f and g be two non-constant meromorphic functions and let $a \in \mathbb{C}$. We say that f and g share a CM, provided that $f-a$ and $g-a$ have the same zeros with the same multiplicities. Similarly, we say that f and g share a IM, provided that $f-a$ and $g-a$ have the same zeros ignoring multiplicities. In addition we say that f and g share ∞ CM, if $1 / f$ and $1 / g$ share 0 CM , and we say that f and g share $\infty \mathrm{IM}$, if $1 / f$ and $1 / g$ share 0 IM.

We adopt the standard notations of value distribution theory (see [6]). For a nonconstant meromorphic function f, we denote by $T(r, f)$ the Nevanlinna characteristic of f and by $S(r, f)$ any quantity satisfying $S(r, f)=o\{T(r, f)\}$ as $r \rightarrow \infty$ possibly outside a set of finite linear measure. We denote by $T(r)$ the maximum of $T(r, f)$ and $T(r, g)$. The notation $S(r)$ denotes any quantity satisfying $S(r)=o(T(r))$ as $r \longrightarrow \infty$, outside of a possible exceptional set of finite linear measure. A meromorphic function $a(z)$ is called a small function with respect to f, provided that $T(r, a)=S(r, f)$. The order of f is defined by

$$
\sigma(f)=\limsup _{r \longrightarrow \infty} \frac{\log T(r, f)}{\log r} .
$$

Let $f(z)$ and $g(z)$ be two non-constant meromorphic functions. Let $a(z)$ be a small function with respect to $f(z)$ and $g(z)$. We say that $f(z)$ and $g(z)$ share $a(z)$ CM (counting multiplicities) if $f(z)-a(z)$ and $g(z)-a(z)$ have the same zeros with the same multiplicities and we say that $f(z), g(z)$ share $a(z)$ IM (ignoring multiplicities) if we do not consider the multiplicities.

We say that a finite value z_{0} is called a fixed point of f if $f\left(z_{0}\right)=z_{0}$ or z_{0} is a zero of $f(z)-z$.

For the sake of simplicity we also use the notation

$$
m^{*}:= \begin{cases}0, & \text { if } m=0 \\ m, & \text { if } m \in \mathbb{N}\end{cases}
$$

Let $f(z)$ be a transcendental meromorphic function, n be a positive integer. During the last few decades many authors investigated the value distributions of $f^{n} f^{\prime}$. Specially in 1959, W.K. Hayman (see [5], Corollary of Theorem 9) proved the following theorem.
Theorem A. [5] Let f be a transcendental meromorphic function and $n(\geq 3)$ is an integer. Then $f^{n} f^{\prime}=1$ has infinitely many solutions.

The case $n=2$ was settled by Mues [14] in 1979. Bergweiler and Eremenko [1] showed that $f f^{\prime}-1$ has infinitely many zeros.

For an analog of the above results Laine and Yang investigated the value distribution of difference products of entire functions in the following manner.
Theorem B. [10] Let f be a transcendental entire function of finite order, and c be a non-zero complex constant. Then, for $n \geq 2, f^{n}(z) f(z+c)$ assumes every non-zero value $a \in \mathbb{C}$ infinitely often.

Afterwards, Liu and Yang improved Theorem B and obtained the next result.
Theorem C. [13] Let f be a transcendental entire function of finite order, and c be a non-zero complex constant. Then, for $n \geq 2, f^{n}(z) f(z+c)-p(z)$ has infinitely many zeros, where $p(z)$ is a non-zero polynomial.

Next we recall the uniqueness result corresponding to Theorem A, obtained by Yang and Hua [17] which may be considered a gateway to a new research in the direction of sharing values of differential polynomials.
Theorem D. [13] Let f and g be two non-constant entire functions, $n \in \mathbb{N}$ such that $n \geq 6$. If $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share 1 CM , then either $f(z)=c_{1} e^{c z}, g(z)=c_{2} e^{-c z}$, where $c_{1}, c_{2}, c \in \mathbb{C}$ satisfying $4\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$, or $f \equiv t g$ for a constant t such that $t^{n+1}=1$.

In 2001, Fang and Hong studied the uniqueness of differential polynomials of the form $f^{n}(f-1) f^{\prime}$ and proved the following uniqueness result.
Theorem E. [4] Let f and g be two transcendental entire functions, and let $n \geq 11$ be a positive integer. If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share the value 1 CM , then $f=g$.

In 2004, Lin and Yi extended the above result in view of the fixed point and they proved the following.
Theorem F. [12] Let f and g be two transcendental entire functions, and let $n \geq 7$ be a positive integer. If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share $z \mathrm{CM}$, then $f=g$.

In 2010, Zhang got a analogue result in difference.
Theorem G. [19] Let $f(z)$ and $g(z)$ be two transcendental entire functions of finite order and $\alpha(z)$ be a small function with respect to both $f(z)$ and $g(z)$. Suppose that c is a nonzero complex constant and $n \geq 7$ is an integer. If $f(z)^{n}(f(z)-1) f(z+c)$ and $g(z)^{n}(g(z)-1) g(z+c)$ share $\alpha(z) \mathrm{CM}$, then $f(z) \equiv g(z)$.

In 2010, Qi, Yang and Liu obtained the difference counterpart of Theorem D by proving the following theorem.

Theorem H. [15] Let f and g be two transcendental entire functions of finite order, and c be a nonzero complex constant; let $n \geq 6$ be an integer. If $f^{n} f(z+c)$ and $g^{n} g(z+c)$ share $z \mathrm{CM}$, then $f \equiv t_{1} g$ for a constant t_{1} that satisfies $t_{1}^{n+1}=1$.
Theorem I. [15] Let f and g be two transcendental entire functions of finite order, and c be a nonzero complex constant; let $n \geq 6$ be an integer. If $f^{n} f(z+c)$ and $g^{n} g(z+c)$ share 1 CM , then $f g \equiv t_{2}$ or $f \equiv t_{3} g$ for some constants t_{2} and t_{3} that satisfy $t_{3}^{n+1}=1$.
X.M. Li et. al. [11] [Theorem 1.1] replaced the fixed point sharing in the above two theorems to sharing a polynomial with $\operatorname{deg}<\frac{n+1}{2}$.

So we see that there are many generalization in terms of difference operator. The purpose of this paper is to study the uniqueness problem for more general difference polynomials namely $f^{n} P(f) f(z+c)$ and $g^{n} P(g) g(z+c)$ sharing a non-zero polynomial so that improved version of all the above results can be unified under a single result. We also relax the nature of sharing with the notion of weighted sharing introduced in [8]- [9]. The following theorem is the main result of the paper.
Theorem 1. Let f and g be two transcendental entire functions of finite order, c be a non-zero complex constant and let $p(z)$ be a nonzero polynomial with $\operatorname{deg}(p) \leq n-1$, $n(\geq 1), m^{*}(\geq 0)$ be two integers such that $n>m^{*}+5$. Let $P(\omega)=a_{m} \omega^{m}+$ $a_{m-1} \omega^{m-1}+\ldots+a_{1} \omega+a_{0}$ be a nonzero polynomial. If $f^{n} P(f) f(z+c)-p$ and $g^{n} P(g) g(z+c)-p$ share $(0,2)$, then
(I) when $P(\omega)=a_{m} \omega^{m}+a_{m-1} \omega^{m-1}+\ldots+a_{1} \omega+a_{0}$ is a nonzero polynomial, one of the following three cases holds:
(I1) $f(z) \equiv \operatorname{tg}(z)$ for a constant t such that $t^{d}=1$, where $d=G C D(n+m, \ldots, n+$ $m-i, \ldots, n), a_{m-i} \neq 0$ for some $i=1,2, \ldots, m$,
(I2) f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where $R\left(\omega_{1}, \omega_{2}\right)=\omega_{1}^{n}\left(a_{m} \omega_{1}^{m}+\right.$ $\left.a_{m-1} \omega_{1}^{m-1}+\ldots+a_{0}\right)-\omega_{2}^{n}\left(a_{m} \omega_{2}^{m}+a_{m-1} \omega_{2}^{m-1}+\ldots+a_{0}\right)$,
(I3) $P(\omega)$ reduces to a nonzero monomial, namely $P(\omega)=a_{i} \omega^{i} \not \equiv 0$, for $i \in\{0,1, \ldots, m\}$, if $p(z)$ is a nonzero constant b, then $f(z)=e^{\alpha(z)}, g=e^{\beta(z)}$, where $\alpha(z), \beta(z)$ are two non-constant polynomials such that $\alpha+\beta \equiv d \in \mathbb{C}$ and $a_{i}^{2} e^{(n+i+1) d}=b^{2}$;
(II) when $P(\omega)=\omega^{m}-1$, then $f \equiv t g$ for some constant t such that $t^{m}=1$;
(III) when $P(\omega)=(\omega-1)^{m}(m \geq 2)$, one of the following two cases holds:
(III1) $f(z) \equiv g(z)$,
(III2) f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where $R\left(\omega_{1}, \omega_{2}\right)=\omega_{1}^{n}\left(\omega_{1}-\right.$ 1) ${ }^{m} \omega_{1}(z+c)-\omega_{2}^{n}\left(\omega_{2}-1\right)^{m} \omega_{2}(z+c) ;$
(IV) when $P(\omega) \equiv c_{0}$, one of the following two cases holds:
(IV1) $\quad f \equiv t g$ for some constant t such that $t^{n+1}=1$,
(IV2) $\quad f(z)=e^{\alpha(z)}, g=e^{\beta(z)}$, where $\alpha(z), \beta(z)$ are two non-constant polynomials such that $\alpha+\beta \equiv d \in \mathbb{C}$ and $c_{0}^{2} e^{(n+1) d}=b^{2}$.

We now explain following definitions and notations which are used in the paper.
Definition 1. [7] Let $a \in \mathbb{C} \cup\{\infty\}$. For a positive integer p we denote by $N(r, a ; f \mid \leq$ p) the counting function of those a-points of f (counted with multiplicities) whose
multiplicities are not greater than p. By $\bar{N}(r, a ; f \mid \leq p)$ we denote the corresponding reduced counting function.

In an analogous manner we can define $N(r, a ; f \mid \geq p)$ and $\bar{N}(r, a ; f \mid \geq p)$.
Definition 2. [9] Let k be a positive integer or infinity. We denote by $N_{k}(r, a ; f)$ the counting function of a-points of f, where an a-point of multiplicity m is counted m times if $m \leq k$ and k times if $m>k$. Then

$$
N_{k}(r, a ; f)=\bar{N}(r, a ; f)+\bar{N}(r, a ; f \mid \geq 2)+\ldots+\bar{N}(r, a ; f \mid \geq k)
$$

Clearly $N_{1}(r, a ; f)=\bar{N}(r, a ; f)$.
Definition 3. [8, 9] Let k be a nonnegative integer or infinity. For $a \in \mathbb{C} \cup\{\infty\}$ we denote by $E_{k}(a ; f)$ the set of all a-points of f where an a-point of multiplicity m is counted m times if $m \leq k$ and $\mathrm{k}+1$ times if $m>k$. If $E_{k}(a ; f)=E_{k}(a ; g)$, we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k, then z_{0} is an a point of f with multiplicity $m(\leq k)$ if and only if it is an a-point of g with multiplicity $m(\leq k)$ and z_{0} is an a-point of f with multiplicity $m(>k)$ if and only if it is an a-point of g with multiplicity $n(>k)$, where m is not necessarily equal to n .

We write f, g share (a, k) to mean that f, g share the value a with weight k . Clearly if f, g share (a, k) then f, g share (a, p) for any integer $p, 0 \leq p<k$. Also we note that f, g share a value a IM or CM if and only if f, g share $(a, 0)$ or (a, ∞) respectively.

2. Lemmas

Lemma 1. [16] Let f be a non-constant meromorphic function and let $a_{n}(z)(\not \equiv 0)$, $a_{n-1}(z), \ldots, a_{0}(z)$ be meromorphic functions such that $T\left(r, a_{i}(z)\right)=S(r, f)$ for $i=0,1,2, \ldots, n$. Then

$$
T\left(r, a_{n} f^{n}+a_{n-1} f^{n-1}+\ldots+a_{1} f+a_{0}\right)=n T(r, f)+S(r, f)
$$

Lemma 2. [2] Let $f(z)$ be a meromorphic function of finite order σ, and let c be a fixed nonzero complex constant. Then for each $\varepsilon>0$, we have

$$
m\left(r, \frac{f(z+c)}{f(z)}\right)+m\left(r, \frac{f(z)}{f(z+c)}\right)=O\left(r^{\sigma-1+\varepsilon}\right)
$$

Lemma 3. [2] Let f be a meromorphic function of finite order $\sigma, c \neq 0$ be fixed. Then for each $\varepsilon>0$, we have

$$
T(r, f(z+c))=T(r, f)+O\left(r^{\sigma-1+\varepsilon}\right)+O(\log r)
$$

Lemma 4. Let f be an entire function of finite order σ, c be a fixed nonzero complex constant and let $n \in \mathbb{N}$ and $P(\omega)$ be defined as in Theorem 1 . Then for each $\varepsilon>0$, we have

$$
T\left(r, f^{n} P(f) f(z+c)\right)=T\left(r, f^{n+1} P(f)\right)+O\left(r^{\sigma-1+\varepsilon}\right)
$$

Proof. By Lemma 2 we have

$$
\begin{aligned}
T\left(r, f^{n} P(f) f(z+c)\right) & =m\left(r, f^{n} P(f) f(z+c)\right) \\
& \leq m\left(r, f^{n} P(f) f\right)+m\left(r, \frac{f(z+c)}{f(z)}\right) \\
& \leq m\left(r, f^{n+1} P(f)\right)+O\left(r^{\sigma-1+\varepsilon}\right) \\
& =T\left(r, f^{n+1} P(f)\right)+O\left(r^{\sigma-1+\varepsilon}\right) .
\end{aligned}
$$

Also we have

$$
\begin{aligned}
T\left(r, f^{n+1} P(f)\right) & =m\left(r, f^{n} P(f) f\right) \\
& \leq m\left(r, f^{n} P(f) f(z+c)\right)+m\left(r, \frac{f(z)}{f(z+c)}\right) \\
& \leq m\left(r, f^{n} P(f) f(z+c)\right)+O\left(r^{\sigma-1+\varepsilon}\right) \\
& \leq T\left(r, f^{n} P(f) f(z+c)\right)+O\left(r^{\sigma-1+\varepsilon}\right) .
\end{aligned}
$$

Therefore $T\left(r, f^{n} P(f) f(z+c)\right)=T\left(r, f^{n+1} P(f)\right)+O\left(r^{\sigma-1+\varepsilon}\right)$.
Remark 1. Under the condition of Lemma 4, by Lemma 1 we have $S\left(r, f^{n} P(f) f(z+\right.$ $c))=S(r, f)$.

Lemma 5. [3] Let f be a non-constant meromorphic function of finite order and $c \in \mathbb{C}$. Then
$N(r, 0 ; f(z+c)) \leq N(r, 0 ; f(z))+S(r, f), \quad N(r, \infty ; f(z+c)) \leq N(r, \infty ; f)+S(r, f)$,
$\bar{N}(r, 0 ; f(z+c)) \leq \bar{N}(r, 0 ; f(z))+S(r, f), \quad \bar{N}(r, \infty ; f(z+c)) \leq \bar{N}(r, \infty ; f)+S(r, f)$,
Lemma 6. Let f be a transcendental entire function of finite order σ, c be a fixed nonzero complex constant, $n(\geq 1), m^{*}(\geq 0)$ be two integers and let $a(z)(\not \equiv 0, \infty)$ be a small function of f. If $n>1$, then $f^{n} P(f) f(z+c)-a(z)$ has infinitely many zeros.

Proof. Let $\Phi=f^{n} P(f) f(z+c)$. Now in view of Lemma 5 and the second theorem for small functions (see [18]) we get

$$
\begin{aligned}
T(r, \Phi) & \leq \bar{N}(r, 0 ; \Phi)+\bar{N}(r, \infty ; \Phi)+\bar{N}(r, a(z) ; \Phi)+(\varepsilon+o(1)) T(r, f) \\
& \leq \bar{N}\left(r, 0 ; f^{n} P(f)\right)+\bar{N}(r, 0 ; f(z+c))+\bar{N}(r, a(z) ; \Phi)+(\varepsilon+o(1)) T(r, f) \\
& \leq 2 \bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; P(f))+\bar{N}(r, a(z) ; \Phi)+(\varepsilon+o(1)) T(r, f) \\
& \leq\left(2+m^{*}\right) T(r, f)+\bar{N}(r, a(z) ; \Phi)+(\varepsilon+o(1)) T(r, f)
\end{aligned}
$$

for all $\varepsilon>0$.
From Lemmas 1 and 4 we get

$$
\left(n+m^{*}+1\right) T(r, f) \leq\left(2+m^{*}\right) T(r, f)+\bar{N}(r, a(z) ; \Phi)+(\varepsilon+o(1)) T(r, f)
$$

Take $\varepsilon<1$. Since $n>1$ from above one can easily say that $\Phi-a(z)$ has infinitely many zeros.
This completes the Lemma.
Lemma 7. [9] Let f and g be two non-constant meromorphic functions sharing $(1,2)$. Then one of the following holds:
(i) $T(r, f) \leq N_{2}(r, 0 ; f)+N_{2}(r, 0 ; g)+N_{2}(r, \infty ; f)+N_{2}(r, \infty ; g)+S(r, f)+S(r, g)$,
(ii) $f g \equiv 1$,
(iii) $f \equiv g$.

Lemma 8. [Hadamard Factorization Theorem] Let f be an entire function of finite order ρ with zeros a_{1}, a_{2}, \ldots, each zeros is counted as often as its multiplicity. Then f can be expressed in the form

$$
f(z)=Q(z) e^{\alpha(z)}
$$

where $\alpha(z)$ is a polynomial of degree not exceeding $[\rho]$ and $Q(z)$ is the canonical product formed with the zeros of f.

Lemma 9. Let f and g be two transcendental entire functions of finite order, $c \in$ $\mathbb{C} \backslash\{0\}$ and $p(z)$ be a nonzero polynomial such that $\operatorname{deg}(p) \leq n-1$, where $n \in \mathbb{N}$. Let $P(\omega)$ be a nonzero polynomial defined as in Theorem 1. Suppose

$$
f^{n} P(f) f(z+c) g^{n} P(g) g(z+c) \equiv p^{2}
$$

Then $P(\omega)$ reduces to a nonzero monomial, namely $P(\omega)=a_{i} \omega^{i} \not \equiv 0$, for $i \in$ $\{0,1, \ldots, m\}$. If $p(z)=b \in \mathbb{C} \backslash\{0\}$, then $f(z)=e^{\alpha(z)}, g=e^{\beta(z)}$, where $\alpha(z), \beta(z)$ are two non-constant polynomials such that $\alpha+\beta \equiv d \in \mathbb{C}$ and $a_{i}^{2} e^{(n+i+1) d}=b^{2}$.

Proof. Suppose

$$
\begin{equation*}
f^{n} P(f) f(z+c) g^{n} P(g) g(z+c) \equiv p^{2} \tag{2.1}
\end{equation*}
$$

We consider the following cases:
Case 1: Let $\operatorname{deg}(p(z))=l(\geq 1)$.
From the assumption that f and g are two transcendental entire functions, we deduce by (2.1) that $N\left(r, 0 ; f^{n} P(f)\right)=O(\log r)$ and $N\left(r, 0 ; g^{n} P(g)\right)=O(\log r)$.
First we suppose that $P(\omega)$ is not a nonzero monomial. For the sake of simplicity let $P(\omega)=\omega-a$ where $a \in \mathbb{C} \backslash\{0\}$. Clearly $\Theta(0 ; f)+\Theta(a ; f)=2$, which is impossible for an entire function. Thus $P(\omega)$ reduces to a nonzero monomial, namely $P(\omega)=a_{i} \omega^{i} \not \equiv 0$ for some $i \in\{0,1, \ldots, m\}$ and so (2.1) reduces to

$$
\begin{equation*}
a_{i}^{2} f^{n+i} f(z+c) g^{n+i} g(z+c) \equiv p^{2} \tag{2.2}
\end{equation*}
$$

From (2.2) it follows that $N(r, 0 ; f)=O(\log r)$ and $N(r, 0 ; g)=O(\log r)$. Now by Lemma 8 we obtain that $f=h_{1} e^{\alpha_{1}}$ and $f=h_{2} e^{\beta_{1}}$, where h_{1}, h_{2} are two nonzero polynomials and α_{1} and β_{1} are two non-constant polynomials.
By virtue of the polynomial $p(z)$, from (2.2) we arrive at a contradiction.
Case 2: Let $p(z)=b \in \mathbb{C} \backslash\{0\}$.
Then from (2.1) we have

$$
\begin{equation*}
f^{n} P(f) f(z+c) g^{n} P(f) g(z+c) \equiv b^{2} \tag{2.3}
\end{equation*}
$$

Now from the assumption that f and g are two non-constant entire functions, we deduce by (2.3) that $f^{n} P(f) \neq 0$ and $g^{n} P(g) \neq 0$. By Picard's theorem, we claim that $P(\omega)=a_{i} \omega^{i} \not \equiv 0$ for $i \in\{0,1, \ldots, m\}$, otherwise the Picard's exception values are atleast three, which is a contradiction. Then (2.3) reduces to

$$
\begin{equation*}
a_{i}^{2} f^{n+i} f(z+c) g^{n+i} g(z+c) \equiv b^{2} \tag{2.4}
\end{equation*}
$$

Hence by Lemma 8 we obtain that

$$
\begin{equation*}
f=e^{\alpha}, \quad g=e^{\beta} \tag{2.5}
\end{equation*}
$$

where $\alpha(z), \beta(z)$ are two non-constant polynomials.
Now from (2.4) and (2.5) we obtain

$$
(n+i)(\alpha(z)+\beta(z))+\alpha(z+c)+\beta(z+c) \equiv d_{1},
$$

where $d_{1} \in \mathbb{C}$, i.e.,

$$
\begin{equation*}
(n+i)\left(\alpha^{\prime}(z)+\beta^{\prime}(z)\right)+\alpha^{\prime}(z+c)+\beta^{\prime}(z+c) \equiv 0 \tag{2.6}
\end{equation*}
$$

Let $\gamma(z)=\alpha^{\prime}(z)+\beta^{\prime}(z)$. Then from (2.6) we have

$$
\begin{equation*}
(n+i) \gamma(z)+\gamma(z+c) \equiv 0 \tag{2.7}
\end{equation*}
$$

We assert that $\gamma(z) \equiv 0$. It not suppose $\gamma(z) \not \equiv 0$. Note that if $\gamma(z) \equiv d_{2} \in \mathbb{C}$, from (2.7) we must have $d_{2}=0$. Suppose that $\operatorname{deg}(\gamma) \geq 1$. Let $\gamma(z)=\sum_{i=1}^{m} b_{i} z^{i}$, where $b_{m} \neq 0$. Therefore the co-efficient of z^{m} in $(n+i) \gamma(z)+\gamma(z+c)$ is $(n+1+i) b_{m} \neq 0$. Thus we arrive at a contradiction from (2.7). Hence $\gamma(z) \equiv 0$, i.e., $\alpha+\beta \equiv d \in \mathbb{C}$. Also from (2.4) we have $a_{i}^{2} e^{(n+i+1) d}=b^{2}$. This completes the proof.

Lemma 10. Let f and g be two transcendental entire functions of finite order, $c \in \mathbb{C} \backslash\{0\}$ and $p(z)$ be a nonzero polynomial such that $\operatorname{deg}(p) \leq n-1$, where $n \in \mathbb{N}$. Let $P(\omega)$ be defined as in Theorem 1 with at least two of $a_{i}, i=0,1, \ldots, m$ are nonzero. Then

$$
f^{n} P(f) f(z+c) g^{n} P(g) g(z+c) \not \equiv p^{2}
$$

Proof. Proof of the Lemma follows from Lemma 9.
Lemma 11. Let f, g be two transcendental entire functions of finite order, $c \in \mathbb{C} \backslash\{0\}$ and $n \in \mathbb{N}$ with $n>1$. If

$$
f^{n} P(f) f(z+c) \equiv g^{n} P(g) g(z+c)
$$

where $P(\omega)$ is defined as in Theorem 1 then
(I) when $P(\omega)=a_{m} \omega^{m}+a_{m-1} \omega^{m-1}+\ldots+a_{1} \omega+a_{0}$, one of the following two cases holds:
(I1) $f(z) \equiv \operatorname{tg}(z)$ for a constant t such that $t^{d}=1$, where $d=G C D(n+m, \ldots, n+$ $m-i, \ldots, n), a_{m-i} \neq 0$ for some $i=1,2, \ldots, m$,
(I2) f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where $R\left(\omega_{1}, \omega_{2}\right)=\omega_{1}^{n} P\left(\omega_{1}\right) \omega_{1}(z+$ c) $-\omega_{2}^{n} P\left(\omega_{2}\right) \omega_{2}(z+c)$;
(II) when $P(\omega)=\omega^{m}-1$, then $f \equiv t g$ for some constant t such that $t^{m}=1$;
(III) when $P(\omega)=(\omega-1)^{m}(m \geq 2)$, one of the following two cases holds:
(III1) $f(z) \equiv g(z)$,
(III2) f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where $R\left(\omega_{1}, \omega_{2}\right)=\omega_{1}^{n}\left(\omega_{1}-\right.$ 1) ${ }^{m} \omega_{1}(z+c)-\omega_{2}^{n}\left(\omega_{2}-1\right)^{m} \omega_{2}(z+c) ;$
(IV) when $P(w) \equiv c_{0}$, then $f \equiv t g$ for some constant t such that $t^{n+1}=1$.

Proof. Suppose

$$
\begin{equation*}
f^{n} P(f) f(z+c) \equiv g^{n} P(g) g(z+c) \tag{2.8}
\end{equation*}
$$

Since g is transcendental entire function, hence $g(z), g(z+c) \not \equiv 0$.
We consider following two cases.

Case 1. $P(\omega) \not \equiv c_{0}$.
Let $h=\frac{f}{g}$. If h is a constant, by putting $f=h g$ in (2.8) we get $a_{m} g^{m}\left(h^{n+m+1}-1\right)+a_{m-1} g^{m-1}\left(h^{n+m}-1\right)+\ldots+a_{1} g\left(h^{n+2}-1\right)+a_{0}\left(h^{n+1}-1\right) \equiv 0$, which implies that $h^{d}=1$, where $d=G C D(n+m+1, \ldots, n+m+1-i, \ldots, n+1)$, $a_{m-i} \neq 0$ for some $i \in\{0,1, \ldots, m\}$. Thus $f \equiv t g$ for a constant t such that $t^{d}=$ 1 , where $d=G C D(n+m+1, \ldots, n+m+1-i, \ldots, n+1), a_{m-i} \neq 0$ for some $i \in\{0,1, \ldots, m\}$.
If h is not a constant, then we know by (2.8) that f and g satisfying the algebraic equation $R(f, g)=0$, where $R\left(\omega_{1}, \omega_{2}\right)=\omega_{1}^{n} P\left(\omega_{1}\right) \omega_{1}(z+c)-\omega_{2}^{n} P\left(\omega_{2}\right) \omega_{2}(z+c)$.
We now discuss the following Subcases.
Subcase 1. $P(\omega)=\omega^{m}-1$.
Then from (2.8) we have

$$
\begin{equation*}
f^{n}\left(f^{m}-1\right) f(z+c) \equiv g^{n}\left(g^{m}-1\right) g(z+c) \tag{2.9}
\end{equation*}
$$

Let $h=\frac{f}{g}$. Clearly from (2.9) we get

$$
\begin{equation*}
g^{m}\left[h^{n+m} h(z+c)-1\right] \equiv h^{n} h(z+c)-1 \tag{2.10}
\end{equation*}
$$

First we suppose that h is non-constant. We assert that $h^{n+m} h(z+c)$ is non-constant. If not let $h^{n+m} h(z+c) \equiv c_{1} \in \mathbb{C} \backslash\{0\}$. Then we have

$$
h^{n+m} \equiv \frac{c_{1}}{h(z+c)} .
$$

Now by Lemmas 1 and 3 we get

$$
(n+m) T(r, h) \leq T(r, h)+S(r, h)
$$

which contradicts with $n>m+5$. Thus from (2.10) we have

$$
\begin{equation*}
g^{m} \equiv \frac{h^{n} h(z+c)-1}{h^{n+m} h(z+c)-1} . \tag{2.11}
\end{equation*}
$$

Let z_{0} be a zero of $h^{n+m} h(z+c)-1$. Since g is an entire function, it follows that z_{0} is also a zero of $h^{n} h(z+c)-1$. Consequently z_{0} is a zero of $h^{m}-1$ and so

$$
\bar{N}\left(r, 0 ; h^{n+m} h(z+c)\right) \leq \bar{N}\left(r, 0 ; h^{m}\right) \leq m T(r, h)+O(1)
$$

So in view of Lemmas 1, 4,5 and the second fundamental theorem we get

$$
\begin{aligned}
(n+m+1) T(r, h) & =T\left(r, h^{n+m} h(z+c)\right)+S(r, h) \\
& \leq \bar{N}\left(r, 0 ; h^{n+m} h(z+c)\right)+\bar{N}\left(r, 1 ; h^{n+m} h(z+c)\right)+S(r, h) \\
& \leq 2 N(r, 0 ; h)+m T(r, h)+S(r, h) \\
& \leq(m+2) T(r, h)+S(r, h),
\end{aligned}
$$

which contradicts with $n>1$.
Hence h is a constant. Since g is transcendental entire function, from (2.10) we have

$$
h^{n+m} h(z+c)-1 \equiv 0 \Longleftrightarrow h^{n} h(z+c)-1 \equiv 0
$$

and so $h^{m}=1$. Thus $f(z) \equiv \operatorname{tg}(z)$ for a constant t such that $t^{m}=1$.
Subcase 2. Let $P(\omega)=(\omega-1)^{m}$.
Then from (2.8) we have

$$
\begin{equation*}
f^{n}(f-1)^{m} f(z+c) \equiv g^{n}(g-1)^{m} g(z+c) \tag{2.12}
\end{equation*}
$$

Let $h=\frac{f}{g}$. If $m=1$, then the result follows from Subcase 1 .
For $m \geq 2$: First we suppose that h is non-constant:
Then from (2.12) we can say that f and g satisfying the algebraic equation $R(f, g)=0$, where

$$
R\left(\omega_{1}, \omega_{2}\right)=\omega_{1}^{n}\left(\omega_{1}-1\right)^{m} \omega_{1}(z+c)-\omega_{2}^{n}\left(\omega_{2}-1\right)^{m} \omega_{2}(z+c)
$$

Next we suppose that h is a constant:
Then from (2.12) we get

$$
\begin{equation*}
f^{n} f(z+c) \sum_{i=0}^{m}(-1)^{i}{ }^{m} C_{m-i} f^{m-i} \equiv g^{n} g(z+c) \sum_{i=0}^{m}(-1)^{i m} C_{m-i} g^{m-i} \tag{2.13}
\end{equation*}
$$

Now substituting $f=g h$ in (2.13) we get

$$
\sum_{i=0}^{m}(-1)^{i m} C_{m-i} g^{m-i}\left(h^{n+m+1-i}-1\right) \equiv 0
$$

which implies that $h=1$. Hence $f \equiv g$.
Case 2. $P(\omega) \equiv c_{0}$.
Let $h=\frac{f}{g}$. Then from (2.8) we have

$$
\begin{equation*}
h^{n}(z) \equiv \frac{1}{h(z+c)} \tag{2.14}
\end{equation*}
$$

Thus from Lemmas 1 and 3 we get

$$
n T(r, h)=T(r, h(z+c))+O(1)=T(r, h)+S(r, h)
$$

which is a contradiction since $n \geq 2$. Hence h must be a constant, which implies that $h^{n+1}=1$, thus $f=t g$ and $t^{n+1}=1$.
This completes the the proof.

3. Proofs of the Theorem

Proof of Theorem 1. Let $F=\frac{f^{n} P(f) f(z+c)}{p}$ and $G=\frac{g^{n} P(g) g(z+c)}{p}$. Then F and G share $(1,2)$ except the zeros of $p(z)$. Now applying Lemma 7 we see that one of the following three cases holds.
Case 1. Suppose

$$
T(r, f) \leq N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+S(r, F)+S(r, G)
$$

Now by applying Lemmas 1 and 7 we have

$$
\begin{aligned}
T(r, F) \leq & N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+S(r, f)+S(r, g) \\
= & N_{2}\left(r, 0 ; f^{n} P(f) f(z+c)\right)+N_{2}\left(r, 0 ; g^{n} P(g) g(z+c)\right)+S(r, f)+S(r, g) \\
\leq & N_{2}\left(r, 0 ; f^{n} P(f)\right)+N_{2}(r, 0 ; f(z+c))+N_{2}\left(r, 0 ; g^{n} P(g)\right)+N_{2}(r, 0 ; g(z+c)) \\
& +S(r, f)+S(r, g) \\
\leq & 2 N(r, 0 ; f)+N(r, 0 ; P(f))+N(r, 0 ; f(z+c))+2 N(r, 0 ; g)+N(r, 0 ; P(g)) \\
& +N(r, 0 ; g(z+c))+S(r, f)+S(r, g) \\
\leq & \left(2+m^{*}\right) T(r, f)+N(r, 0 ; f)+\left(2+m^{*}\right) T(r, g)+N(r, 0 ; g)+S(r, f)+S(r, g) \\
\leq & \left(3+m^{*}\right) T(r, f)+\left(3+m^{*}\right) T(r, g)+S(r, f)+S(r, g) \\
\leq & \left(6+2 m^{*}\right) T(r)+S(r)
\end{aligned}
$$

From Lemmas 1 and 4 we have

$$
\begin{equation*}
\left(n+m^{*}+1\right) T(r, f) \leq\left(6+2 m^{*}\right) T(r)+S(r) \tag{3.1}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
\left(n+m^{*}+1\right) T(r, g) \leq\left(6+2 m^{*}\right) T(r)+S(r) \tag{3.2}
\end{equation*}
$$

Combining (3.1) and (3.2) we get

$$
\left(n+m^{*}+1\right) T(r) \leq\left(6+2 m^{*}\right) T(r)+S(r)
$$

which contradicts with $n>5+m^{*}$.
Case 2. $F \equiv G$.
Then we have

$$
f^{n} P(f) f(z+c) \equiv g^{n} P(g) g(z+c)
$$

and so the result follows from Lemma 11.
Case 3. $F G \equiv 1$.
Then we have

$$
f^{n} P(f) f(z+c) g^{n} P(g) g(z+c) \equiv p^{2}
$$

and so the result follows from Lemma 9 .
This completes the proof.
Acknowledgement. This research work is supported by the Council Of Scientific and Industrial Research, Extramural Research Division, CSIR Complex, Pusa, New Delhi-110012, India, under the sanction project no. $25(0229) / 14 /$ EMR-II.

References

[1] W. Bergweiler, A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoam 11 (1995), 355-373.
[2] Y.M. Chiang, S.J. Feng, On the Nevanlinna Characteristic $f(z+\eta)$ and difference equations in complex plane, Ramanujan J. 16 (2008), 105-129.
[3] J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, J. L. Zhang, Value sharing results for shifts of meromorphic function, and sufficient conditions for periodicity, J. Math. Anal. Appl. 355 (2009), 352-363.
[4] M.L. Fang, W. Hong, A unicity theorem for entire functions concerning differential polynomials, Indian J. Pure Appl. Math. 32 (2001), 1343-1348.
[5] W.K. Hayman, Picard values of meromorphic Functions and their derivatives, Ann. of Math. 70 (1959), 9-42.
[6] W.K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
[7] I. Lahiri, Value distribution of certain differential polynomials, Int. J. Math. Math. Sc. 28 (2001), 83-91.
[8] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J. 161 (2001), 193-206.
[9] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Var. Theory Appl. 46 (2001), 241-253.
[10] I. Laine, C.C. Yang, Value distribution of difference polynomials, Proc. Japan Acad. Ser. A $8 \mathbf{8}$ (2007), 148-151.
[11] X.M. Li, W.L. Li, H.X. Yi, Z.T. Wen, Uniqueness theorems of entire functions whose difference polynomials share a meromorphic functioin of a smaller order, Ann. Polon. Math. 102 (2011), 111-127.
[12] W.C. Lin, H.X. Yi, Uniqueness theorems for meromorphic function concerning fixed-point, Complex Var. Theo. Appl. 49 (2004), no. 11, 793-806.
[13] K. Liu, L.Z. Yang, Value distribution of the difference operator, Arch. Math. 92 (2009), 270-278.
[14] E. Mues, Über ein problem von Hayman, Math Z. 164 (1979), 239-259.
[15] X.G. Qi, L.Z. Yang, K. Liu, Uniqueness and periodicity of meromorphic functions concerning the difference operator, Comput. Math. Appl. 60 (2010), 1739-1746.
[16] C.C. Yang, On deficiencies of differential polynomials II, Math. Z. 125 (1972), 107-112.
[17] C.C. Yang, X.H. Hua, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22 (1997), no. 2, 395-406.
[18] K. Yamanoi, The second main theorem for small functions and related problems, Acta Math. 192 (2004), 225-294.
[19] J.L. Zhang, Value distribution and shared sets of differences of meromorphic functions, J. Math. Anal. Appl. 367 (2010), 401-408.
(Abhijit Banerjee) Department of Mathematics, University of Kalyani, Nadia, West Bengal-741235, India
E-mail address: abanerjee_kal@yahoo.co.in, abanerjee_kal@rediffmail.com
(Sujoy Majumder) Department of Mathematics, Raiganj University, Raiganj, Uttar
Dinajpur, West Bengal, Pin-733134 India
E-mail address: sujoy.katwa@gmail.com

