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Lacunary Ideal quasi Cauchy sequences

Bipan Hazarika and Ayhan Esi

Abstract. A real function is lacunary ideal ward continuous if it preserves lacunary ideal

quasi Cauchy sequences where a sequence (xn) is said to be lacunary ideal quasi Cauchy (or
Iθ-quasi Cauchy) when (∆xn) = (xn+1−xn) is lacunary ideal convergent to 0. i.e. a sequence

(xn) of points in R is called lacunary ideal quasi Cauchy (or Iθ-quasi Cauchy) for every ε > 0

if r ∈ N :
1

hr

∑
n∈Jr

|xn+1 − xn| ≥ ε

 ∈ I.
Also we introduce the concept of lacunary ideal ward compactness and obtain results related to

lacunary ideal ward continuity, lacunary ideal ward compactness, ward continuity, ward com-

pactness, ordinary compactness, uniform continuity, ordinary continuity, δ-ward continuity,
and slowly oscillating continuity. Finally we introduce the concept of ideal Cauchy continuous

function in metric space and prove some results related to this notion.
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1. Introduction

The concept of a Cauchy sequence involves far more than that the distance between
successive terms is tending to zero. Nevertheless, sequences which satisfy this weaker
property are interesting in their own right. A sequence (xn) of points in R is called
quasi-Cauchy if (∆xn) is a null sequence where ∆xn = xn+1 − xn. In [1] Burton and
Coleman named these sequences as ”quasi-Cauchy” and in [7] Çakallı used the term
”ward convergent to 0” sequences. From now on in this paper we also prefer to using
the term ”quasi-Cauchy” to using the term ”ward convergent to 0” for simplicity.
In terms of quasi-Cauchy we restate the definitions of ward compactness and ward
continuity as follows: a function f is ward continuous if it preserves quasi-Cauchy
sequences, i.e. (f(xn)) is quasi-Cauchy whenever (xn) is, and a subset E of R is ward
compact if any sequence x = (xn) of points in E has a quasi-Cauchy subsequence
z = (zk) = (xnk

) of the sequence x.
A Cauchy regular function is a special kind of continuous function between metric

spaces. Cauchy continuous (or regular) functions have the useful property that they
can always be extended to the Cauchy completion of their domain (see [14]).

Received December 20, 2016. Accepted December 16 2018.

220



LACUNARY IDEAL QUASI CAUCHY SEQUENCES 221

2. Preliminaries and Notations

It is known that a sequence (xn) of points in R, the set of real numbers, is slowly
oscillating if

lim
λ→1+

limn max
n+1≤k≤[λn]

|xk − xn| = 0

where [λn] denotes the integer part of λn. This is equivalent to the following if
(xm − xn) → 0 whenever 1 ≤ m

n → 1 as, m,n → ∞. Using ε > 0 and δ > 0 this is
also equivalent to the case when for any given ε > 0, there exists δ = δ(ε) > 0 and
N = N(ε) such that |xm − xn| < ε if n ≥ N(ε) and n ≤ m ≤ (1 + δ)n.

A function defined on a subset E of R is called slowly oscillating continuous if it
preserves slowly oscillating sequences, i.e. (f(xn)) is slowly oscillating whenever (xn)
is.

The concept of statistical convergence is a generalization of the usual notion of
convergence that, for real-valued sequences, parallels the usual theory of convergence.
For a subset E of N the asymptotic density of E, denoted by δ(E), is given by

δ(E) = lim
n→∞

1

n
|{k ≤ n : k ∈ E}|,

if this limit exists, where |{k ≤ n : k ∈ E}| denotes the cardinality of the set {k ≤ n :
k ∈ E}. A sequence (xn) is statistically convergent to ` (see [17]) if

δ({n ∈ N : |xn − `| ≥ ε}) = 0,

for every ε > 0. In this case ` is called the statistical limit of x. Schoenberg [29]
studied some basic properties of statistical convergence and also studied the statistical
convergence as a summability method. Fridy [19] gave characterizations of statistical
convergence.

By a lacunary sequence θ = (kr)r∈N∪{0}, we mean an increasing sequence θ = (kr)
of positive integers such that k0 6= 0 and hr : kr−kr−1 →∞. The intervals determined
by θ will be denoted by Jr = (kr−1, kr], and the ratio kr

kr−1
will be abbreviated by qr.

Freedman et al., [18] introduced the notion of lacunary convergence as follows:
A sequence (xn) of points in R is called lacunary convergent (or Nθ-convergent) to

` in R if

lim
r→∞

1

hr

∑
n∈Jr

|xn − `| = 0,

and it is denoted by Nθ-limn xn = `. This defines a method of sequential convergence,
i.e. G(x) := Nθ− limxn. Any convergent sequence is Nθ-convergent, but the converse
is not always true.

The notion of lacunary statistical convergence was introduced, and studied by Fridy
and Orhan in [20] and [21] (see also [18]). A sequence (xk) of points in R is called
lacunary statistically convergent to an element ` of R if

lim
r→∞

1

hr
|{k ∈ Jr : |xk − `| ≥ ε}| = 0,

for every positive real number ε. In this case we write Sθ−limxn = `. In 1937, Cartan
[13] introduced the notion of the ideal convergence is the dual (equivalent) to the
notion of filter convergence. The notion of the filter convergence is a generalization of
the classical notion of convergence of a sequence and it has been an important tool in
general topology and functional analysis. Nowadays many authors use an equivalent
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dual notion of the ideal convergence. Kostyrko et al. [26] and Nuray and Ruckle [27]
independently studied in details about the notion of ideal convergence which is based
on the structure of the admissible ideal I of subsets of natural numbers N. Although
an ideal is defined as a hereditary and additive family of subsets of a non-empty set
X, here in our study it suffices to take I as a family of sets I ⊂ P (N) (the power sets
of N) such that for each A,B ∈ I, we have A ∪ B ∈ I and for each A ∈ I and each
B ⊂ A, we have B ∈ I. A non-empty family of sets F ⊂ P (N) is a filter on N if and
only if φ /∈ F, for each A,B ∈ F, we have A∩B ∈ F and each A ∈ F and each A ⊂ B,
we have B ∈ F. An ideal I is called non-trivial ideal if I 6= φ and N /∈ I. Clearly
I ⊂ P (N) is a non-trivial ideal if and only if F = F (I) = {N−A : A ∈ I} is a filter on
N. A non-trivial ideal I ⊂ P (N) is called admissible if and only if {{n} : n ∈ N} ⊂ I.
A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal J 6= I
containing I as a subset. Further details on ideals can be found in Kostyrko, et.al
(see [26]). Recall that a sequence x = (xn) of points in R is said to be I-convergent
to the number ` if for every ε > 0, the set {n ∈ N : |xn − `| ≥ ε} ∈ I. In this case
we write I-limxn = `. We see that I-convergence of a sequence (xn) implies I-quasi-
Cauchyness of (xn). The notion of lacunary ideal convergence of real sequences was
introduced in [32] and Hazarika [22, 23], introduced the lacunary ideal convergent
sequences of fuzzy real numbers and studied some properties. Cakalli and Hazarika
[2] introduced the concept of ideal quasi Cauchy sequences and proved some results
related to ideal ward continuity and ideal ward compactness. For more details on
ideal convergence we refer to [24, 25, 31].

Throughout this paper we assume I is a non-trivial admissible ideal in N, also,
I(R) and ∆I will denote the set of all I-convergent sequences, and the set of all I-
quasi-Cauchy sequences of points in R, respectively. If we take, I = If = {A ⊆ N : A
is a finite subset }, then If is a non-trivial admissible ideal of N and the corresponding
convergence coincides with the usual convergence, and I = Iδ = {A ⊆ N : δ(A) =
0}, where δ(A) denote the asymptotic density of the set A, then Iδ is a non-trivial
admissible ideal of N and the corresponding convergence coincides with the statistical
convergence.

Connor and Grosse-Erdman [15] gave sequential definitions of continuity for real
functions calling G-continuity instead of A-continuity and their results cover the ear-
lier works related to A-continuity where a method of sequential convergence, or briefly
a method, is a linear function G defined on a linear subspace of s, space of all se-
quences, denoted by cG, into R. A sequence x = (xn) is said to be G-convergent to ` if
x ∈ cG and G(x) = `. In particular lim denotes the limit function lim x = limn xn on
the linear space c and st-lim denotes the statistical limit function st-lim x = st-limn xn
on the linear space st(R). Also I-lim denotes the I-limit function I-lim x = I-limn xn
on the linear space I(R).

A method G is called regular if every convergent sequence x = (xn) is G-convergent
with G(x) = lim x. A method is called subsequential if whenever x is G-convergent
with G(x) = `, then there is a subsequence (xnk

) of x with limk xnk
= `.

Recently, Cakalli gave new sequential definitions of compactness and slowly oscil-
lating compactness in [8, 9, 10].
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3. Lacunary ideal sequential compactness

First we recall the definition of G-sequentially compactness of a subset E of R. A
subset E of R is called G-sequentially compact if whenever (xn) is a sequence of points
in E there is subsequence y = (yk) = (xnk

) of (xn) whose G(y) = lim y in E (see [11]).
For regular methods any sequentially compact subset E of R is also G-sequentially
compact and the converse is not always true. For any regular subsequential method
G, a subset E of R is G-sequentially compact if and only if it is sequentially compact
in the ordinary sense.

Although Iθ-sequential compactness is a special case of G-sequential compactness
when G = lim, we state the definition of Iθ-sequential compactness of a subset E of
R as follows.

Definition 3.1. A subset E of R is called Iθ-sequentially compact if whenever (xn)
is a sequence of points in E there is Iθ-convergent subsequence y = (yk) = (xnk

) of
(xn) such that Iθ-lim y is in E.

Lemma 3.1. Sequential method Iθ is regular.

Proof. The proof follows from the fact that I is admissible (see also [30]). �

Lemma 3.2. Any Iθ-convergent sequence of points in R with a Iθ-limit ` has a
convergent subsequence with the same limit ` in the ordinary sense.

Proof. See Proposition 3.2. in [28] for a proof. �

Theorem 3.3. The sequential method Iθ is regular and subsequential.

Proof. Regularity of Iθ follows from Lemma 3.1, and subsequentiality of Iθ follows
from Lemma 3.2. �

Theorem 3.4. A subset of R is sequentially compact if and only if it is Iθ-sequentially
compact.

Proof. The proof easily follows from Corollary 3 on page 597 in [9] and Lemma 3.2,
so is omitted. �

Although Iθ-sequential continuity is a special case of G-sequential continuity when
G = lim (see also Definition 2 in [30]), we state the definition of Iθ-sequential conti-
nuity of a function defined on a subset E of R as follows.

Definition 3.2. A function f : E → R is Iθ-sequentially continuous at a point x0 if,
given a sequence (xn) of points in E, Iθ-lim x = x0 implies that Iθ-lim f(x) = f(x0).

Theorem 3.5. Any Iθ-sequentially continuous function at a point x0 is continuous
at x0 in the ordinary sense.

Proof. Let f be any Iθ-sequentially continuous function at point x0. Since any proper
admissible ideal is a regular subsequential method, it follows from Theorem 13 on
page 316 in [11] that f is continuous in the ordinary sense. �

Theorem 3.6. Any continuous function at a point x0 is Iθ-sequentially continuous
at x0.

Proof. For the proof of the theorem see Theorem 2.2 [30]. �
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Combining Theorem 3.5 and Theorem 3.6 we have the following.

Corollary 3.7. A function is Iθ-sequentially continuous at a point x0 if and only if
it is continuous at x0.

Corollary 3.8. For any regular subsequential method G, a function is G-sequentially
continuous at a point x0, then it is Iθ-sequentially continuous at x0.

Proof. The proof follows from Theorem 13 on page 316 in [11]. �

Corollary 3.9. Any ward continuous function on a subset E of R is Iθ-sequentially
continuous on E.

Theorem 3.10. If a function is slowly oscillating continuous on a subset E of R,
then it is Iθ-sequentially continuous on E.

Proof. Let f be any slowly oscillating continuous on E. It follows from Theorem 2.1
in [8] that f is continuous. By Theorem 3.6 we see that f is Iθ-sequentially continuous
on E. This completes the proof. �

Theorem 3.11. If a function is δ-ward continuous on a subset E of R, then it is
Iθ-sequentially continuous on E.

Proof. Let f be any δ-ward continuous function on E. It follows from Corollary 2
on page 399 in [12] that f is continuous. By Theorem 3.6 we obtain that f is Iθ-
sequentially continuous on E. This completes the proof. �

Corollary 3.12. If a function is quasi-slowly oscillating continuous on a subset E
of R, then it is Iθ-sequentially continuous on E.

Proof. Let f be any quasi-slowly oscillating continuous on E. It follows from Theorem
3.2 in [16] that f is continuous. By Theorem 3.6 we deduce that f is Iθ-sequentially
continuous on E. This completes the proof. �

4. Lacunary ideal quasi Cauchy sequences

We say that a sequence x = (xn) is Iθ-ward convergent to a number ` if Iθ-
limn→∞∆xn = ` where ∆xn = xn+1 − xn. For the special case ` = 0 we say that x
is lacunary ideal quasi-Cauchy, or Iθ-quasi-Cauchy, in place of Iθ-ward convergent to
0. Thus a sequence (xn) of points of R is Iθ-quasi-Cauchy if (∆xn) is Iθ-convergent
to 0. We denote ∆Iθ the set of all lacunary ideal quasi Cauchy sequences of points in
R.

Now we give the definitions of Iθ-ward compactness of a subset of R.

Definition 4.1. A subset E of R is called Iθ-ward compact if whenever x = (xn)
is a sequence of points in E there is a subsequence z = (zk) = (xnk

) of x such that
Iθ-limk→∞∆zk = 0.

We note that this definition of Iθ-ward compactness can not be obtained by any G-
sequential compactness, i.e. by any summability matrix A, even by the summability
matrix A = (ank) defined by ank = −1 if k = n and akn = 1 if k = n+ 1 and

G(x) = Iθ − limAx = Iθ − lim
k→∞

∞∑
n=1

aknxn = Iθ − lim
k→∞

∆xk
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(see [9] for the definition of G-sequential compactness). Despite that G-sequential
compact subsets of R should include the singleton set {0}, Iθ-ward compact subsets
of R do not have to include the singleton {0}.

Theorem 4.1. A subset E of R is ward compact if and only if it is Iθ-ward compact.

Proof. Let us suppose first that E is ward compact. It follows from Lemma 2 on page
1725 in [6] that E is bounded. Then for any sequence (xn), there exists a convergent
subsequence (xnk

) of (xn) whose limit may be in E or not. Then the sequence (∆xnk
)

is a null sequence. Since I is a regular method, (∆xnk
) is Iθ-convergent to 0, so it

is Iθ-quasi-Cauchy. Thus E is Iθ-ward compact. Now to prove the converse suppose
that E is Iθ-ward compact. Take any sequence (xn) of points in E. Then there
exists an Iθ-quasi-Cauchy subsequence (xnk

) of (xn). Since Iθ is subsequential there
exists a convergent subsequence (xnkm

) of (xnk
). Therefore (xnkm

) is a quasi-Cauchy
subsequence of the sequence (xn). Thus E is ward compact. This completes the proof
of the theorem. �

Theorem 4.2. A subset E of R is bounded if and only if it is Iθ-ward compact.

Proof. Using an idea in the proof of Lemma 2 on page 1725 in [6] and the preceding
theorem the proof can be obtained easily so is omitted. �

Now we give the definition of Iθ-ward continuity of a real function.

Definition 4.2. A function f is called Iθ-ward continuous on E if Iθ-limn→∞∆f(xn) =
0 whenever Iθ-limn→∞∆xn = 0, for a sequence x = (xn) of terms in E.

We note that sum of two Iθ-ward continuous functions is Iθ-ward continuous but
the product of two Iθ-ward continuous functions need not be Iθ-ward continuous as
it can be seen by considering product of the Iθ-ward continuous function f(x) = x
with itself.

In connection with Iθ-quasi-Cauchy sequences and Iθ-convergent sequences the
problem arises to investigate the following types of continuity of functions on R.

(δiθ) (xn) ∈ ∆Iθ ⇒ (f(xn)) ∈ ∆Iθ
(δiθc) (xn) ∈ ∆Iθ ⇒ (f(xn)) ∈ c

(c) (xn) ∈ c⇒ (f(xn)) ∈ c
(cδiθ) (xn) ∈ c⇒ (f(xn)) ∈ ∆Iθ

(iθ) (xn) ∈ Iθ ⇒ (f(xn)) ∈ Iθ.
We see that (δiθ) is Iθ-ward continuity of f, (iθ) is a Iθ-continuity of f and (c)

states the ordinary continuity of f. It is easy to see that (δiθc) implies (δiθ), and (δiθ)
does not imply (δiθc), and (δiθ) implies (cδiθ), and (cδiθ) does not imply (δiθ); (δiθc)
implies (c) and (c) does not imply (δiθc); and (c) is equivalent to (cδiθ).

Now we give the implication (δiθ) implies (iθ), i.e. any Iθ-ward continuous function
is Iθ-sequentially continuous.

Theorem 4.3. If f is Iθ-ward continuous on a subset E of R, then it is Iθ-sequentially
continuous on E.

Proof. Suppose that f is an Iθ-ward continuous function on a subset E of R. Let (xn)
be an Iθ-quasi-Cauchy sequence of points in E. Then the sequence

(x1, x0, x2, x0, x3, x0, ..., xn−1, x0, xn, x0, ...)
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is an Iθ-quasi-Cauchy sequence. Since f is Iθ-ward continuous, the sequence

(yn) = (f(x1), f(x0), f(x2), f(x0), ..., f(xn), f(x0), ...)

is a Iθ-quasi-Cauchy sequence. Therefore Iθ-limn→∞∆yn = 0.
Hence Iθ-limn→∞[f(xn) − f(x0)] = 0. It follows that the sequence (f(xn)) Iθ-
converges to f(x0). This completes the proof of the theorem. �

The converse is not always true for the function f(x) = x2 is an example since
Iθ − limn→∞∆xn = 0 for the sequence (xn) = (

√
n). But Iθ-limn→∞∆f(xn) 6= 0,

because (f(
√
n)) = (n).

Theorem 4.4. If f is Iθ-ward continuous on a subset E of R, then it is continuous
on E in the ordinary sense.

Proof. Let f be an Iθ-ward continuous function on E. By Theorem 4.3, f is Iθ-
sequentially continuous on E. It follows from Theorem 3.5 that f is continuous on E
in the ordinary sense. Thus the proof is completed. �

Theorem 4.5. If f is Nθ-ward continuous on a subset E of R, then it is I-continuous
on E.

Proof. The proof of the theorem follows from Lemma 3.1 and [3], Corollary 1. �

Theorem 4.6. Let I be an admissible ideal of N. If f is Nθ-continuous on a subset
E of R, then it is I-continuous on E.

Proof. The proof of the theorem is straightforward from the definitions. �

Theorem 4.7. An Iθ-ward continuous image of any Iθ-ward compact subset of R is
Iθ-ward compact.

Proof. Suppose that f is an Iθ-ward continuous function on a subset E of R and
E is an Iθ-ward compact subset of R. Let (yn) be a sequence of points in f(E).
Write yn = f(xn) where xn ∈ E for each n ∈ N. Iθ-ward compactness of E implies
that there is a subsequence z = (zk) = (xnk

) of (xn) with Iθ-limk→∞∆zk = 0. Write
(tk) = (f(zk)). As f is Iθ-ward continuous, so we have Iθ− limk→∞∆f(zk) = 0. Thus
we have obtained a subsequence (tk) of the sequence (f(xn)) with Iθ-limk→∞∆tk = 0.
Thus f(E) is Iθ-ward compact. This completes the proof of the theorem. �

Corollary 4.8. An Iθ-ward continuous image of any compact subset of R is compact.

Proof. The proof of this theorem follows from Theorem 3.5. �

Corollary 4.9. An Iθ-ward continuous image of an Iθ-sequentially compact subset
of R is G-sequentially compact for any regular subsequential method G.

It is a well known result that uniform limit of a sequence of continuous functions
is continuous. This is also true in case of Iθ-ward continuity, i.e. uniform limit of a
sequence of Iθ-ward continuous functions is Iθ-ward continuous.

Theorem 4.10. If (fn) is a sequence of Iθ-ward continuous functions defined on a
subset E of R and (fn) is uniformly convergent to a function f, then f is Iθ-ward
continuous on E.
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Proof. Let ε > 0 and (xn) be a sequence of points in E such that Iθ-limn→∞∆xn =
0. By the uniform convergence of (fn) there exists a positive integer N such that
|fn(x) − f(x)| < ε

3 for all x ∈ E whenever n ≥ N. By the definition of ideal for all
x ∈ E, we have {

r ∈ N :
1

hr

∑
n∈Jr

|fn(x)− f(x)| ≥ ε

3

}
∈ I.

As fN is Iθ-ward continuous on E we have{
r ∈ N :

1

hr

∑
n∈Jr

|fN (xn+1)− fN (xn)| ≥ ε

3

}
∈ I .

On the other hand we have{
r ∈ N :

1

hr

∑
n∈Jr

|f(xn+1)− f(xn)| ≥ ε

3

}
⊆

{
r ∈ N :

1

hr

∑
n∈Jr

|f(xn+1)− fN (xn+1)| ≥ ε

3

}

∪

{
r ∈ N :

1

hr

∑
n∈Jr

|fN (xn+1)− fN (xn)| ≥ ε

3

}
∪

{
r ∈ N :

1

hr

∑
n∈Jr

|fN (xn)− f(xn)| ≥ ε

3

}
.

(1)

Since I is an admissible ideal, so the right hand side of the relation (1) belongs to I,
we have {

r ∈ N :
1

hr

∑
n∈Jr

|f(xn+1)− f(xn)| ≥ ε

3

}
∈ I.

This completes the proof of the theorem. �

Theorem 4.11. The set of all Iθ-ward continuous functions on a subset E of R is a
closed subset of the set of all continuous functions on E, i.e. ∆iθwc(E) = ∆iθwc(E)

where ∆iθwc(E) is the set of all Iθ-ward continuous functions on E, ∆iθwc(E) de-
notes the set of all cluster points of ∆iθwc(E).

Proof. Let f be an element in ∆iθwc(E). Then there exists sequence (fn) of points in
∆iθwc(E) such that limn→∞ fn = f. To show that f is Iθ-ward continuous consider
a sequence (xn) of points in E such that Iθ-limn→∞∆xn = 0. Since (fn) converges
to f, there exists a positive integer N such that for all x ∈ E and for all n ≥
N, |fn(x)− f(x)| < ε

3 . By the definition of ideal for all x ∈ E, we have{
r ∈ N :

1

hr

∑
n∈Jr

|fn(x)− f(x)| ≥ ε

3

}
∈ I.

As fN is Iθ-ward continuous on E we have{
r ∈ N :

1

hr

∑
n∈Jr

|fN (xn+1)− fN (xn)| ≥ ε

3

}
∈ I .
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On the other hand we have{
r ∈ N :

1

hr

∑
n∈Jr

|f(xn+1)− f(xn)| ≥ ε

3

}
⊆

{
r ∈ N :

1

hr

∑
n∈Jr

|f(xn+1)− fN (xn+1)| ≥ ε

3

}

∪

{
r ∈ N :

1

hr

∑
n∈Jr

|fN (xn+1)− fN (xn)| ≥ ε

3

}
∪

{
r ∈ N :

1

hr

∑
n∈Jr

|fN (xn)− f(xn)| ≥ ε

3

}
.

(2)

Since I is an admissible ideal, so the right hand side of the relation (2) belongs to I;
we have {

r ∈ N :
1

hr

∑
n∈Jr

|f(xn+1)− f(xn)| ≥ ε

3

}
∈ I.

This completes the proof of the theorem. �

Corollary 4.12. The set of all Iθ-ward continuous functions on a subset E of R is
a complete subspace of the space of all continuous functions on E.

Proof. The proof follows from the preceding theorem. �

Cakalli [5] introduced the concept G-sequentially connected as, a non-empty subset
E of R is called G-sequentially connected if there are non-empty and disjoint G-
sequentially closed subsets U and V such that A ⊆ U ∪ V, and A ∩ U and A ∩ V are
empty. As far as G-sequentially connectedness is considered, then we get the following
results.

Theorem 4.13. Any Iθ-sequentially continuous image of any Iθ-sequentially con-
nected subset of R is Iθ-sequentially connected.

Proof. The proof follows from the Theorem 1 in [5]. �

Theorem 4.14. A subset of R is Iθ-sequentially connected if and only if it is con-
nected in ordinary sense and so is an interval.

Proof. The proof follows from the Corollary 1 in [5]. �

Remark 4.1. If we take, I = If = {A ⊆ N : A is a finite subset }, then Iθ-quasi-
Cauchy sequences coincides with Nθ-quasi Cauchy sequences (see [3, 4]).

5. Ideal Cauchy continuous function

In this section we introduce the concept of ideally Cauchy continuous function in
metric space and prove some results.

Definition 5.1. A sequence x = (xn) of points in a metric space X is said to be
ideally Cauchy, for every ε > 0 and m ∈ N such that the set

{n ∈ N : d(xn, xm) ≥ ε} ∈ I.

Definition 5.2. Let X and Y be metric spaces, and let f be a function from X to
Y. Then f is said to be ideally Cauchy continuous if and only if, given any ideally
Cauchy sequence x = (xn) in X, the sequence f(x) = (f(xn)) is an ideally Cauchy
sequence in Y.
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Theorem 5.1. Every uniformly continuous function is ideally Cauchy continuous.

Proof. Let f : (X, dX) −→ (Y, dY ) be an uniformly continuous function. Then for
δ > 0 there exists ε > 0 such that for all x, y ∈ X we have

dY (f(x), f(y)) < ε whenever dX(x, y) < δ. (3)

Let x = (xn) be an ideally Cauchy sequence in X. For δ > 0 and m ∈ N such that

{n ∈ N : dX(xn, xm) ≥ δ} ∈ I.
By the relation (3) we have

{n ∈ N : dY (f(xn), f(xm)) ≥ ε} ∈ I.
Hence f is ideally Cauchy continuous. �

The proof of the following results are straightforward.

Theorem 5.2. Every ideally Cauchy continuous function is ideally continuous.

Corollary 5.3. Every ideally Cauchy continuous function is continuous.

Theorem 5.4. If X is totally bounded, then every ideally Cauchy continuous function
is uniformly continuous.

Theorem 5.5. If X is complete, then every ideally continuous function on X is
ideally Cauchy continuous.

Theorem 5.6. If X is not complete, as long as Y is complete, then any ideally
Cauchy continuous function from X to Y can be extended to a function defined on
the Cauchy completion of X; and this extension is necessarily unique.

Example 5.1. If X = R, then every ideally Cauchy continuous functions on R are
the same as the ideally continuous ones. But on the subspace Q of rational numbers,
however the matters are different. For example, define a two-valued function

f(x) =

{
0, when x2 < 2;
1, when x2 > 2.

Note that x2 never equal to 2 for any rational number x. This function is ideally
continuous on Q but not ideally Cauchy continuous, since it cannot be extended to
R as an ideal continuous function. On the other hand, any uniformly continuous
function on Q must be ideally Cauchy continuous.

Example 5.2. Let f(x) = 2x for all x ∈ Q. This function is not uniformly continuous
on Q, but it is ideally Cauchy continuous on Q.

Example 5.3. An ideal Cauchy sequence (y1, y2, y3, ...) in Y can be identified with
a ideally Cauchy continuous function from {1, 12 ,

1
3 , ...} to Y, defined by f( 1

n ) = yn. If

Y is complete, then this function can be extended to {1, 12 ,
1
3 , ..., 0}; f(0) will be the

limit of the ideal Cauchy sequence.

Finally we note the following further investigation problems arise.
1. For further study we suggest to investigate Iθ-quasi-Cauchy sequences of fuzzy

points and Iθ-ward continuity for the fuzzy functions. However due to the change
in settings, the definitions and methods of proofs will not always be analogous
to these of the present work.
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2. For another further study we suggest to introduce a new concept in dynamical
systems using Iθ-ward continuity.

3. For another further study we suggest to introduce and give an investigation of
Iθ-quasi-Cauchy sequences in abstract spaces.
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