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Weak solutions of one-dimensional pollutant transport model

Brahima Roamba, Jean De Dieu Zabsonré, and Yacouba Zongo

Abstract. We consider a one-dimensional bilayer model coupling shallow water and Reynolds
lubrication equations that is a similar model derived in [European J. Applied Mathematics
24(6) (2013), 803-833]. The model considered is represented by the two superposed immiscible
fluids. Under an hypothesis about the unknowns, we show the existence of global weak solution
in time with a periodic domain.
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1. Introduction

In this paper, we study the existence of global weak solutions in time for the
following one dimensional model of transport of pollutant derived in [5] :

∂th1 + ∂x(h1u1) = 0,

∂t(h1u1) + ∂x(h1u1
2) +

1

2
g∂xh

2
1 − 4ν1∂x(h1∂xu1) +

α

ρ1
γ(h1)u1 −

δξ
ρ1
h1∂

3
xh1

+r1h1|u|2u+ rgh1∂xh2 + rgh2∂x(h1 + h2) = 0,

∂th2 + ∂x(h2u1) + ∂x

(
−h22

1

ρ2

(1

c
+

1

3ν2
h2

)
∂xp2

)
= 0,

(1)

with

∂xp2 = ρ2g∂x(h1 + h2) and γ(h1) =

(
1 +

α

3ν1
h1

)−1
. (2)

Subscript 1 will correspond to the layer located below and subscript 2 to that lo-
cated on the top. In this model, we denote by h1, h2 respectively, the water and the
pollutant heights, u1 is the water velocity, ρ1 and ρ2 the densities of each layer of
fluid (we also introduce the ratio of densities r =

ρ2
ρ1

), νi is the kinematic viscosity,

p2 the pressure of the pollutant layer and g is the constant gravity. The coefficients
δξ, α, r1, c, are respectively the coefficients of the intrefaz tension, friction at the
bottom, quadratic friction and friction at the interfaz. This model is derived from
a two-dimensional Navier-Stokes bilayer equations with capillary and friction effects
at the interfaz. It is used to simulate the evolution of a thin viscous pollutant over
water (see [5]). Let us recall some results about the existence of weak solution for a
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system composed by three equations (Shallow-water and transport equations). The
case with viscosity term of the form −ν∆u was investigated in [8] in which exis-
tence of weak solutions for a viscous sedimentation model is obtained by assuming
smallness of the data. In their analysis the authors considered a transport equation
with Grass model of the form qb = hu and used Brower fixed point theorem to get
the result. In [14], the authors studied the stability of global weak solutions for a
sediment transport model in two- dimensional case. In this model, the viscosity coef-
ficient is of the form −νdiv(hD(u)) and the sediment transport equation considered is
∂tz+div(h|u|ku)− ν

2∆u = 0. The stability result is obtained without any restriction
on the data and by using a mathematical entropy introduced firstly in [4] namely BD
entropy . We note that it’s the BD entropy inequality which allows the authors in
[1, 3, 4, 6, 7] to get existence results of global weak solutions for Shallow-Water and
viscous compressible Navier-Stokes equations.
In [12], the authors obtained a result of existence of global weak solution of sim-
ilar model in a two dimensional case. To have this result, the authors needed of
some additional regularizing terms such as a quadratic friction term h1|u|2u, a cold
pressure h1−α1 with α > 1 and a capillarity term of the form h1∇∆h1. They used

a transport equation of the form ∂th2 + div(h2u)− g∇ ·
(

(1 +
h2
h1

)∇(h1 + h2)

)
= 0.

The key point with the BD entropy is that, with the structure of the diffusive term,
we get an extra regularity for the water height. In our analysis, we consider in one-
dimensional, a periodic domain Ω = (0, 1) to simplify. We assume that the pollutant
layer is smaller than that of the water:

h2 ≤ h1. (3)

Notice that, to deduce the model, we make this hypothesis for the caracteristic heights
(see [5]). We will intend in the future to study the present model without this condi-
tion. We complete system (1) with initial conditions :

h1(0, x) = h10(x), h2(0, x) = h20(x), (h1u1)(0, x) = m0(x) in (0, 1). (4)

h10 ∈ L2(0, 1), h10 + h20 ∈ L2(0, 1), ∂x(h10 ∈ L2(0, 1),

∂xm0 ∈ L1(0, 1), m0 = 0 if h10 = 0, (5)

|m0|2

h10
∈ L1(0, 1), f(h10) ∈ L1(0, 1),

where f will be defined later on ( see (16)).
The paper is organized as follows : in the Section 2, we will start by giving the

definition of global weak solutions, then we will establish a classical energy equality
and the "mathematical BD entropy", which give some regularities on the unknowns.
We will also give an existence theorem of global weak solutions. In section 3, we will
give the proof of the existence theorem.

2. Main results

Definition 2.1. We shall say that (h1, h2, u1) is a weak solution on (0, T ) of (1), with
initial conditions (4) if the following conditions are satisfied :
• (4) holds in D′(Ω);
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• (h1, h2, u1) verified the energy inequalities (2.1) and (2.2) for a.e. non negative
t;

• for all smooth test function ϕ = ϕ(t, x) with ϕ(T, ) = 0, we have:

h10ϕ(0, .)−
∫ T

0

∫ 1

0

h1∂tϕ−
∫ T

0

∫ 1

0

h1u1∂xϕ = 0, (6)

−h20ϕ(0, .)−
∫ T

0

∫ 1

0

h2∂tϕ−
∫ T

0

∫ 1

0

h2u1∂xϕ

+

∫ T

0

∫ 1

0

h2
2 1

ρ2

(1

c
+

1

3ν2
h2

)
∂xp2∂xϕ = 0, (7)

h10u10ϕ(0, .)−
∫ T

0

∫ 1

0

h1u1∂tϕ−
∫ T

0

∫ 1

0

h1u1
2∂xϕ−

1

2
g

∫ T

0

∫ 1

0

h21∂xϕ

+4ν1

∫ T

0

∫ 1

0

h1∂xu1∂xϕ+
α

ρ1

∫ T

0

∫ 1

0

γ(h1)u1ϕ+
δξ
ρ1

∫ T

0

∫ 1

0

h1∂
2
xh1∂xϕ

+
δξ
ρ1

∫ T

0

∫ 1

0

∂xh1∂
2
xh1ϕ− rg

∫ T

0

∫ 1

0

h2∂xh1ϕ− rg
∫ T

0

∫ 1

0

h1h2∂xϕ

−rg
∫ T

0

∫ 1

0

(h1 + h2)h2ϕ− rg
∫ T

0

∫ 1

0

(h1 + h2)∂xh2ϕ+ r1

∫ T

0

∫ 1

0

|u1|2u1ϕ = 0. (8)

Before giving the main theorem, we give the following two important lemmas. We
firstly give the classical energy associated with system (1) and secondly the mathe-
matical BD entropy.

Lemma 2.1. The model defined by (1) admits an entropy equality∫ 1

0

[
1

2
h1|u1|2 +

1

2
g(1− r)|h1|2 +

1

2
rg|h1 + h2|2 +

1

2

δξ
ρ1
|∂xh1|2

]
+r1

∫ T

0

∫ 1

0

h1|u1|4 + 4ν1

∫ T

0

∫ 1

0

h1|∂xu1|2 +
α

ρ1

∫ T

0

∫ 1

0

γ(h1)|u1|2

+rg2
∫ T

0

∫ 1

0

h22(
1

c
+

1

3ν2
h2)

(
∂x(h1 + h2)

)2

=

∫ 1

0

[
1

2
h10 |u10 |2 +

1

2
g(1− r)|h10 |2 +

1

2
rg|h10 + h20 |2 +

1

2

δξ
ρ1
|∂xh10 |2

]
. (9)

Proof. Firstly, we multiply the momentum equation by u1 and we integrate from 0 to
1. We use the mass conservation equation of the first layer for simplification. Then,
we obtain

d

dt

∫ 1

0

[
1

2
(h1u

2
1 + gh21)

]
− δξ
ρ1

∫ 1

0

∂th1∂
2
xh1 + r1

∫ 1

0

h1|u1|4 + rg

∫ 1

0

h2∂th1

+rg

∫ 1

0

h2u1∂x(h1 + h2) + 4ν1

∫ 1

0

h1(∂xu1)2 +
α

ρ1

∫ 1

0

γ(h1)u21 = 0. (10)

Secondly, we multiply the equation for the thin film flow by ρ2g(h1 + h2) and integrate
to obtain
1

2
rg
d

dt

∫ 1

0

h22 + rg

∫ 1

0

h1∂th2 + rg

∫ 1

0

(h1 + h2)∂x(h2u1)
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= rg2
∫ 1

0

h22(
1

c
+

1

3ν2
h2)

(
∂x(h1 + h2)

)2

. (11)

We use the mass conservation equation to write∫ 1

0

h2∂th1 +

∫ 1

0

h1∂th2 =
d

dt

∫ 1

0

h1h2, (12)

and to develop the following product affecting the terms with δξ∫ 1

0

∂x(h1u1)∂2xh1 =

∫ 1

0

h1∂t(h1)∂2xh1 = −1

2

d

dt

∫ 1

0

|∂xh1|2. (13)

By adding (10) and (11), and taking into account (12) and (13), we obtain

d

dt

∫ 1

0

[
1

2
h1u

2
1 +

1

2
gh21 + rgh2(h1 +

h2
2

)

]
+

1

2

δξ
ρ1

d

dt

∫ 1

0

(∂xh1)2 + r1

∫ 1

0

h1|u1|4

+4ν1

∫ 1

0

h1(∂xu1)2+rg2
∫ 1

0

h22(
1

c
+

1

3ν2
h2)

(
∂x(h1+h2)

)2

+
α

ρ1

∫ 1

0

γ(h1)u21 = 0. (14)

To end, we integrate from 0 to t to have the equality (9). �

Corollary 2.1. Let (h1, h2, u1) be a solution of model (1). Then, thanks to Lemma
2.1 we have:

h1 is bounded in L∞(0, T ;L2(0, 1)),

h2 is bounded in L∞(0, T ;L2(0, 1)),

∂xh1 is bounded in L∞(0, T ;L2(0, 1)),√
h1u1 is bounded in L∞(0, T ;L2(0, 1)),√
h1∂xu1 is bounded in L2(0, T ;L2(0, 1)),

u1 is bounded in L2(0, T ;L2(0, 1)),

h
1
4
1 u1 is bounded in L2(0, T ;L2(0, 1)),

h2

√
1

c
+

1

3ν2
h2

(
∂x(h1 + h2)

)
is bounded in L2(0, T ;L2(0, 1)).

Remark 2.1. (1) In the Corollary 2.1, the estimate√
h1u1 is bounded in L∞(0, T ;L2(0, 1))

implies,
h1u1 is bounded in L∞(0, T ;L2(0, 1))

this leads us

∂th1 is bounded in L∞(0, T ;W−1,2(0, 1)).

(2) We have the additional regularities thanks to Corollary 2.1:
(a) h1 is bounded in L2(0, T ;H1(0, 1)),
(b) h1u1 is bounded in L3(0, T ;L3(0, 1))∩L∞(0, T ;L2(0, 1))∩L2(0, T ;W 1,1(0, 1)),
(c) γ(h1) is bounded in L∞(0, T ;H1(0, 1)) ∩ L∞(0, T ;L∞(0, 1)).

Remark 2.2. We have the following additional regularities:
(1) h2 is bounded in L∞(0, T ;L∞(0, 1)),
(2) ∂x(h1 + h2) is bounded in L2(0, T ;L2(0, 1)).
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We will need in the following some additional regularity on h1 and this will be
achieved through an additional BD entropy inequality presented in the next lemma.

Lemma 2.2. For smooth solutions (h1, h2, u1) of model (1) satisfying the classical
energy equality of the Lemma 2.1, we have the following mathematical BD entropy
inequality:

1

2

∫ 1

0

[
h1|u1 + 4ν1∂x log h1|2 + rg|h1 + h2|2 + g(1− r)|h1|2| − 8ν1f(h1) +

δξ
ρ1
|∂xh1|2

]
+
α

ρ1

∫ T

0

∫ 1

0

γ(h1)|u1|2 + r1

∫ T

0

∫ 1

0

h1|u1|4 + 4ν1r1

∫ T

0

∫ 1

0

|u1|2u1∂xh1

+2gν1

∫ T

0

∫ 1

0

(1 + 2r
h2
h1

)|∂xh1|2 + 4rgν1

∫ 1

0

(1 +
h2
h1

)∂xh1∂xh2 +
δξ
ρ1

∫ T

0

∫ 1

0

|∂2xh1|2

+rg2
∫ T

0

∫ 1

0

h22(
1

c
+

1

3ν2
h2)

(
∂x(h1 + h2)

)2

+ 4
ν1α

ρ1

∫ T

0

∫ 1

0

γ′(h1)u1∂xh1

6 4ν1

∫ 1

0

f(h10) +

∫ 1

0

[
h10 |u10 |2 + 128ν21 |∂x

√
h10 |2 +

1

2
g(1− r)|h10 |2

]
+

∫ 1

0

[
1

2
rg|h10 + h20 |2 +

1

2

δξ
ρ1
|∂xh10 |2

]
, (15)

where

f(h1) = α log

(
h1

3 + αν−11 h1

)
. (16)

Proof. Let us consider the mass equation

∂th1 + ∂xh1u1 = 0.

When we use both the transport equation and the renormalized technical, we get:

∂t(∂xh1) + ∂x(h1∂xu1) + ∂x(u1∂xh1) = 0.

Replacing ∂xh1 by h1∂x log h1 and introducing the viscosity 4ν1, this becomes

4ν1∂t(h1∂x log h1) + 4ν1∂x(h1∂xu1) + 4ν1∂x(h1u1∂x log h1) = 0.

Then, we add the momentum equation to obtain
∂t[h1(u1 + 4ν1∂x log h1)] + ∂x[h1u1(u1 + 4ν1∂x log h1)] + 1

2g∂xh
2
1 + α

ρ1
γ(h1)u1

−h1
δξ
ρ1
∂3xh1 + r1h1|u1|2u1 + rgh1∂xh2 + rgh2∂x(h1 + h2) = 0.

We multiply this equation by (u1 + 4ν1∂x log h1) and we integrate between 0 and 1.
Now, we transform each term of the resulting identity separately∫ 1

0

[∂t[h1(u1 + 4ν1∂x log h1)] + ∂x[h1u1(u1 + 4ν1∂x log h1)]](u1 + 4ν1∂x log h1)

=
1

2

d

dt

∫ 1

0

h1|u1 + 4ν1∂x log h1|2.

Next, we only study the terms which do not appear in (9).
The pressure terms become:

1

2
g

∫ 1

0

∂xh
2
1(4ν1∂x log h1) = 2gν1

∫ 1

0

|∂xh1|2,
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rg

∫ 1

0

[h1∂xh2 + h2∂x(h1 + h2)](4ν1∂x log h1)

= 4rgν1

∫ 1

0

h2
h1
|∂xh1|2 + 4rgν1

∫ 1

0

(1 +
h2
h1

)∂xh1∂xh2.

Adding these two terms, we have:
1

2
g

∫ 1

0

∂xh
2
1(4ν1∂x log h1 + rg

∫ 1

0

[h1∂xh2 + h2∂x(h1 + h2)](4ν1∂x log h1)

= 2gν1

∫ 1

0

(1 + 2r
h2
h1

)|∂xh1|2 + 4rgν1

∫ 1

0

(1 +
h2
h1

)∂xh1∂xh2.

For the friction term at the bottom, we have
α

ρ1

∫ 1

0

γ(h1)u1(4ν1∂x log h1) =
4ν1
ρ1

∫ 1

0

3ν1α

3ν1 + αh1
u1∂x log h1

= −4ν1
ρ1

∫ 1

0

3ν1α

3ν1 + αh1

(∂th1
h1

+ ∂x u1

)
.

Considering that Lemma 2.2 gives f ′(h1) =
3ν1α

3ν1 + αh1

1

h1
,

therefore,

4
ν1α

ρ1

∫ 1

0

γ(h1)u1∂x log h1 = −4
ν1
ρ1

d

dt

∫ 1

0

f(h1) + 4
ν1α

ρ1

∫ 1

0

γ′(h1)u1∂xh1. �

Remark 2.3. (1) The term including log

(
h1

3 + αν−11 h1

)
is bounded, see [12].

(2) In Lemma 2.2 all the terms, except −
∫ T

0

∫ 1

0

|u1|2u1∂xh1

and
∫ T

0

∫ 1

0

(1 +
h2
h1

)∂xh1∂xh2 are controlled since they have the good sign. But

the control of the both terms takes inspiration in [12].
(3) If (h1, h2, u1) is solution of the model (1), then, thanks to Lemma 2.2, we have

that:

∂x
√
h1 is bounded in L∞(0, T ;L2(0, 1)) and ∂2xh1 is bounded in L2(0, T ;L2(0, 1)).

Theorem 2.1. There exists global weak solutions to system (1) with initial data (4),
(5) and satisfying energy equality (9) and energy inequality (15).

3. Convergences

This section is devoted to the proof of Theorem 2.1. Let (hk1 , h
k
2 , u

k
1) be a sequence

of weak solutions with initial data

hk1|t=0 = hk10 , hk2|t=0 = hk20 , (hk1u
k
1)|t=0 = mk

0

such as

hk10 −→ h10 in L1(0, 1), hk20 −→ h20 in L1(0, 1), mk
0 −→ m0 in L1(0, 1),

and satisfies

4ν1

∫ 1

0

f(h10) +

∫ 1

0

[
h10 |u10 |2 + 128ν21 |∂x

√
h10 |2 +

1

2
g(1− r)|h10 |2 +

1

2
rg|h10 +h20 |2

]
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+
1

2

δξ
ρ1

∫ 1

0

|∂xh10 |2 ≤ C.
Such approximate solutions can be built by a regularization of capillary effect.

3.1. Strong convergence of
(√

hk1

)
k

. Here, we are going to establish the spaces

in which
(√

hk1

)
k

is bounded.

In this sense we are going to integrate the mass equation and we directly get
√
hk1

in L∞(0, T ;L2(0, 1)), the Remark 2.3 gives us
∣∣∣∣∂x√hk1∣∣∣∣ in L∞(0, T ;L2(0, 1)). So we

obtain:√
hk1 is bounded in L∞(0, T ;H1(0, 1)). (∗)

Moreover, we use the mass equation again to have the following equality:

∂t

√
hk1 =

1

2

√
hk1∂xu

k − ∂x(
√
hk1u

k),

which gives that ∂t
√
hk1 is bounded in L2(0, T ;H−1(0, 1)).

Applying Aubin-Simon lemma ([9, 13]), we can extract a subsequence, still denoted
(hk1)1≤k, such as(√

hk1

)
k

strongly converges to
√
h1 in L2(0, T ;L2(0, 1)).

3.2. Strong convergence of h1 and h2. Let now study the subsequence (hk1)k.
According to the property (∗) and Sobolev embeddings, we know that, for any finite
s,

(hk1)k is bounded in L∞(0, T ;Ls(0, 1)).

In the following, we will assume that 4 ≤ s in order to simplify our expressions and
ensure that

(hk1)k is bounded in L∞(0, T ;L2(0, 1)).

The equality ∂xhk1 = 2
√
hk1∂x

√
hk1 enables us to bound the sequence ∂xhk1 in

L∞(0, T ; (L
2s

s+2 (0, 1))2) and consequently the sequence

(hk1)k is bounded in L∞(0, T ;W 1, 2s
s+2 (0, 1)).

Moreover, we have some properties on the time derivative of (hk1); actually the mass
equation can be written as: ∂th

k
1 = −∂x(hk1u

k
1). Splitting the product hk1uk1 into

hk1u
k
1 =

√
hk1
√
hk1u

k
1 , we get

hk1u
k
1 in L∞(0, T ; (L

2s
s+2 (0, 1))2) and ∂th

k
1 in L∞(0, T ;W−1,

2s
s+2 (0, 1)).

Thanks to Aubin-Simon lemma again, we find:

hk1 −→ h1 in C0(0, T ;L
2s

s+2 (0, 1))

We have hk2 ∈ L2(0, T ;H1(0, 1)).

Moreover, we have ∂thk2 = −∂x(hk2u
k
1) + g∂x

[
− hk2

2
(
1

c
+

1

3ν1
hk2)∂x(hk1 + hk2)

]
.

According to the Sobolev embeddings, we show that the first term is in W−1,1(0, 1),
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since
hk2 ∈ L2(0, 1) and uk1 ∈ L2(0, 1). By analogy we prove that the last term is in the
same space and we get ∂thk2 also in this space. Thanks to the Aubin-Simon lemma,
we find:

(hk2)k converges strongly to h2 in L2(0, T ;W−1,
2s

s+2 (0, 1)).

3.3. Strong convergence of (hk1u
k
1)k. Let us write hk1u

k
1 as follow:

hk1u
k
1 =

√
hk1

√
hk1u

k
1 , we have(√

hk1

)
k

bounded in L∞(0, T ;L4(0, 1))

and (√
hk1u

k
1

)
k

bounded in L∞(0, T ;L2(0, 1)).

Thus we have:
(hk1u

k
1)k bounded in L∞(0, T ;L

4
3 (0, 1)).

Let’s write the gradient as follows:

∂x(hk1u
k
1) = hk1∂xu

k
1 + uk1∂xh

k
1 =

√
hk1

√
hk1∂xu

k
1 + uk1∂xh

k
1 ,

since the first term is in L2(0, T ;L
4
3 (0, 1)) and thanks to the Corollary 2.1, second

one belongs to L∞(0, T ;W−1,
4
3 (0, 1)) ∩ L2(0, T ;L1(0, 1)), we have

(hk1u
k
1)k bounded in L2(0, T ;W 1,1(0, 1)).

Moreover, the momentum equation of (1) enables us to write the time derivation of
the water discharge:
∂t(h

k
1u

k
1) = −∂x(hk1u

k
1
2
))− 1

2g∂x[(hk1)2]−4ν1∂x(hk1∂xu
k
1)− α

ρ1
γ(hk1)uk1 +α(hk1)hk1u

k
1 |uk1 |2

+
δξ
ρ1
hk1∂

3
xh

k
1 − rghk1∂xhk2 − rghk2∂x(hk1 + hk2) = 0.

we then study each term:
• ∂x(hk1(uk1)2) = ∂x(

√
hk1
√
hk1(uk1)2) which is in L2(0, T ;W−1,

4
3 (0, 1)).

• as (hk1)k is bounded in L∞(0, T ;W 1,1(0, 1)), it is also bounded in L∞(0, T ;L2(0, 1))
and we can write the following relation:(

∂x[(hk1)2]

)
k

is bounded in L∞(0, T ;W−1,1(0, 1)).

•
(
∂x(hk1∂xu

k
1)

)
k

is bounded in L2(0, T ;W−1,
4
3 (0, 1)).

• Let us write hk1uk1(uk1)2 =
√
hk1u

k
1

√
hk1(uk1)2, which is in L2(0, T ;W 1,1(0, 1)).

• The last three terms are bounded in L∞(0, T ;W−1,2(0, 1)).
Then, applying Aubin-Simon lemma, we obtain,

(hk1u
k
1)k converges stongly to m in C0(0, T ;W−1,1(0, 1)).
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3.4. Strong convergence of
(√

hk1u
k
1

)
k

. Setting mk = hk1u
k
1 , so, we have√

hk1u
k =

mk√
hk1
. We want to prove the strong convergence for this term. We know

that (
mk√
hk1

)
k

is bounded in L∞(0, T ; (L2(0, 1))2);

consequently Fatou lemma reads:∫ 1

0

lim inf
(mk)2

hk1
≤ lim inf

∫ 1

0

(mk)2

hk1
< +∞.

In particular, m is equal to zero for almost every x where h1(t, x) vanishes. Then, we
can define the limit velocity taking u1(t, x) = m(t,x)

h1(t,x)
if h1(t, x) 6= 0 or else u1(t, x) = 0.

So we have a link between the limits m(t, x) = h1(t, x)u1(t, x) and:∫ 1

0

(m)2

h1
=

∫ 1

0

h1|u1|2 < +∞.

Moreover, we can use Fatou lemma again to write∫ T

0

∫ 1

0

h1|u1|4 ≤
∫ T

0

∫
]0,1[

lim inf h1|u1|4 ≤ lim inf

∫ T

0

∫ 1

0

h1|u1|4

= lim inf

∫ T

0

∫ 1

0

√
h1|u1|2

√
h1|u1|2,

which gives
√
h1|u1|2 in L2(0, T ;L2(0, 1)).

As mk and hk1 converge almost everywhere, the sequence of
√
hk1u

k
1 =

mk√
hk1

converges

almost everywhere to
√
h1u1 =

m√
h1

. Moreover, for all M positive
√
hk1u

k
11|uk

1 |≤M

converges to
√
h1u11|u|≤M ( still assuming that hk1 does not vanish). If h1 vanishes,

we can write
√
hk1u

k
1 |uk

1 |≤M
≤M

√
hk1 and then have convergence towards zero. Then,

almost everywhere, we obtain the convergence of (
√
hk1u

k
11|uk

1 |≤M )k.
Finally, let us consider the following norm:∫ T

0

∫ 1

0

∣∣∣∣√hk1uk1 −√h1u1∣∣∣∣2 ≤∫ T

0

∫ 1

0

(∣∣∣∣√hk1uk11|uk
1 |≤M −

√
h1u11|u1|≤M

∣∣∣∣+

∣∣∣∣√hk1uk11|uk
1 |>M |+ |

√
h1u11|u1|>M

∣∣∣∣)2

≤ 3

∫ T

0

∫ 1

0

∣∣∣∣√hk1uk11|uk
1 |≤M −

√
h1u11|u1|≤M

∣∣∣∣2 + 3

∫ T

0

∫ 1

0

∣∣∣∣√hk1uk11|uk
1 |>M

∣∣∣∣2
+3

∫ T

0

∫ 1

0

∣∣∣∣√hk1uk11|uk
1 |>M

∣∣∣∣2.
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Since
(√

hk1

)
k

is bounded in L2(0, T ;L4(0, 1)), it follows(√
hk1u

k
11|uk

1 |≤M

)
k

is bounded in this space.

So, as we have seen previously, the first integral tends to zero. Let us study the other
two terms: ∫ 1

0

∣∣∣∣√hk1uk11|uk
1 |>M

∣∣∣∣2 ≤ 1

M2

∫ 1

0

hk1(uk1)4 ≤ c

M2

and ∫ 1

0

∣∣∣∣√h1u11|u1|>M

∣∣∣∣2 ≤ 1

M2

∫ 1

0

h1u
4
1 ≤

c

M2
,

for all M > 0. When M tends to the infinity, our two integrals tend to zero. Then(√
hk1u

k
1

)
k

converges strongly to
√
h1u1 in L2(0, T ; (L2(]0, 1[))2).

3.5. Convergence of (∂xh
k
1)k, (hk1∂xh

k
1)k, (hk2∂xh

k
1)k, (∂2xh

k
1)k, (hk1∂

2
xh1)k

and (∂xh
h
1∂

2
xh

k
1)k. • We have (∂xh

k
1)k bounded in L2(0, T ;H1(0, 1)) and (∂t∂xh

k
1)k

is bounded in L∞(0, T ;H−2(0, 1)) since (∂th
k
1)k is bounded in L∞(0, T ;H−1(0, 1)).

Thanks to compact injection of H1(0, 1) in L2(0, 1) in one dimension, we have:

(∂xh
k
1)k converges strongly to ∂xh1 in L2(0, T ;L2(0, 1))

• The bound of ∂2xhk1 in L2(0, T ;L2(0, 1)) and ∂xhk2 in L2(0, T ;L2(0, 1)) gives us:

(∂2xh
k
1)k converges weakly to ∂2xh1 in L2(0, T ;L2(0, 1)),

(∂xh
k
2)k converges weakly to ∂xh2 in L2(0, T ;L2(0, 1)).

• Thanks to the strong convergence of (hk1)k, (hk2)k, (∂xh
k
1)k and the weak convergence

of (∂2xh
k
1)k, we have:

(hk1∂xh
k
1)k converges strongly to h1∂xh1 in L1(0, T ;L1(0, 1)),

(hk2∂xh
k
1)k converges strongly to h2∂xh1 in L1(0, T ;L1(0, 1)),

(hk1∂
2
xh

k
1)k converges weakly to h1∂

2
xh1 in L1(0, T ;L1(0, 1)),

(∂xh
k
1∂

2
xh

k
1)k converges weakly to ∂xh1∂

2
xh1 in L1(0, T ;L1(0, 1)),

(hk1∂xh
k
2)k converges strongly to h1∂xh2 in L1(0, T ;L1(0, 1)),

(hk2∂xh
k
2)k converges strongly to h2∂xh2 in L1(0, T ;L1(0, 1)),(

(hk1)2
)
k

converges strongly to h1
2 in L1(0, T ;L1(0, 1)),(

(hk2)2
)
k

converges strongly to h2
2 in L1(0, T ;L1(0, 1)),

(hk1h
k
2)k converges strongly to h1h2 in L1(0, T ;L1(0, 1)).
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3.6. Convergence of (hk1∂xu
k
1)k, (γ(hk1)uk1)k and (hk1 |uk1 |2uk1)k. As (uk1)k is bounded

in L2(0, T ;L2(0, 1)), then (∂xu
k
1)k is bounded in L2(0, T ;W−1,2(0, 1)).

Moreover, we have (γ(hk1))k bounded in L∞(0, T ;H1(0, 1)).

Then,

(γ(hk1))k converges strongly to γ(h1) in C0(0, T ;L2(0, 1)),

(uk1)k converges weakly to u1 in L2(0, T ;L2(0, 1)).

So,
(γ(hk1)uk1)k converges weakly to γ(h1)u1 in L2(0, T ;L2(0, 1)).

However, the function (hk1 , ∂xh
k
1) 7−→ hk1∂xh

k
1 is a continuous in L∞(0, T ;H1(0, 1))×

L2(0, T ;W−1,2(0, 1)) to L2(0, T ;W−1,2(0, 1)).
So,

(hk1∂xu
k
1)k converges weakly to h1∂xu1 in L2(0, T ;H−1(0, 1)).

Finally, thanks to the strong convergence of
(√

hk1u
k
1

)
k

to
√
h1u1 in L2(0, T ;L2(0, 1))

and the weak convergence of (uk1)k to u1 mentioned above, we have :

(hk1 |uk1 |2uk1)k converges weakly to h1|u1|2u1 in L1(0, T ;L1(0, 1)).

3.7. Convergences of (hk2u
k
1)k and

(
(hk2)2(

1

c
+

1

3ν2
hk2)∂x(hk1 + hk2)

)
k

. We know

that (∂x(hk1+hk2))k converges weakly to ∂x(h1+h2) in L2(0, T ;L2(0, 1)) and
(

(hk2)2(
1

c
+

1

3ν2
hk2)

)
k

converges strongly to h22(
1

c
+

1

3ν2
)h2 in L1(0, T ;L1(0, 1)). So,(

(hk2)2(
1

c
+

1

3ν2
hk2)∂x(hk1 +hk2)

)
k

converges weakly to (h2)2(
1

c
+

1

3ν2
h2)∂x(h1 +h2)

in L1(0, T ;L1(0, 1)). To conclude, we have:

(uk1)k converges weakly to u1 in L2(0, T ;L2(0, 1))

and the strong convergence of(hk2)k to h2, both give us:

(hk2u
k
1)k converges weakly to h2u1 in L1(0, T ;L1(0, 1)).
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