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Algebraic dependences of Gauss maps of algebraic complete
minimal surfaces sharing hyperplanes without counting
multiplicities
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Abstract. The aim of this paper is to give some algebraic dependences theorems for the

Gauss maps of algebraic complete minimal surfaces sharing hyperplanes in projective without

counting multiplicity, where all zeros with multiplicities more than a certain number are
omitted. As a consequence, we obtain some results on uniqueness problem of Gauss maps of

algebraic complete minimal surfaces which generalize and improve a known result of L. Jin -

M. Ru [5].
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1. Introduction

Value distribution theory of the Gauss map of complete regular minimal surfaces
has a long history, in particular, much attention has been given to this theory from
the viewpoint of the Nevanlinna Theory. Over the last few decades, there have been
several results on the unicity of the Gauss maps of the complete regular minimal
surfaces.

In 1993, H. Fujimoto [2] showed some unicity theorems of the Gauss maps of the
complete regular minimal surfaces immersed in R3. After that, in [2], he also extended
these results to the generalized Gauss maps of complete minimal surfaces in Rm.

As we know, when the minimal surface is of finite total curvature, the surface is
conformally equivalent to a compact Riemann surface (after the surface is equipped
with a complex structure) punctured at a finite number of points and the (generalized)
Gauss map is holomorphically extended to the compact Riemann surface. For this
reason, the minimal surfaces with finite total curvatures are called algebraic minimal
surfaces and the theory of algebraic curves can be applied in this case. For instance, in
2007, by using the Riemann-Hurwitz theorem and the Plücker formula, L. Jin - M. Ru
[5] established the following second main theorem of algebraic curves for hyperplanes
in general position in Pn(C).
Theorem A [5, Theorem 2.4] Let S be a compact complex Riemann surface of genus
g. Let f : S → Pn(C) be non-constant algebraic curve. Assume that f(S) is contained
in some k-dimensional projective subspace of Pn(C), but not in any subspace of di-
mension lower than k, where 1 ≤ k ≤ n. Let H1, . . . ,Hq be the hyperplanes in Pn(C),
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located in general position and let L1, . . . , Lq be the corresponding linear forms. Let
E be a finite subset of S. Then

(q−2n+k−1) deg(f) ≤
q∑
j=1

∑
P 6∈E

min{k, νP (Lj(f))}+
1

2
k(2n−k+1){2(g−1)+ |E|},

where νP (Lj(f)) is the vanishing order of Lj(f) at the point P .
Here by an algebraic curve, we mean a holomorphic map f : S → Pn(C), where S

is a compact complex Riemann surface of genus g.
We now recall some notations.
Let S be a complete immersed minimal surface in Rm. Take an immersion x =

(x0, . . . , xm−1) : S → Rm. Then S has the structure of a Riemann surface and any
local isothermal coordinate (x, y) of S gives a local holomorphic coordinate z = x +√
−1y. The generalized Gauss map of S is defined to be

G : S → Pm−1(C), G = P
(∂x
∂z

)
=
(∂x0

∂z
: · · · : ∂xm−1

∂z

)
.

Since x : S → Rm is immersed, it implies that

g = gz := (g0, . . . , gm−1) = ((g0)z, . . . , (gm−1)z) =
(∂x0

∂z
, . . . ,

∂xm−1

∂z

)
is a (local) reduced representation of G. Moreover, for another local holomorphic

coordinate ξ on S, we have gξ = gz ·
(dz
dξ

)
and hence, g is well defined (independently

of the local holomorphic coordinate). Since S is minimal, G is a holomorphic map.
Let x : S → Rm be a complete regular minimal surface with finite total curvature.

Let G : S → Pm−1(C) be its generalized Gauss map. By the result of S. S. Chern -
R. Osserman (see [1]), S is conformally equivalent to a compact surfaces S̄ punctured
at a finite number of points P1, . . . , Pr and the generalized Gauss map G extends
holomorphically to Ḡ : S̄ → Pm−1(C). Hence, G : S = S̄ \ {P1, . . . , Pr} → Pm−1(C)
is algebraic. We call S the basic domain of the minimal surface.

Using Theorem A, L. Jin - M. Ru [5] showed the following theorem on unicity of
generalized Gauss maps of the complete regular minimal surfaces immersed in Rm
with finite total curvature.
Theorem B [5, Theorem 4.1] Consider two algebraic minimal surfaces S1, S2 im-
mersed in Rm with the same basic domain S = S̄ \ {P1, . . . , Pr}. Let G1, G2 be the
generalized Gauss maps of S1, S2 respectively. Assume that G1, G2 are linearly non-
degenerate and G1 6≡ G2. Let {Hi}qi=1 be the hyperplanes in Pm−1(C) in general
position. Assume that

(i) min{νP (Lj(G1)), 1} = min{νP (Lj(G2)), 1} for all P ∈ S and 1 ≤ j ≤ q,
(ii) for every i 6= j, G−1

1 (Hi)
⋂
G−1

1 (Hj) = ∅,
(iii) G1 ≡ G2 on

⋃q
i=1G

−1
1 (Hj). Then

q <
1

2
(m2 + 5m− 4).

The main aim of this paper is to give some algebraic dependency theorems of
Gauss maps of the minimal surfaces immersed in Rm. From these results, we try to
generalize and improve Theorem B.
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We would like to note that the algebraic dependency theory which was studied by
W. Stoll [12]. After that, Stoll’s result has been developed by M. Ru. We refer readers
to the articles [9, 11, 12, 13, 14] and the references therein for the development of
related subjects.

In order to state some of our results, we first recall the following.
Let ft : S → Pn(C) (1 6 t 6 λ) be algebraic curves with local reduced repre-

sentations ft := (ft0 : · · · : ftn). Let Hj : aj0z0 + · · · + ajnzn = 0 (1 6 j 6 q) be
hyperplanes located in general position in Pn(C). Assume that Hj(ft) = (ft, Hj) :=∑n
i=0 ftiaji 6= 0 for each 1 ≤ t ≤ λ, 1 ≤ j ≤ q. Let kj (1 ≤ kj ≤ q) be posi-

tive integers or +∞. Assume that min{1, νHj(f1),≤kj} = · · · = min{1, νHj(fλ),≤kj}.
Put Aj = Supp(νHj(f1),≤kj ). For each z ∈ S, we define ρ(z) = ]{j|z ∈ Aj}.
Then ρ(z) ≤ n. Indeed, suppose that z ∈ Aj for each 1 ≤ j ≤ n + 1. Then∑n
i=0 f1i(z) · aji = 0 for each 1 ≤ j ≤ n + 1. Since the family {Hj}qj=1 is in gen-

eral position, it implies that rank(aij)1≤i≤n+1,0≤j≤n = n + 1. Therefore, f1i(z) = 0
for each 0 ≤ i ≤ n. This is impossible. We define d = sup{ρ(z)|z ∈ S}. Then d ≤ n.
If for each i 6= j, Ai ∩Aj = ∅, then d = 1.

With above notations, we will prove the followings.

Theorem 1.1. Consider λ algebraic minimal surfaces S1, . . . , Sλ immersed in Rm
with the same basic domain S = S̄ \ {P1, . . . , Pr}. Let G1, . . . , Gλ be the generalized
Gauss maps of S1, . . . , Sλ respectively. Assume that G1, . . . , Gλ are linearly non-
degenerate. Let {Hi}qi=1 be the hyperplanes in Pm−1(C) in general position. Let
kj (1 ≤ kj ≤ q) be positive integers or +∞. Assume that

(i) min{νHj(G1),≤kj)(P ), 1} = · · · = min{νHj(Gλ),≤kλ(P ), 1} for all P ∈ S and
1 ≤ j ≤ q,

(ii) there exists an integer number l, 2 ≤ l ≤ λ, such that for any increasing
sequence 1 ≤ i1 < · · · < il ≤ λ, G1(P ) ∧ · · · ∧ Gλ(P ) = 0 for every point P ∈⋃q
i=1G

−1
1 (Hj).

Then G1 ∧ · · · ∧Gλ ≡ 0 on S, i.e., G1, . . . , Gλ are algebraically dependent on S if

q∑
j=1

1

kj
≤ 2q −m(m+ 1)

2(m− 1)
− λd

λ− l + 1
.

From the above result, letting kj = +∞, (1 ≤ j ≤ q) and l = λ = 2, we get an
unicity theorem as follows.

Corollary 1.2. Consider two algebraic minimal surfaces S1, S2 immersed in Rm with
the same basic domain S = S̄\{P1, . . . , Pr}. Let G1, G2 be the generalized Gauss maps
of S1, S2 respectively. Assume that G1, G2 are linearly non-degenerate. Let {Hi}qi=1

be the hyperplanes in Pm−1(C) in general position. Assume that
(i) min{νHj(G1)(P ), 1} = min{ν(Hj(G2)(P ), 1} for all P ∈ S and 1 ≤ j ≤ q,
(ii) G1(P ) = G2(P ) for every point P ∈

⋃q
i=1G

−1
1 (Hj).

Then G1 ≡ G2 on S if

q ≥ m2 + (4d+ 1)m− 4d

2
.
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In the case d = 1, the condition of the above Corollary 1.2 is fulfilled with

q ≥ m2 + 5m− 4

2
. We will get an uniqueness theorem for the Gauss maps shar-

ing hyperplanes in general position without multiplicity. This is also the result of
Theorem B. Therefore, our result generalizes L. Jin - M. Ru’s result.

Now, we assume further on the images of the Gauss maps Gi in Theorem 1.1, we
will get a better results as follows.

Theorem 1.3. Consider λ algebraic minimal surfaces S1, . . . , Sλ immersed in Rm
with the same basic domain S = S̄ \ {P1, . . . , Pr}. Let G1, . . . , Gλ be the generalized
Gauss maps of S1, . . . , Sλ respectively. Assume that G1, . . . , Gλ are linearly non-
degenerate. Let {Hi}qi=1 be the hyperplanes in Pm−1(C) in general position. Let
kj (1 ≤ kj ≤ q) be positive integers or +∞. Assume that

(i) min{νHj(G1),≤kj (P ), 1} = · · · = min{νHj(Gλ),≤kλ(P ), 1} for all P ∈ S and
1 ≤ j ≤ q,

(ii) for every i 6= j, G−1
1 (Hi)

⋂
G−1

1 (Hj) = ∅,
(iii) there exists an integer number l, 2 ≤ l ≤ λ, such that for any increasing

sequence 1 ≤ i1 < · · · < il ≤ λ, G1(P ) ∧ · · · ∧ Gλ(P ) = 0 for every point P ∈⋃q
i=1G

−1
1 (Hj).

Then G1 ∧ · · · ∧Gλ ≡ 0 on S, i.e., G1, . . . , Gλ are algebraically dependent on S if

q∑
j=1

1

kj −m+ 2
≤ 2q −m(m+ 1)

2(m− 1)
− λq

(λ− l + 1)q + λ(m− 2)
.

Letting kj = +∞, (1 ≤ j ≤ q) and l = λ = 2, we get an unicity theorem as follows.

Corollary 1.4. Consider two algebraic minimal surfaces S1, S2 immersed in Rm with
the same basic domain S = S̄\{P1, . . . , Pr}. Let G1, G2 be the generalized Gauss maps
of S1, S2 respectively. Assume that G1, G2 are linearly non-degenerate. Let {Hi}qi=1

be the hyperplanes in Pm−1(C) in general position. Assume that
(i) min{νHj(G1)(P ), 1} = min{νHj(G2)(P ), 1} for all P ∈ S and 1 ≤ j ≤ q,
(ii) for every i 6= j, G−1

1 (Hi)
⋂
G−1

1 (Hj) = ∅,
(iii) G1(P ) = G2(P ) for every point P ∈

⋃q
i=1G

−1
1 (Hj).

Then G1 ≡ G2 on S if

q ≥ m2 +m+ 4 +
√
m4 + 18m3 − 7m2 − 24m+ 16

4
.

Now let q1 =
m2 + 5m− 4

2
as in Theorem B and

q2 =
m2 +m+ 4 +

√
m4 + 18m3 − 7m2 − 24m+ 16

4

as in Corollary 1.4. We compare q1 with q2 as m ≥ 3. We have

(m2 − 9m− 12)2 − (
√
m4 + 18m3 − 7m2 − 24m+ 16)2

= 64(m2 − 3m+ 2)

= 64(m− 1)(m− 2) > 0, ∀m ≥ 3.
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This implies that m2 − 9m− 12 >
√
m4 + 18m3 − 7m2 − 24m+ 16, ∀m ≥ 3. There-

fore,

q1 − q2 =
m2 − 9m− 12−

√
m4 + 18m3 − 7m2 − 24m+ 16

4
> 0, ∀m ≥ 3.

Thus, Corollary 1.4 is an improvement of L. Jin - M. Ru’s result.

2. Auxiliary lemmas

We now recall auxiliary results in the theory of algebraic curves and in the theory
of algebraic dependency in the projective space which will be used later.

2.1. Theory of algebraic curves. Assume that f : S → Pn(C) is a linearly non-
degenerate algebraic curve (that is, f(S) is not contained in any hyperplane in Pn(C)).
For every point P ∈ S, in a neighborhood of P , let f(z) = (f0(z), . . . , fn(z)) be a
reduced representation of f at P with z(P ) = 0, where z is a local parameter for
S at P and f0, . . . , fn are holomorphic functions without common zeros. Take a
hyperplane H : a0z0 + · · ·+ anzn = 0 in Pn(C) and put

H(f) = a0f0 + · · ·+ anfn.

Then
∑
z∈S νH(f)(z) does not depend on a choice of H, where νH(f)(z) is the inter-

section multiplicity of the images of f and H at f(z). We define degree of f by

deg(f) =
∑
P∈S

νH(f)(P ).

It is easy to see that if f−1(H) = {P1, . . . , Pr}, then

deg(f) =

r∑
j=1

νH(f)(Pj) ≥ r. (1)

2.2. Divisor. For a divisor ν on S and for positive integers m, k or m, k = +∞, we
define the truncated divisor of ν by

ν[m](z) = min{m, ν(z)}, ν
[m]
≤k (z) =

{
ν[m](z) if ν[m](z) ≤ k
0 if ν[m](z) > k

.

Similarly, we define ν
[M ]
>k (z).

Lemma 2.1. For a divisor ν on S and for positive integers m, k, (k ≥ m) or m, k =
+∞. We have

ν
[m]
≤k ≥

k + 1

k + 1−m
ν[m] − m

k + 1−m
ν.

Proof. For each z ∈ S, we have

ν
[m]
≤k (z) = ν[m](z)− ν[M ]

>k (z)

≥ ν[m](z)− m

k + 1
ν>k(z)

= ν[m](z)− m

k + 1
ν(z) +

m

k + 1
ν≤k(z)

≥ ν[m](z)− m

k + 1
ν(z) +

m

k + 1
ν

[m]
≤k (z).
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Therefore,

ν
[m]
≤k (z) ≥ k + 1

k + 1−m
ν[m](z)− m

k + 1−m
ν(z).

The lemma is proved. �

2.3. Theory of algebraic dependency. Let V be a complex vector space of di-
mension N ≥ 1. The vectors {v1, . . . , vk} are said to be in general position if for each
selection of integers 1 ≤ i1 < · · · < ip ≤ k with p ≤ N, then vi1 ∧ · · · ∧ vip 6= 0.
The vectors {v1, . . . , vk} are said to be in special position if they are not in general
position. Take 1 ≤ p ≤ k. Then {v1, . . . , vk} are said to be in p-special position if for
each selection of integers 1 ≤ i1 < · · · < ip ≤ k, the vectors vi1 , . . . , vip are in special
position.

Assume that f1, . . . , fλ : S → Pn(C) are not in special position. Let Ft : U → Cn+1

be a local reduced representation of ft on U for 1 ≤ t ≤ λ. Then F1 ∧ · · · ∧ Fλ : U →∧
λ Cn+1 is not identically zero, there exists one and only divisor define by

νf1∧···∧fλ
∣∣
U

= νF1∧···∧Fλ .

Obviously νf1∧···∧fλ ≥ 0. Also, we can define a holomorphic maps f1 ∧ · · · ∧ fλ : S →
P(
∧
λ Cn+1) by f1 ∧ · · · ∧ fλ = P(F1 ∧ · · · ∧ Fλ) on U.

Theorem 2.2 (The Second Main Theorem for general position [12, Theorem 2.1,
p.320]). Let M be a connected complex manifold of dimension m. Let A be a pure (m−
1)-dimensional analytic subset of M. Let V be a complex vector space of dimension
n+1 > 1. Let p and k be integers with 1 ≤ p ≤ k ≤ n+1. Let fi : M → P (V ), 1 ≤ i ≤
k, be meromorphic mappings. Assume that f1, . . . , fk are in general position. Also
assume that f1, . . . , fk are in p-special position on A. Then we have

νf1∧···∧fk ≥ (k − p+ 1)νA.

Lemma 2.3. Let f1, . . . , fk : S → P(C) be algebraic curves. Assume that {ft}λt=1 are
not in special position. Then∑

P∈S
νf1∧···∧fλ(P ) ≤

λ∑
t=1

deg(ft).

Proof. For each P ∈ S, we take z is a local parameter for S at P , defined on a subset
U of S. Let Ft = (ft0 : · · · : ftn) : U → Cn+1 be a local reduced representation of ft
on U for 1 ≤ t ≤ λ. Then

F1 ∧ · · · ∧ Fλ =
∑

0≤i0<i1···<iλ−1≤n

det(ftij )1≤t≤λ,0≤j≤λ−1Ei1 ∧ · · · ∧ Eiλ−1
,

where {E0, . . . , En} is a standard basic of Cn+1. By the assumption, without loss
of generality, we may assume that det(ftj)0≤j≤λ−1,1≤t≤λ 6≡ 0. Let H0, . . . ,Hλ−1 be
hyperplanes in Pn(C) defined by Hj : ωj = 0 for 0 ≤ j ≤ λ− 1. Obviously,

det(Hj(ft))0≤j≤λ−1,1≤t≤λ = det(ftj)0≤j≤λ−1,1≤t≤λ

on U. Hence, for each P ∈ S, we have

νf1∧···∧fλ(P ) ≤ νdet(Hj(ft))0≤j≤λ−1,1≤t≤λ(P ). (2)
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We define

ϕ =
det(Hj(ft))0≤j≤λ−1

H0(f1) · · ·H0(fλ)
.

It is easy to see that such definition is independent of the choice of the representations
of ft and of the parameter z. Hence ϕ is well defined. It implies that

νdet(Hj(ft))0≤j≤λ−1
(P )− νH0(f1)···H0(fλ)(P ) = νϕ(P ) = 0.

Therefore,

νdet(Hj(ft))0≤j≤λ−1
(P ) =

λ∑
t=1

νH0(ft)(P ).

By the definition, we get∑
P∈S

νdet(Hj(ft))0≤j≤λ−1
(P ) =

∑
P∈S

λ∑
t=1

νH0(ft)(P ) =

λ∑
t=1

deg(ft). (3)

Combining (2) with (3), we get∑
P∈S

νf1∧···∧fλ(P ) ≤
λ∑
t=1

deg(ft).

The lemma is proved. �

3. Proof of Theorem 1.1

It suffices to prove Theorem 1.1 in the cace of λ ≤ m. Suppose that G1∧· · ·∧Gλ 6≡ 0
on S.

Since the minimal surface S has finite total curvature, S is conformally equivalent
to a compact surface S̄ punctured at a finite mumber of points P1, . . . , Pr and the
generalized Gauss map Gi extends holomorphically to Ḡi : S̄ → Pm−1(C) for 1 ≤ i ≤
λ (see [1]). Hence, Ḡ1 ∧ · · · ∧ Ḡλ 6≡ 0 on S̄.

The first, we claim that for each 1 ≤ t ≤ λ and P ∈ S,
q∑
j=1

min{1, νHj(Ḡt),≤kj (P )} ≤ d

λ− l + 1
νḠ1∧···∧Ḡλ(P ). (4)

Indeed, for P 6∈
⋃q
j=1G1

−1(Hj), P 6∈
⋃q
j=1 Ḡ1

−1
(Hj). Hence, νHj(Ḡt),≤kj (P ) = 0

for all j, 1 ≤ j ≤ q. The inequality (4) is true.
For P ∈

⋃q
j=1G1

−1(Hj), and for each increasing sequence 1 ≤ i1 < · · · < il ≤ λ, by

our assumption, we have Gi1(P )∧ · · · ∧Gil(P ) = 0. Hence, Ḡi1(P )∧ · · · ∧ Ḡil(P ) = 0.
By the Second Main Theorem for general position [12, Theorem 2.1, p.320] (The-

orem 2.2), we have

νḠ1∧···∧Ḡλ(P ) ≥ λ− (l − 1).

This implies that
q∑
j=1

min{1, νHj(Ḡt),≤kj (P )} ≤
q∑
j=1

min{1, νHj(Ḡt)(P )} ≤ d ≤ d

λ− l + 1
νḠ1∧···∧Ḡλ(P ).

Therefore, the inequality (4) is proved.
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By Lemma 2.1 and (4), for p ∈ S, we have
q∑
j=1

(
min{1, νHj(Ḡt)(P )} − 1

kj
νHj(Ḡt)(P )

)
≤ d

λ− l + 1
νḠ1∧···∧Ḡλ(P ).

Hence,∑
P∈S

q∑
j=1

min{1, νHj(Ḡt)(P )} ≤
∑
P∈S̄

d

λ− l + 1
νḠ1∧···∧Ḡλ(P ) +

∑
P∈S̄

q∑
j=1

1

kj
νHj(Ḡt)(P ).

(5)
Then from (5) and Lemma 2.3, we have∑

P∈S

q∑
j=1

min{1, νHj(Ḡt)(P )} ≤ d

λ− l + 1

λ∑
i=1

deg(Ḡi) +

q∑
j=1

1

kj
deg(Ḡt).

Therefore, we get

λ∑
t=1

∑
P∈S

q∑
j=1

min{1, νHj(Ḡt)(P )} ≤

 dλ

λ− l + 1
+

q∑
j=1

1

kj

 λ∑
i=1

deg(Ḡi). (6)

By the result of S. S. Chern - R. Osserman (see [1]), we have

C(S) = −2π deg(Ḡt) ≤ 2π(X − r) = 2π(2− 2g − r − r),
where X is the Euler characteristic of S̄ and g is genus of S̄. Hence,

2(g − 1) ≤ deg(Ḡt)− 2r, ∀1 ≤ t ≤ λ.
This implies that

2(g − 1) + ]E ≤ deg(Ḡt)− r < deg(Ḡt), ∀1 ≤ t ≤ λ. (7)

By the Second Main Theorem of L. Jin - M. Ru (Theorem A) for algebraic curves
with E = {P1, . . . , Pr} and since (7), we have

(q −m) deg(Ḡt) ≤
∑
P 6∈E

q∑
j=1

min{m− 1, νHj(Ḡt)(P )}+
1

2
(m− 1)m{2(g − 1) + ]E}

< (m− 1)
∑
P 6∈E

q∑
j=1

min{1, νHj(Ḡt)(P )}+
1

2
(m− 1)mdeg(Ḡt).

Hence,

(q −m)

λ∑
t=1

deg(Ḡt) < (m− 1)

λ∑
t=1

∑
P 6∈E

q∑
j=1

min{1, νHj(Ḡt)(P )}+
(m− 1)m

2

λ∑
t=1

deg(Ḡt).

It implies that

2q −m2 −m
2(m− 1)

λ∑
t=1

deg(Ḡt) <

λ∑
t=1

∑
P 6∈E

q∑
j=1

min{1, νHj(Ḡt)(P )}. (8)

Combining (6) with (8), we get

2q −m2 −m
2(m− 1)

<
dλ

λ− l + 1
+

q∑
j=1

1

kj
.
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This is a contradiction. Hence, G1 ∧ · · · ∧Gλ ≡ 0 on S. The proof of Theorem 1.1 is
completed.

4. Proof of Theorem 1.3

We prove the following lemma.

Lemma 4.1. Let hi : S → Pn(C), (1 ≤ i ≤ p ≤ n + 1) be algebraic curves. Let

Hi : ai0z0 + · · · + ainzn = 0, (1 ≤ i ≤ n + 1) be hyperplanes in Pn(C). Put h̃i :=
(H1(hi) : · · · : Hn+1(hi)). Assume that H1, . . . ,Hn+1 are located in general position
such that Hj(hi) 6≡ 0 (1 ≤ i ≤ p, 1 ≤ j ≤ n + 1). Let M be an analytic subset of S.

Then h1 ∧ · · · ∧ hp ≡ 0 on M if and only if h̃1 ∧ · · · ∧ h̃p ≡ 0 on M .

Proof. Consider P0 ∈M . Take z is a local parameter for M at P0, defined on a subset
U of S. Let Ft = (ht0 : · · · : htn) : U → Cn+1 be a local reduced representation of ht
on U for 1 ≤ t ≤ p. We have h̃1(P0) ∧ · · · ∧ h̃p(P0) = 0 if and only if the following
matrix is of rank ≤ p− 1

H1(h1)(P0) · · · H1(hp)(P0)
H2(h1)(P0) · · · H2(hp)(P0)

...
...

...
Hn+1(h1)(P0) · · · Hn+1(hp)(P0)



=


a10 · · · a1n

a20 · · · a2n

...
...

...
an+10 · · · an+1n

 ·


h10(P0) · · · hp0(P0)
h11(P0) · · · hp1(P0)

...
...

...
h1n(P0) · · · hpn(P0)


Hence, the matrix 

h10(P0) · · · hp0(P0)
h11(P0) · · · hp1(P0)

...
...

...
h1n(P0) · · · hpn(P0)


is of rank ≤ p− 1, i.e., h1(P0) ∧ · · · ∧ hp(P0) = 0. Thus, Lemma 4.1 is proved. �

We now prove Theorem 1.3. It suffices to prove the theorem in the case of λ ≤ m.
Suppose that G1 ∧ · · · ∧Gλ 6≡ 0 on S. Denote by Ḡ1, . . . , Ḡλ the extended maps of

G1, . . . , Gλ respectively. Then, we have Ḡ1 ∧ · · · ∧ Ḡλ 6≡ 0 on S̄. For each λ indices
1 ≤ j1 < · · · < jm ≤ q, there exists indices, for instance it is {j1, . . . , jλ} such that

BJ =


Hj1(Ḡ1) · · · Hj1(Ḡλ)
Hj2(Ḡ1) · · · Hj2(Ḡλ)

...
...

...
Hjλ(Ḡ1) · · · Hjλ(Ḡλ)

 .

has rank of λ.
Put J = {j1, . . . , jλ} and Jc = {1, . . . , q} \ J . We prove the following lemma.
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Lemma 4.2.∑
P∈S

(∑
i∈J

( min
1≤t≤λ

{νHi(Ḡt),≤ki(P )} −min{1, νHi(Ḡ1),≤ki(P )})

+

q∑
i=1

(λ− l + 1) min{1, νHi(Ḡ1),≤ki(P )}
)
≤

λ∑
i=1

deg(Ḡi).

Proof. Denote A =
⋃
j∈J G

−1
1 (Hj) and Ac =

⋃
j∈Jc G

−1
1 (Hj). We consider the fol-

lowing two cases.
Case 1. Let P0 ∈ A. Then by our assumption (ii), P0 is a zero of one of the holo-
morphic functions {Hj(Ḡ1)}j∈J . Without loss of generality, we may assume that
P0 is a zero of Hj0(Ḡ1). Let M ⊂ S be an irreducible component of A contain-
ing P0. Let U be an open neighborhood of P0 in M such that U ∩ (A \ M) =
∅. Choose a holomorphic function h on a neighborhood U ′ ⊂ U of P0 such that
νh(P ) = min1≤t≤λ{νHj1 (Gt),≤kj1 (P )} if P ∈ M and νh = 0 if P 6∈ M. Then

Hj1(Ḡi) = aih, (1 ≤ i ≤ λ), where ai are holomorphic functions. By the matrix

B =


Hj2(Ḡ1) · · · Hj2(Ḡλ)
Hj3(Ḡ1) · · · Hj3(Ḡλ)

...
...

...
Hjλ(Ḡ1) · · · Hjλ(Ḡλ)


has rank of λ − 1, there exist λ holomorphic functions b1, . . . , bλ, not all zeros, such
that

λ∑
i=1

bi ·Hjk(Ḡi), (2 ≤ k ≤ λ).

Without loss of generality, we may assume that the set of common zeros of {bi}λi=1 is
an empty set. Then there exists an index t1, 1 ≤ t1 ≤ λ such that M 6⊂ b−1

t1 (0). We
can assume that t1 = λ.

Put G̃i = (Hj1(Ḡi) : · · · : Hjλ(Ḡi)), (1 ≤ i ≤ λ). Then, for each P ∈ (U ′ ∩ S) \
b−1
λ (0), we have

G̃1(z) ∧ · · · ∧ G̃λ(P ) = G̃1(P ) ∧ · · · ∧ G̃λ−1(P ) ∧
(
G̃λ(P ) +

λ−1∑
t=1

bt
bλ
G̃t(P )

)
= G̃1(P ) ∧ · · · ∧ G̃λ−1(z) ∧ (V (P )h(P ))

= h(P ) · (G̃1(P ) ∧ · · · ∧ G̃λ−1(P ) ∧ V (P )),

where V (z) := (aλ +
∑λ−1
t=1

bt
bλ
at, 0, . . . , 0).

By the assumption, for any increasing sequence 1 ≤ j1 < · · · < jl ≤ λ− 1, we have
Ḡj1 ∧ · · · ∧ Ḡjl ≡ 0 on M . It easily follows from Lemma 4.1 that G̃j1 ∧ · · · ∧ G̃jl ≡ 0

on M. This implies that the family {G̃1, . . . G̃λ−1, V } is in (l + 1)-special position on
M. By using Theorem 2.2, we have

νG̃1∧···∧G̃λ−1∧V (z) ≥ λ− l,∀P ∈M.
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Hence νG̃1∧···∧G̃λ(P ) ≥ νh(P ) + λ − l = min1≤i≤λ{νHj1 (Ḡi)),≤kj0
(P )} + λ − l,∀P ∈

(U ′ ∪M) \ b−1
λ (0). In particular, we have

νG̃1∧···∧G̃λ(P0) ≥ min
1≤i≤λ

{νHj1 (Ḡi)),≤kj0
(P0)}+ λ− l.

This implies that∑
j∈J

( min
1≤i≤λ

{νHj(Ḡi),≤kj (P0)} −min{1, νHj(Ḡi),≤kj (P0)})

+

q∑
j=1

(λ− l + 1) min{1, νHj(Ḡi),≤kj (P0)} ≤ νG̃1∧···∧G̃λ(P0).

Case 2. Let P0 ∈ Ac. Then P0 is a zero of one of the meromorphic mappings
{Hi(Ḡ1)}i∈Jc . By the assumption and by Lemma 4.1, the family {G̃1, . . . , G̃λ} is in
l-special position on an irreducible analytic subset of Ac which contains P0. By using
Theorem 2.2 again, we have

νG̃1∧···∧G̃λ(P0) ≥ λ− l + 1.

Hence,∑
i∈J

( min
1≤t≤λ

{νHi(Ḡt),≤ki(P0)} −min{1, νHi(Ḡ1),≤ki(P0)})

+

q∑
i=1

(λ− l + 1) min{1, νHi(Ḡ1),≤ki(P0)} = λ− l + 1 ≤ νG̃1∧···∧G̃λ(P0).

From the above cases, we get∑
p∈S

(∑
i∈J

( min
1≤t≤λ

{νHi(Ḡt),≤ki(P )} −min{1, νHi(Ḡ1),≤ki(P )})

+

q∑
i=1

(λ− l + 1) min{1, νHi(Ḡ1),≤ki(P )}
)
≤
∑
P∈S

νG̃1∧···∧G̃λ(P ). (9)

By our assumption (ii), G̃i = (Hj1(Ḡi) : · · · : Hjλ(Ḡi)), (1 ≤ i ≤ λ) is a local reduced

representation around P ∈ S of G̃i. For P 6∈ S, G̃i =
(
Hj1 (Ḡi)

h : · · · : Hjλ (Ḡi)

h

)
, (1 ≤

i ≤ λ) is a local reduced representation around P of G̃i, with h is some holomorphic
function. Therefore, by Lemma 2.3, we have

∑
P∈S

νG̃1∧···∧G̃λ(P ) ≤
∑
P∈S̄

νG̃1∧···∧G̃λ(P ) ≤
λ∑
i=1

deg(G̃i) =

λ∑
i=1

∑
P∈S̄

νH0(G̃i)
(P )

=

λ∑
i=1

∑
P∈S

νHj1 (Ḡi)(P ) +

λ∑
i=1

(
∑
P 6∈S

νHj1 (Ḡi)(P )− νh(P ))

≤
λ∑
i=1

deg(Ḡi), (10)
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where H0 : ω0 = 0 is the hyperplane in Pm−1(C). Combining (9) with (10), we get∑
P∈S

(∑
i∈J

( min
1≤t≤λ

{νHi(Ḡt),≤ki(P )} −min{1, νHi(Ḡ1),≤ki(P )})

+

q∑
i=1

(λ− l + 1) min{1, νHi(Ḡ1),≤ki(P )}
)
≤

λ∑
i=1

deg(Ḡi).

Lemma 4.2 is proved. �

We now continue to prove the theorem. For each j, 1 ≤ j ≤ q, we set

νj =
∑
P∈S

( λ∑
i=1

min{m− 1, νHj(Ḡi),≤kj (P )} − ((λ− 1)(m− 1) + 1) min{1, νHj(Ḡ1),≤kj (P )}
)
.

(11)
Without loss of generality, we can assume that

ν1 ≥ · · · ≥ νq.

By the assumption for G1 ∧ · · · ∧ Gλ 6≡ 0 on S, there exists indices, for instance
J = {j1, . . . , jλ} such that 1 = j1 < j2 < · · · < jλ ≤ jm.

We see that min
1≤i≤λ

{ai} ≥
λ∑
i=1

min{m−1, ai}−(λ−1)(m−1) for every λ non-negative

integers a1, . . . , aλ. Then by Lemma 4.2, we have∑
P∈S

∑
j∈J

( λ∑
j=1

min{m− 1, νHj(Ḡi),≤kj (P )} − ((λ− 1)(m− 1) + 1) min{1, νHj(Ḡ1),≤kj (P )}
)

+
∑
P∈S

q∑
j=1

(λ− l + 1) min{1, νHj(Ḡ1),≤kj (P )} ≤
λ∑
i=1

deg(Ḡi).

Therefore, from (11), we have∑
j∈J

νj +
∑
P∈S

q∑
j=1

(λ− l + 1) min{1, νHj(Ḡ1),≤kj (P )} ≤
λ∑
i=1

deg(Ḡi). (12)

Note that ∑
j∈J

νj =

λ∑
i=1

νji ≥
λ

q

q∑
i=1

νji =
λ

q

q∑
j=1

νj .

Combining this with (12), we have

λ∑
i=1

deg(Ḡi) ≥
λ

q

q∑
j=1

νj +
∑
P∈S

q∑
j=1

(λ− l + 1) min{1, νHj(Ḡ1),≤kj (P )}

=
∑
P∈S

q∑
j=1

(
λ− l + 1− λ((λ− 1)(m− 1) + 1)

q

)
min{1, νHj(Ḡ1),≤kj (P )}

+
∑
P∈S

λ

q

q∑
j=1

λ∑
i=1

min{m− 1, νHj(Ḡi),≤kj (P )}.
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≥
∑
P∈S

λ∑
i=1

q∑
j=1

(
λ

q
+
λ− l + 1

λ(m− 1)
− λ((λ− 1)(m− 1) + 1)

q(m− 1)λ

)
min{m− 1, νHj(Ḡi),≤kj (P )}

≥
∑
P∈S

λ∑
i=1

q∑
j=1

q(λ− l + 1) + λ(m− 2)

qλ(m− 1)
min{m− 1, νHj(Ḡi),≤kj (P )}.

This implies that

qλ(m− 1)

q(λ− l + 1) + λ(m− 2)

λ∑
i=1

deg(Ḡi) ≥
∑
P∈S

λ∑
i=1

q∑
j=1

min{m− 1, νHj(Ḡi),≤kj (P )}.

Applying Lemma 2.1, we have

qλ(m− 1)

q(λ− l + 1) + λ(m− 2)

λ∑
i=1

deg(Ḡi)

≥
∑
P∈S

λ∑
i=1

q∑
j=1

(
min{m− 1, νHj(Ḡi)(P )} − m− 1

kj + 2−m
νHj(Ḡi)(P )

)

≥
∑
P∈S

λ∑
i=1

q∑
j=1

min{m− 1, νHj(Ḡi)(P )} −
∑
P∈S̄

λ∑
i=1

q∑
j=1

m− 1

kj + 2−m
νHj(Ḡi)(P ).

Hence, (
qλ(m− 1)

q(λ− l + 1) + λ(m− 2)
+

q∑
j=1

m− 1

kj + 2−m

) λ∑
i=1

deg(Ḡi)

≥
λ∑
i=1

∑
P∈S

q∑
j=1

min{m− 1, νHj(Gi)(P )}. (13)

Applying Theorem A for algebraic curves with E = {P1, . . . , Pr} and together (13)
with (7), we have

qλ(m− 1)

q(λ− l + 1) + λ(m− 2)
+

q∑
j=1

m− 1

kj + 2−m
> q −m− 1

2
m(m− 1)

=
2q −m(m+ 1)

2
.

Therefore, we get

qλ

q(λ− l + 1) + λ(m− 2)
+

q∑
j=1

1

kj + 2−m
>

2q −m(m+ 1)

2(m− 1)
.

This is a contradiction. Hence, G1 ∧ · · · ∧Gλ ≡ 0 on S. Theorem 1.3 is proved.
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