Properties of integrable punctual convex functions

AURELIA FLOREA

ABSTRACT. The paper refers to the *convexity at a point* as defined in [1]. We present some properties of the class of integrable functions which are convex at a fixed point. In this way, we extend some known properties.

2010 Mathematics Subject Classification. 26A51, 26B25, 26D10. Key words and phrases. convex functions; convexity at a point.

1. Introduction

The "weak" convexity is extensively studied in the literature. In this note, we refer to a particular type of weak convexity, meaning the punctual convexity. A version of this concept was introduced and discussed in [1]. This kind of punctual convexity finds some interesting applications (see [1]). Let us recall the definition of *the convexity at a point*.

Definition 1.1. Let I be an open real interval. We say that a function $f: I \to \mathbb{R}$ is convex at the point $c \in I$, denoted by $f \in Conv_c(I)$, if

$$f(c) + f(x + y - c) \le f(x) + f(y), \tag{1}$$

for all $x, y \in I$, such that x < c < y.

Note that a convex function on the interval I is convex at each point $c \in I$. The class of functions $\operatorname{Conv}_c(I)$ does not enjoy many properties. For example, the continuity (which is satisfied by any convex function on I) is not a specific property of a punctual convex function. Instead, the continuous functions of the class $\operatorname{Conv}_c(I)$ have interesting properties. In addition, the differentiable functions of the set $\operatorname{Conv}_c(I)$ can be accurately characterized (see [1]).

We focus here on Riemann integrable functions of the set $\text{Conv}_c(I)$. Thus, we extend Jensen's inequality for punctual convex functions from the class of continuous functions to the class of Riemann integrable functions. We also obtain a specific integral inequality.

2. Main results

Throughout this paper, we assume that $I \subset \mathbb{R}$ is an open interval and $c \in I$. We prove that the "punctual" version of Jensen's inequality holds for locally integrable punctual convex functions. This result extends Lemma 3 in [1].

Received May 23, 2017.

Theorem 2.1. Let $f \in Conv_c(I)$ be a Riemann locally integrable function on I and let $n \geq 2$ an integer number. For all positive real numbers $\lambda_1, \dots, \lambda_n$, with $\sum_{i=1}^n \lambda_i = 1$,

and for all $x_1, \dots, x_n \in I$, such that $\sum_{i=1}^n \lambda_i x_i = c$, we have

$$f(c) \le \sum_{i=1}^{n} \lambda_i f(x_i).$$
⁽²⁾

Proof. Let us consider $a, b \in I$, with a < c < b. From the definition of the punctual convexity at c, we have

$$f(c) + f(a + t - c) \le f(a) + f(t), \ \forall \ t \in [c, b].$$

By integrating these inequalities on the interval [c, b] we obtain

$$f(c)(b-c) + \int_{c}^{b} f(a+t-c) dt \le f(a)(b-c) + \int_{c}^{b} f(t) dt.$$

Similarly, we find

$$f(c)(c-a) + \int_{a}^{c} f(b+t-c) dt \le f(b)(c-a) + \int_{a}^{c} f(t) dt.$$

By summing the above relations, we get

$$f(c) (b-a) + \int_{c}^{b} f(a+t-c) dt + \int_{a}^{c} f(b+t-c) dt$$
$$\leq f(a) (b-c) + f(b) (c-a) + \int_{a}^{b} f(t) dt.$$

But

$$\int_{c}^{b} f(a+t-c) dt + \int_{a}^{c} f(b+t-c) dt = \int_{a}^{a+b-c} f(t) dt + \int_{a+b-c}^{b} f(t) dt = \int_{b}^{b} f(t) dt.$$

Hence $f(c) (b-a) \le f(a) (b-c) + f(b) (c-a)$, or
$$\frac{f(c) - f(a)}{c-a} \le \frac{f(b) - f(c)}{b-c}.$$
(3)

Denote $s = \sup_{a \in I, a < c} \frac{f(c) - f(a)}{c - a}$ and $d = \inf_{b \in I, b > c} \frac{f(b) - f(c)}{b - c}$. From (3) we obtain $s, d \in \mathbb{R}$, with $s \leq d$. Let us consider $m \in [s, d]$. Therefore,

$$f(x) - f(c) \ge m(x - c), \ \forall \ x \in I.$$
(4)

For $n \ge 2$, assume now $x_1, \dots, x_n \in I$ and $\lambda_1, \dots, \lambda_n > 0$, with $\sum_{i=1}^n \lambda_i = 1$, such that $\sum_{i=1}^n \lambda_i x_i = c$. From (4), we obtain

$$\sum_{i=1}^{n} \lambda_i f(x_i) - f(c) = \sum_{i=1}^{n} \lambda_i [f(x_i) - f(c)]$$

$$\geq \sum_{i=1}^{n} \lambda_i m(x_i - c) = m \left[\sum_{i=1}^{n} \lambda_i x_i - c \right] = 0.$$

Thus, the inequality (2) is proved.

The above theorem states that c a is a point of convexity of f (see, for example, [3]). Note that we can apply Lemma 3.1 of [3] for the last part of the proof. Also remark that our result shows that Theorem 1 of [1] holds for the locally integrable functions of the class $\text{Conv}_c(I)$. In addition, we can highlight another specific integral inequality.

Theorem 2.2. For a locally integrable function $f \in Conv_c(I)$, we will denote

$$s = \sup_{x \in I, \, x < c} \frac{f(x) - f(c)}{x - c} \text{ and } d = \inf_{x \in I, \, x > c} \frac{f(x) - f(c)}{x - c}.$$

Then, for all $a, b \in I$, such that a < c < b, the following inequality holds

$$\int_{a}^{b} f(x)dx \ge f(c)(b-a) + \frac{d(b-c)^{2} - s(a-c)^{2}}{2}.$$
(5)

In particular, if f is differentiable on I, then the inequality (5) becomes

$$\int_{a}^{b} f(x)dx \ge (b-a)\left[f(c) + f'(c)\left(\frac{a+b}{2} - c\right)\right]$$

Proof. Following the arguments of the proof of Theorem 1, we find

$$f(x) \ge f(c) + s(x - c), \ \forall \ x \in [a, c]$$

and

$$f(x) \ge f(c) + d(x - c), \ \forall \ x \in [c, b].$$

Hence

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \ge f(c)(b-a) + \frac{d(b-c)^{2} - s(a-c)^{2}}{2}.$$

If f is differentiable on I, then from Theorem 2 of [1] and the Mean Value Theorem, we easily obtain s = d = f'(c). So we get the conclusion.

Let us characterize now the locally integrable functions having a finite number of points of convexity. We assume in the following that a locally integrable function $f: I \to \mathbb{R}$ is convex at the points $c_1 < c_2 < \cdots < c_n$ of the open inteval I. We will denote $f \in \operatorname{Conv}_{c_1, \cdots, c_n}(I)$. For each point of convexity c_i , we define $s_i = \sup_{x \in I, x < c_i} \frac{f(c_i) - f(x)}{c_i - x}$ and $d_i = \inf_{x \in I, x > c_i} \frac{f(x) - f(c_i)}{x - c_i}$. From (3) we have $s_i \leq d_i$, for $i = 1, \cdots, n$. Since $c_i < c_{i+1}$, we also obtain

$$d_i \le \frac{f(c_{i+1}) - f(c_i)}{c_{i+1} - c_i} \le s_{i+1}, \ i = 1, \cdots, n-1.$$
(6)

We consider now the linear polynomial functions $g_i, h_i : \mathbb{R} \to \mathbb{R}$, defined by

$$g_i(x) = s_i(x - c_i) + f(c_i)$$
 and $h_i(x) = d_i(x - c_i) + f(c_i), i = 1, \cdots, n$

In order to study the behavior of the function f we highlight a set of n-1 "intermediate" points z_i , defined below

$$z_{i} = \begin{cases} c_{i}, & \text{if } d_{i} = s_{i+1} = \frac{f(c_{i+1}) - f(c_{i})}{c_{i+1} - c_{i}} \\ \frac{s_{i+1}c_{i+1} - d_{i}c_{i} - [f(c_{i+1}) - f(c_{i})]}{s_{i+1} - d_{i}}, & \text{if } d_{i} < s_{i+1} \end{cases}, \quad i = 1, \cdots, (n-1).$$

$$(7)$$

If $d_i < s_{i+1}$, then, from the above definition and the inequalities (6), we have

$$z_i = c_i + \frac{c_{i+1} - c_i}{s_{i+1} - d_i} \left(s_{i+1} - \frac{f(c_{i+1}) - f(c_i)}{c_{i+1} - c_i} \right) \ge c_i$$

and

$$z_i = c_{i+1} - \frac{c_{i+1} - c_i}{s_{i+1} - d_i} \left(\frac{f(c_{i+1}) - f(c_i)}{c_{i+1} - c_i} - d_i \right) \le c_{i+1}$$

So we have $z_i \in [c_i, c_{i+1}]$, for $i = 1, \dots, n-1$.

The following theorem offers a characterization of the functions with a finite numbers of points of convexity.

Theorem 2.3. Let $f \in Conv_{c_1,\dots,c_n}(I)$ be a function which is convex at the points $c_1 < c_2 < \dots < c_n$ of the open interval I. By using the above notations, let us define the function $f: I \to \mathbb{R}$,

$$\underline{f}(x) = \begin{cases} g_1(x), & x < c_1 \\ h_i(x), & x \in [c_i, z_i], \ i = 1, \cdots, n-1 \\ g_{i+1}(x), & x \in (z_i, c_{i+1}), \ i = 1, \cdots, n-1 \\ h_n(x), & x \ge c_n \end{cases}$$

The following statements hold:

(1) the function f is convex on I;

$$\begin{array}{ll} (2) \ f(x) \geq \underline{f}(x), \ \forall \ x \in I; \\ (3) \ \int_{a}^{b} f(x) dx \geq (c_{1}-a) f(c_{1}) + f(c_{n}) (b-c_{n}) + \frac{d_{n}(b-c_{n})^{2} - s_{1}(c_{1}-a)^{2}}{2} \\ + \sum_{i=1}^{n-1} \left[(z_{i}-c_{i}) f(c_{i}) + (c_{i+1}-z_{i}) f(c_{i+1}) + \frac{d_{i}(z_{i}-c_{i})^{2} - s_{i+1}(c_{i+1}-z_{i})^{2}}{2} \right], \\ for \ all \ a, b \in I, \ such \ that \ a \leq c_{1} \ and \ b \geq c_{n}. \end{array}$$

Proof. (1) The function \underline{f} is continuous and linear on the intervals $I \cap (-\infty, c_1]$, $I \cap [c_n, \infty)$ and the intervals $[c_i, z_i]$ and $[z_i, c_{i+1}]$, for $i = 1, \dots, n-1$. Note that $\underline{f}(c_i) = g_i(c_i) = h_i(c_i) = f(c_i)$, for $i = 1, \dots, n$, and

$$\underline{f}(z_i) = h_i(z_i) = g_{i+1}(z_i) = \frac{d_i s_{i+1} (c_{i+1} - c_i) + s_{i+1} f(c_i) - d_i f(c_{i+1})}{s_{i+1} - d_i}$$

for all $i \in \{1, \dots, n-1\}$ such that $d_i < s_{i+1}$. The convexity of the function \underline{f} is due to the increasing sequence $s_1 \leq d_1 \leq s_2 \leq d_2 \leq \dots \leq s_{n-1} \leq d_{n-1} \leq s_n \leq d_n$ of the slopes of its consecutive linear portions. (2) Let $x \in I$.

If $x < c_1$, then $\frac{f(c_1) - f(x)}{c_1 - x} \le s_1$. Hence $f(x) \ge s_1 (x - c_1) + f(c_1) = g_1(x) = \underline{f}(x)$. Assume $i \in \{1, \dots, n-1\}$. If $d_i = s_{i+1}$ (so $z_i = c_i$) and $x \in (c_i, c_{i+1})$, then we have $\frac{f(c_{i+1}) - f(x)}{c_{i+1} - x} \le s_{i+1}$, and therefore $f(x) \ge s_{i+1} (x - c_{i+1}) + f(c_{i+1}) = g_{i+1}(x) = \underline{f}(x)$. If $d_i < s_{i+1}$, then we obtain $f(x) \ge d_i(x - c_i) + f(c_i) = h_i(x) = \overline{f}(x)$, for $x \in [c_i, z_i]$, and $f(x) \ge s_{i+1}(x - c_{i+1}) + f(c_{i+1}) = g_{i+1}(x)$. Finally, if $x \ge c_n$ then $f(x) \ge d_n(x - c_n) + f(c_n) = h_n(x) = \overline{f}(x)$. As a result, we get $f \ge \underline{f}$ on I. (3) Let $a, b \in I$ such that $a \le c_1 < c_n \le b$. Since $f(x) \ge \underline{f}(x), \forall x \in I$, we have

$$\int_{a}^{b} f(x)dx \ge \int_{a}^{b} \underline{f}(x)dx$$

On the other hand,

$$\int_{a}^{b} \underline{f}(x)dx = \int_{a}^{c_{1}} g_{1}(x)dx + \int_{c_{n}}^{b} h_{n}(x)dx + \sum_{i=1}^{n-1} \left(\int_{c_{i}}^{z_{i}} h_{i}(x)dx + \int_{z_{i}}^{c_{i+1}} g_{i+1}(x)dx \right)$$
$$= (c_{1} - a)f(c_{1}) + f(c_{n})(b - c_{n}) + \frac{d_{n}(b - c_{n})^{2} - s_{1}(c_{1} - a)^{2}}{2}$$
$$+ \sum_{i=1}^{n-1} \left[(z_{i} - c_{i})f(c_{i}) + (c_{i+1} - z_{i})f(c_{i+1}) + \frac{d_{i}(z_{i} - c_{i})^{2} - s_{i+1}(c_{i+1} - z_{i})^{2}}{2} \right].$$

References

- A. Florea, E. Păltănea, On a class of punctual convex functions, Mathematical Inequalities & Applications 17 (2014), no. 1, 389–399.
- [2] C. P. Niculescu, L.-E. Persson, Convex Functions and their Applications: A Contemporary Approach (CMS Books in Mathematics), Springer-Verlag New York Inc., New York, 2006.
- [3] C. P. Niculescu, I. Rovenţa, Hardy-Littlewood-Pólya theorem of majorization in the framework of generalized convexity, CARPATHIAN J. MATH. 33 (2017), no. 1, online version.

(Aurelia Florea) UNIVERSITY OF CRAIOVA, ROMANIA *E-mail address:* aurelia_florea@yahoo.com