Properties of integrable punctual convex functions

Aurelia Florea

Abstract

The paper refers to the convexity at a point as defined in [1]. We present some properties of the class of integrable functions which are convex at a fixed point. In this way, we extend some known properties.

2010 Mathematics Subject Classification. 26A51, 26B25, 26D10.
Key words and phrases. convex functions; convexity at a point.

1. Introduction

The "weak" convexity is extensively studied in the literature. In this note, we refer to a particular type of weak convexity, meaning the punctual convexity. A version of this concept was introduced and discussed in [1]. This kind of punctual convexity finds some interesting applications (see [1]). Let us recall the definition of the convexity at a point.

Definition 1.1. Let I be an open real interval. We say that a function $f: I \rightarrow \mathbb{R}$ is convex at the point $c \in I$, denoted by $f \in \operatorname{Conv}_{c}(I)$, if

$$
\begin{equation*}
f(c)+f(x+y-c) \leq f(x)+f(y), \tag{1}
\end{equation*}
$$

for all $x, y \in I$, such that $x<c<y$.
Note that a convex function on the interval I is convex at each point $c \in I$. The class of functions $\operatorname{Conv}_{c}(I)$ does not enjoy many properties. For example, the continuity (which is satisfied by any convex function on I) is not a specific property of a punctual convex function. Instead, the continuous functions of the class $\operatorname{Conv}_{c}(I)$ have interesting properties. In addition, the differentiable functions of the set $\operatorname{Conv}_{c}(I)$ can be accurately characterized (see [1]).

We focus here on Riemann integrable functions of the set $\operatorname{Conv}_{c}(I)$. Thus, we extend Jensen's inequality for punctual convex functions from the class of continuous functions to the class of Riemann integrable functions. We also obtain a specific integral inequality.

2. Main results

Throughout this paper, we assume that $I \subset \mathbb{R}$ is an open interval and $c \in I$. We prove that the "punctual" version of Jensen's inequality holds for locally integrable punctual convex functions. This result extends Lemma 3 in [1].

Theorem 2.1. Let $f \in \operatorname{Conv}_{c}(I)$ be a Riemann locally integrable function on I and let $n \geq 2$ an integer number. For all positive real numbers $\lambda_{1}, \cdots, \lambda_{n}$, with $\sum_{i=1}^{n} \lambda_{i}=1$, and for all $x_{1}, \cdots, x_{n} \in I$, such that $\sum_{i=1}^{n} \lambda_{i} x_{i}=c$, we have

$$
\begin{equation*}
f(c) \leq \sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right) \tag{2}
\end{equation*}
$$

Proof. Let us consider $a, b \in I$, with $a<c<b$. From the definition of the punctual convexity at c, we have

$$
f(c)+f(a+t-c) \leq f(a)+f(t), \forall t \in[c, b] .
$$

By integrating these inequalities on the interval $[c, b]$ we obtain

$$
f(c)(b-c)+\int_{c}^{b} f(a+t-c) d t \leq f(a)(b-c)+\int_{c}^{b} f(t) d t .
$$

Similarly, we find

$$
f(c)(c-a)+\int_{a}^{c} f(b+t-c) d t \leq f(b)(c-a)+\int_{a}^{c} f(t) d t
$$

By summing the above relations, we get

$$
\begin{gathered}
f(c)(b-a)+\int_{c}^{b} f(a+t-c) d t+\int_{a}^{c} f(b+t-c) d t \\
\leq f(a)(b-c)+f(b)(c-a)+\int_{a}^{b} f(t) d t
\end{gathered}
$$

But
$\int_{c}^{b} f(a+t-c) d t+\int_{a}^{c} f(b+t-c) d t=\int_{a}^{a+b-c} f(t) d t+\int_{a+b-c}^{b} f(t) d t=\int_{b}^{b} f(t) d t$.
Hence $f(c)(b-a) \leq f(a)(b-c)+f(b)(c-a)$, or

$$
\begin{equation*}
\frac{f(c)-f(a)}{c-a} \leq \frac{f(b)-f(c)}{b-c} \tag{3}
\end{equation*}
$$

Denote $s=\sup _{a \in I, a<c} \frac{f(c)-f(a)}{c-a}$ and $d=\inf _{b \in I, b>c} \frac{f(b)-f(c)}{b-c}$. From (3) we obtain $s, d \in \mathbb{R}$, with $s \leq d$. Let us consider $m \in[s, d]$. Therefore,

$$
\begin{equation*}
f(x)-f(c) \geq m(x-c), \forall x \in I \tag{4}
\end{equation*}
$$

For $n \geq 2$, assume now $x_{1}, \cdots, x_{n} \in I$ and $\lambda_{1}, \cdots, \lambda_{n}>0$, with $\sum_{i=1}^{n} \lambda_{i}=1$, such that $\sum_{i=1}^{n} \lambda_{i} x_{i}=c$. From (4), we obtain

$$
\begin{aligned}
\sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right)-f(c) & =\sum_{i=1}^{n} \lambda_{i}\left[f\left(x_{i}\right)-f(c)\right] \\
& \geq \sum_{i=1}^{n} \lambda_{i} m\left(x_{i}-c\right)=m\left[\sum_{i=1}^{n} \lambda_{i} x_{i}-c\right]=0
\end{aligned}
$$

Thus, the inequality (2) is proved.
The above theorem states that c a is a point of convexity of f (see, for example, [3]). Note that we can apply Lemma 3.1 of [3] for the last part of the proof. Also remark that our result shows that Theorem 1 of [1] holds for the locally integrable functions of the class $\operatorname{Conv}_{c}(I)$. In addition, we can highlight another specific integral inequality.

Theorem 2.2. For a locally integrable function $f \in \operatorname{Conv}_{c}(I)$, we will denote

$$
s=\sup _{x \in I, x<c} \frac{f(x)-f(c)}{x-c} \text { and } d=\inf _{x \in I, x>c} \frac{f(x)-f(c)}{x-c} .
$$

Then, for all $a, b \in I$, such that $a<c<b$, the following inequality holds

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \geq f(c)(b-a)+\frac{d(b-c)^{2}-s(a-c)^{2}}{2} \tag{5}
\end{equation*}
$$

In particular, if f is differentiable on I, then the inequality (5) becomes

$$
\int_{a}^{b} f(x) d x \geq(b-a)\left[f(c)+f^{\prime}(c)\left(\frac{a+b}{2}-c\right)\right] .
$$

Proof. Following the arguments of the proof of Theorem 1, we find

$$
f(x) \geq f(c)+s(x-c), \forall x \in[a, c]
$$

and

$$
f(x) \geq f(c)+d(x-c), \forall x \in[c, b] .
$$

Hence

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x \geq f(c)(b-a)+\frac{d(b-c)^{2}-s(a-c)^{2}}{2}
$$

If f is differentiable on I, then from Theorem 2 of [1] and the Mean Value Theorem, we easily obtain $s=d=f^{\prime}(c)$. So we get the conclusion.

Let us characterize now the locally integrable functions having a finite number of points of convexity. We assume in the following that a locally integrable function $f: I \rightarrow \mathbb{R}$ is convex at the points $c_{1}<c_{2}<\cdots<c_{n}$ of the open inteval I. We will denote $f \in \operatorname{Conv}_{c_{1}, \cdots, c_{n}}(I)$. For each point of convexity c_{i}, we define $s_{i}=$ $\sup _{x \in I, x<c_{i}} \frac{f\left(c_{i}\right)-f(x)}{c_{i}-x}$ and $d_{i}=\inf _{x \in I, x>c_{i}} \frac{f(x)-f\left(c_{i}\right)}{x-c_{i}}$. From (3) we have $s_{i} \leq d_{i}$, for $i=1, \cdots, n$. Since $c_{i}<c_{i+1}$, we also obtain

$$
\begin{equation*}
d_{i} \leq \frac{f\left(c_{i+1}\right)-f\left(c_{i}\right)}{c_{i+1}-c_{i}} \leq s_{i+1}, i=1, \cdots, n-1 \tag{6}
\end{equation*}
$$

We consider now the linear polynomial functions $g_{i}, h_{i}: \mathbb{R} \rightarrow \mathbb{R}$, defined by

$$
g_{i}(x)=s_{i}\left(x-c_{i}\right)+f\left(c_{i}\right) \text { and } h_{i}(x)=d_{i}\left(x-c_{i}\right)+f\left(c_{i}\right), i=1, \cdots, n .
$$

In order to study the behavior of the function f we highlight a set of $n-1$ "intermediate" points z_{i}, defined below
$z_{i}=\left\{\begin{array}{ll}c_{i}, & \text { if } d_{i}=s_{i+1}=\frac{f\left(c_{i+1}\right)-f\left(c_{i}\right)}{c_{i+1}-c_{i}} \\ \frac{s_{i+1} c_{i+1}-d_{i} c_{i}-\left[f\left(c_{i+1}\right)-f\left(c_{i}\right)\right]}{s_{i+1}-d_{i}}, & \text { if } d_{i}<s_{i+1}\end{array}, i=1, \cdots,(n-1)\right.$.

If $d_{i}<s_{i+1}$, then, from the above definition and the inequalities (6), we have

$$
z_{i}=c_{i}+\frac{c_{i+1}-c_{i}}{s_{i+1}-d_{i}}\left(s_{i+1}-\frac{f\left(c_{i+1}\right)-f\left(c_{i}\right)}{c_{i+1}-c_{i}}\right) \geq c_{i}
$$

and

$$
z_{i}=c_{i+1}-\frac{c_{i+1}-c_{i}}{s_{i+1}-d_{i}}\left(\frac{f\left(c_{i+1}\right)-f\left(c_{i}\right)}{c_{i+1}-c_{i}}-d_{i}\right) \leq c_{i+1} .
$$

So we have $z_{i} \in\left[c_{i}, c_{i+1}\right]$, for $i=1, \cdots, n-1$.
The following theorem offers a characterization of the functions with a finite numbers of points of convexity.

Theorem 2.3. Let $f \in \operatorname{Conv}_{c_{1}, \cdots, c_{n}}(I)$ be a function which is convex at the points $c_{1}<c_{2}<\cdots<c_{n}$ of the open interval I. By using the above notations, let us define the function $\underline{f}: I \rightarrow \mathbb{R}$,

$$
\underline{f}(x)=\left\{\begin{array}{ll}
g_{1}(x), & x<c_{1} \\
h_{i}(x), & x \in\left[c_{i}, z_{i}\right], i=1, \cdots, n-1 \\
g_{i+1}(x), & x \in\left(z_{i}, c_{i+1}\right), i=1, \cdots, n-1 \\
h_{n}(x), & x \geq c_{n}
\end{array} .\right.
$$

The following statements hold:
(1) the function \underline{f} is convex on I;
(2) $f(x) \geq \underline{f}(x), \bar{\forall} x \in I$;
(3) $\int_{a}^{b} f(x) d x \geq\left(c_{1}-a\right) f\left(c_{1}\right)+f\left(c_{n}\right)\left(b-c_{n}\right)+\frac{d_{n}\left(b-c_{n}\right)^{2}-s_{1}\left(c_{1}-a\right)^{2}}{2}$
$+\sum_{i=1}^{n-1}\left[\left(z_{i}-c_{i}\right) f\left(c_{i}\right)+\left(c_{i+1}-z_{i}\right) f\left(c_{i+1}\right)+\frac{d_{i}\left(z_{i}-c_{i}\right)^{2}-s_{i+1}\left(c_{i+1}-z_{i}\right)^{2}}{2}\right]$,
for all $a, b \in I$, such that $a \leq c_{1}$ and $b \geq c_{n}$.
Proof. (1) The function \underline{f} is continuous and linear on the intervals $I \cap\left(-\infty, c_{1}\right], I \cap$ $\left[c_{n}, \infty\right)$ and the intervals $\left[c_{i}, z_{i}\right]$ and $\left[z_{i}, c_{i+1}\right]$, for $i=1, \cdots, n-1$. Note that $\underline{f}\left(c_{i}\right)=$ $g_{i}\left(c_{i}\right)=h_{i}\left(c_{i}\right)=f\left(c_{i}\right)$, for $i=1, \cdots, n$, and

$$
\underline{f}\left(z_{i}\right)=h_{i}\left(z_{i}\right)=g_{i+1}\left(z_{i}\right)=\frac{d_{i} s_{i+1}\left(c_{i+1}-c_{i}\right)+s_{i+1} f\left(c_{i}\right)-d_{i} f\left(c_{i+1}\right)}{s_{i+1}-d_{i}},
$$

for all $i \in\{1, \cdots, n-1\}$ such that $d_{i}<s_{i+1}$. The convexity of the function \underline{f} is due to the increasing sequence $s_{1} \leq d_{1} \leq s_{2} \leq d_{2} \leq \cdots \leq s_{n-1} \leq d_{n-1} \leq s_{n} \leq \overline{d_{n}}$ of the slopes of its consecutive linear portions.
(2) Let $x \in I$.

If $x<c_{1}$, then $\frac{f\left(c_{1}\right)-f(x)}{c_{1}-x} \leq s_{1}$. Hence $f(x) \geq s_{1}\left(x-c_{1}\right)+f\left(c_{1}\right)=g_{1}(x)=\underline{f}(x)$. Assume $i \in\{1, \cdots, n-1\}$. If $d_{i}=s_{i+1}$ (so $z_{i}=c_{i}$) and $x \in\left(c_{i}, c_{i+1}\right)$, then we have $\frac{f\left(c_{i+1}\right)-f(x)}{c_{i+1}-x} \leq s_{i+1}$, and therefore $f(x) \geq s_{i+1}\left(x-c_{i+1}\right)+f\left(c_{i+1}\right)=g_{i+1}(x)=$ $\underline{f}(x)$. If $d_{i}<s_{i+1}$, then we obtain $f(x) \geq d_{i}\left(x-c_{i}\right)+f\left(c_{i}\right)=h_{i}(x)=\bar{f}(x)$, for $x \in\left[c_{i}, z_{i}\right]$, and $f(x) \geq s_{i+1}\left(x-c_{i+1}\right)+f\left(c_{i+1}\right)=g_{i+1}(x)=\bar{f}(x)$, for $x \in\left(z_{i}, c_{i+1}\right]$. Finally, if $x \geq c_{n}$ then $f(x) \geq d_{n}\left(x-c_{n}\right)+f\left(c_{n}\right)=h_{n}(x)=\bar{f}(x)$. As a result, we get
$f \geq \underline{f}$ on I.
(3) Let $a, b \in I$ such that $a \leq c_{1}<c_{n} \leq b$. Since $f(x) \geq \underline{f}(x), \forall x \in I$, we have

$$
\int_{a}^{b} f(x) d x \geq \int_{a}^{b} \underline{f}(x) d x
$$

On the other hand,

$$
\begin{aligned}
& \int_{a}^{b} \underline{f}(x) d x=\int_{a}^{c_{1}} g_{1}(x) d x+\int_{c_{n}}^{b} h_{n}(x) d x+\sum_{i=1}^{n-1}\left(\int_{c_{i}}^{z_{i}} h_{i}(x) d x+\int_{z_{i}}^{c_{i+1}} g_{i+1}(x) d x\right) \\
&=\left(c_{1}-a\right) f\left(c_{1}\right)+f\left(c_{n}\right)\left(b-c_{n}\right)+\frac{d_{n}\left(b-c_{n}\right)^{2}-s_{1}\left(c_{1}-a\right)^{2}}{2} \\
&+\sum_{i=1}^{n-1}\left[\left(z_{i}-c_{i}\right) f\left(c_{i}\right)+\left(c_{i+1}-z_{i}\right) f\left(c_{i+1}\right)+\frac{d_{i}\left(z_{i}-c_{i}\right)^{2}-s_{i+1}\left(c_{i+1}-z_{i}\right)^{2}}{2}\right]
\end{aligned}
$$

References

[1] A. Florea, E. Păltănea, On a class of punctual convex functions, Mathematical Inequalities \& Applications 17 (2014), no. 1, 389-399.
[2] C. P. Niculescu, L.-E. Persson, Convex Functions and their Applications: A Contemporary Approach (CMS Books in Mathematics), Springer-Verlag New York Inc., New York, 2006.
[3] C. P. Niculescu, I. Rovenţa, Hardy-Littlewood-Pólya theorem of majorization in the framework of generalized convexity, CARPATHIAN J. MATH. 33 (2017), no. 1, online version.
(Aurelia Florea) University of Craiova, Romania
E-mail address: aurelia_florea@yahoo.com

