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Properties of integrable punctual convex functions

Aurelia Florea

Abstract. The paper refers to the convexity at a point as defined in [1]. We present some

properties of the class of integrable functions which are convex at a fixed point. In this way,

we extend some known properties.
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1. Introduction

The ”weak” convexity is extensively studied in the literature. In this note, we refer
to a particular type of weak convexity, meaning the punctual convexity. A version of
this concept was introduced and discussed in [1]. This kind of punctual convexity finds
some interesting applications (see [1]). Let us recall the definition of the convexity at
a point.

Definition 1.1. Let I be an open real interval. We say that a function f : I → R is
convex at the point c ∈ I, denoted by f ∈ Convc(I), if

f(c) + f(x+ y − c) ≤ f(x) + f(y), (1)

for all x, y ∈ I, such that x < c < y.

Note that a convex function on the interval I is convex at each point c ∈ I.
The class of functions Convc(I) does not enjoy many properties. For example, the
continuity (which is satisfied by any convex function on I) is not a specific property of a
punctual convex function. Instead, the continuous functions of the class Convc(I) have
interesting properties. In addition, the differentiable functions of the set Convc(I) can
be accurately characterized (see [1]).

We focus here on Riemann integrable functions of the set Convc(I). Thus, we
extend Jensen’s inequality for punctual convex functions from the class of continuous
functions to the class of Riemann integrable functions. We also obtain a specific
integral inequality.

2. Main results

Throughout this paper, we assume that I ⊂ R is an open interval and c ∈ I. We
prove that the ”punctual” version of Jensen’s inequality holds for locally integrable
punctual convex functions. This result extends Lemma 3 in [1].
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Theorem 2.1. Let f ∈ Convc(I) be a Riemann locally integrable function on I and

let n ≥ 2 an integer number. For all positive real numbers λ1, · · · , λn, with
n∑

i=1

λi = 1,

and for all x1, · · · , xn ∈ I, such that
n∑

i=1

λixi = c, we have

f (c) ≤
n∑

i=1

λif (xi) . (2)

Proof. Let us consider a, b ∈ I, with a < c < b. From the definition of the punctual
convexity at c, we have

f(c) + f (a+ t− c) ≤ f (a) + f(t), ∀ t ∈ [c, b] .

By integrating these inequalities on the interval [c, b] we obtain

f(c) (b− c) +

∫ b

c

f (a+ t− c) dt ≤ f (a) (b− c) +

∫ b

c

f(t)dt.

Similarly, we find

f(c) (c− a) +

∫ c

a

f (b+ t− c) dt ≤ f (b) (c− a) +

∫ c

a

f(t)dt.

By summing the above relations, we get

f(c) (b− a) +

∫ b

c

f (a+ t− c) dt+

∫ c

a

f (b+ t− c) dt

≤ f (a) (b− c) + f (b) (c− a) +

∫ b

a

f(t)dt.

But∫ b

c

f (a+ t− c) dt+
∫ c

a

f (b+ t− c) dt =

∫ a+b−c

a

f(t)dt+

∫ b

a+b−c
f(t)dt =

∫ b

b

f(t)dt.

Hence f(c) (b− a) ≤ f (a) (b− c) + f (b) (c− a), or

f(c)− f(a)

c− a
≤ f(b)− f(c)

b− c
. (3)

Denote s = sup
a∈I, a<c

f(c)− f(a)

c− a
and d = inf

b∈I, b>c

f(b)− f(c)

b− c
. From (3) we obtain

s, d ∈ R, with s ≤ d. Let us consider m ∈ [s, d]. Therefore,

f(x)− f(c) ≥ m(x− c), ∀ x ∈ I. (4)

For n ≥ 2, assume now x1, · · · , xn ∈ I and λ1, · · · , λn > 0, with
n∑

i=1

λi = 1, such

that
n∑

i=1

λixi = c. From (4), we obtain

n∑
i=1

λif (xi)− f(c) =

n∑
i=1

λi [f (xi)− f(c)]

≥
n∑

i=1

λim (xi − c) = m

[
n∑

i=1

λixi − c

]
= 0.
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Thus, the inequality (2) is proved. �

The above theorem states that c a is a point of convexity of f (see, for example,
[3]). Note that we can apply Lemma 3.1 of [3] for the last part of the proof. Also
remark that our result shows that Theorem 1 of [1] holds for the locally integrable
functions of the class Convc(I). In addition, we can highlight another specific integral
inequality.

Theorem 2.2. For a locally integrable function f ∈ Convc(I), we will denote

s = sup
x∈I, x<c

f(x)− f(c)

x− c
and d = inf

x∈I, x>c

f(x)− f(c)

x− c
.

Then, for all a, b ∈ I, such that a < c < b, the following inequality holds∫ b

a

f(x)dx ≥ f(c)(b− a) +
d(b− c)2 − s(a− c)2

2
. (5)

In particular, if f is differentiable on I, then the inequality (5) becomes∫ b

a

f(x)dx ≥ (b− a)

[
f(c) + f ′(c)

(
a+ b

2
− c
)]

.

Proof. Following the arguments of the proof of Theorem 1, we find

f(x) ≥ f(c) + s(x− c), ∀ x ∈ [a, c]

and
f(x) ≥ f(c) + d(x− c), ∀ x ∈ [c, b].

Hence∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx ≥ f(c)(b− a) +
d(b− c)2 − s(a− c)2

2
.

If f is differentiable on I, then from Theorem 2 of [1] and the Mean Value Theorem,
we easily obtain s = d = f ′(c). So we get the conclusion. �

Let us characterize now the locally integrable functions having a finite number of
points of convexity. We assume in the following that a locally integrable function
f : I → R is convex at the points c1 < c2 < · · · < cn of the open inteval I. We
will denote f ∈ Convc1,··· ,cn(I). For each point of convexity ci, we define si =

sup
x∈I, x<ci

f(ci)− f(x)

ci − x
and di = inf

x∈I, x>ci

f(x)− f(ci)

x− ci
. From (3) we have si ≤ di, for

i = 1, · · · , n. Since ci < ci+1, we also obtain

di ≤
f(ci+1)− f(ci)

ci+1 − ci
≤ si+1, i = 1, · · · , n− 1. (6)

We consider now the linear polynomial functions gi, hi : R→ R, defined by

gi(x) = si(x− ci) + f(ci) and hi(x) = di(x− ci) + f(ci), i = 1, · · · , n.
In order to study the behavior of the function f we highlight a set of n− 1 ”interme-
diate” points zi, defined below

zi =

{
ci, if di = si+1 = f(ci+1)−f(ci)

ci+1−ci
si+1ci+1−dici−[f(ci+1)−f(ci)]

si+1−di
, if di < si+1

, i = 1, · · · , (n−1).

(7)
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If di < si+1, then, from the above definition and the inequalities (6), we have

zi = ci +
ci+1 − ci
si+1 − di

(
si+1 −

f(ci+1)− f(ci)

ci+1 − ci

)
≥ ci

and

zi = ci+1 −
ci+1 − ci
si+1 − di

(
f(ci+1)− f(ci)

ci+1 − ci
− di

)
≤ ci+1.

So we have zi ∈ [ci, ci+1], for i = 1, · · · , n− 1.
The following theorem offers a characterization of the functions with a finite num-

bers of points of convexity.

Theorem 2.3. Let f ∈ Convc1,··· ,cn(I) be a function which is convex at the points
c1 < c2 < · · · < cn of the open interval I. By using the above notations, let us define
the function f : I → R,

f(x) =


g1(x), x < c1
hi(x), x ∈ [ci, zi], i = 1, · · · , n− 1
gi+1(x), x ∈ (zi, ci+1), i = 1, · · · , n− 1
hn(x), x ≥ cn

.

The following statements hold:
(1) the function f is convex on I;
(2) f(x) ≥ f(x), ∀ x ∈ I;

(3)

∫ b

a

f(x)dx ≥ (c1 − a)f(c1) + f(cn)(b− cn) +
dn(b− cn)2 − s1(c1 − a)2

2

+

n−1∑
i=1

[
(zi − ci)f(ci) + (ci+1 − zi)f(ci+1) +

di(zi − ci)2 − si+1(ci+1 − zi)2

2

]
,

for all a, b ∈ I, such that a ≤ c1 and b ≥ cn.

Proof. (1) The function f is continuous and linear on the intervals I ∩ (−∞, c1], I ∩
[cn,∞) and the intervals [ci, zi] and [zi, ci+1], for i = 1, · · · , n− 1. Note that f(ci) =
gi(ci) = hi(ci) = f(ci), for i = 1, · · · , n, and

f(zi) = hi(zi) = gi+1(zi) =
disi+1 (ci+1 − ci) + si+1f(ci)− dif(ci+1)

si+1 − di
,

for all i ∈ {1, · · · , n− 1} such that di < si+1. The convexity of the function f is due
to the increasing sequence s1 ≤ d1 ≤ s2 ≤ d2 ≤ · · · ≤ sn−1 ≤ dn−1 ≤ sn ≤ dn of the
slopes of its consecutive linear portions.
(2) Let x ∈ I.

If x < c1, then
f(c1)− f(x)

c1 − x
≤ s1. Hence f(x) ≥ s1 (x− c1) + f(c1) = g1(x) = f(x).

Assume i ∈ {1, · · · , n− 1}. If di = si+1 (so zi = ci) and x ∈ (ci, ci+1), then we have
f(ci+1)− f(x)

ci+1 − x
≤ si+1, and therefore f(x) ≥ si+1 (x− ci+1) + f(ci+1) = gi+1(x) =

f(x). If di < si+1, then we obtain f(x) ≥ di(x − ci) + f(ci) = hi(x) = f(x), for

x ∈ [ci, zi], and f(x) ≥ si+1(x− ci+1) + f(ci+1) = gi+1(x) = f(x), for x ∈ (zi, ci+1].
Finally, if x ≥ cn then f(x) ≥ dn(x− cn) + f(cn) = hn(x) = f(x). As a result, we get
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f ≥ f on I.
(3) Let a, b ∈ I such that a ≤ c1 < cn ≤ b. Since f(x) ≥ f(x), ∀ x ∈ I, we have∫ b

a

f(x)dx ≥
∫ b

a

f(x)dx.

On the other hand,∫ b

a

f(x)dx =

∫ c1

a

g1(x)dx+

∫ b

cn

hn(x)dx+

n−1∑
i=1

(∫ zi

ci

hi(x)dx+

∫ ci+1

zi

gi+1(x)dx

)

= (c1 − a)f(c1) + f(cn)(b− cn) +
dn(b− cn)2 − s1(c1 − a)2

2

+

n−1∑
i=1

[
(zi − ci)f(ci) + (ci+1 − zi)f(ci+1) +

di(zi − ci)2 − si+1(ci+1 − zi)2

2

]
.
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