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A note on 7-Ricci solitons in 3-dimensional trans-Sasakian
manifolds
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ABSTRACT. In this paper we study n-Ricci soliton on 3-dimensional trans-Sasakian manifold.
First we obtain the existence of n-Einstein soliton on 3-dimensional trans-Sasakian manifold.
Next we establish some results on 3-dimensional trans-Sasakian manifold satisfying an n-Ricci
soliton when the manifold is Ricci-symmetric, has Codazzi or cyclic n-recurrent Ricci curvature
tensor. Later we observe n-Ricci Soliton on 3-dimensional trans-Sasakian manifold satisfying
the conditions 7-S=0,S-7=0, M-S =0and S- M = 0. Also we construct an example
of almost-n-Ricci soliton on 3-dimensional trans-Sasakian manifold.

2010 Mathematics Subject Classification. 53C21, 53C25, 53C44.
Key words and phrases. Trans-Sasakian manifold, n-Ricci solitons, T-curvature tensor,
M-projective curvature tensor.

1. Introduction

In 1982, Hamilton introduced the concept of the Ricci flow in [7] to find a canonical
metric on a smooth manifold. The Ricci flow is an evolution equation on a smooth
manifold M with Riemannian metric g(t) given by

0

5 g(t) = —28S.
Ricci solitons appear as self-similar solutions to Hamiltons’s Ricci flow and often arise
as limits of dilations of singularities in the Ricci flow [8]. Ricci solitons and n-Ricci
solitons are natural generalizations of Einstein metrics. A Ricci soliton is defined on
a Riemannian manifold (M, g) by

1
S+§£Yg:>\g

where Ly g is the Lie derivative along the vector field Y, S is the Ricci tensor of
(M,g) and X is a real constant. If Y = Vf for some function f on M, the Ricci
soliton alters to a gradient Ricci soliton. A soliton becomes shrinking, steady and
expanding according as A > 0, A =0 and A < 0 respectively.

The concept of n-Ricci soliton was introduced by J.C. Cho and M. Kimura [6] in
2009. They established that in a non-flat complex space form, a real hypersurface
considering an 7-Ricci soliton becomes a Hopf-hypersurface. An n-Ricci soliton is
defined on a Riemannian manifold (M, g) by the following equation

284+ Leg+ 209 +2un @ n =0, (1)
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where L is the Lie derivative operator along the vector field £, S is the Ricci tensor of
(M,g) and A, p are real constants. When A, p are smooth functions, n-Ricci soliton
becomes almost 7-Ricci soliton [13]. If p = 0, then n-Ricci soliton becomes Ricci
soliton.

In [4], A. M. Blaga introduced n-Einstein soliton that is generalization of n-Ricci
soliton is defined by the following equation

25+ Leg+ (2A —1)g+2um @1 =0, (2)

where L¢ is the Lie derivative operator along the vector field &, S, r are the Ricci
tensor and scalar curvature, respectively of the metric, and A, p are real constants.

In the last few years, many geometers have studied various types of Ricci soliton and
their generalizations in different Contact metric manfolds in [1], [2], [9] etc. In 2014, B.
Y. Chen and S. Deshmukh [5] proved the characterizations of compact shrinking trivial
Ricci solitons. A.M. Blada worked on 7n-Ricci soliton on para-kenmotsu manifold in
[3]. D. G. Prakasha, B. S. Hadimani [15] studied the non-existence of certain geometric
characteristics of para-Sasakian n-Ricci solitons in 2016. In [12], S. Pahan, T. Dutta,
and A. Bhattacharyya worked on various types of curvature tensors on Generalized
Sasakian space form admitting Ricci soliton and 7-Ricci soliton. They also studied
conformal Killing vector field, torse forming vector field on Generalized Sasakian space
form.

In this paper we study the existence of n-Einstein soliton on 3-dimensional trans-
Sasakian manifold. Next we observe some results on 3-dimensional trans-Sasakian
manifold satisfying an n-Ricci soliton when the manifold becomes Ricci-symmetric,
has Codazzi or cyclic n-recurrent Rici curvature tensor. Next we give an example of an
almost n-Ricci soliton on 3-dimensional trans-Sasaian manifold. Later we obtain some
different types of curvature tensors and their properties under certain conditions.

2. Preliminaries

The product M = M x R has a natural almost complex structure J with the prod-
uct metric G being Hermitian metric. The geometry of the almost Hermitian manifold
(M, J,G) gives the geometry of the almost contact metric manifold (M, ¢, &,1, g). Six-
teen different types of structures on M like Sasakian manifold, Kenmotsu manifold
etc are given by the almost Hermitian manifold (M, J,G) . Oubina [11] introduced
the idea of trans-Sasakian manifolds in 1985. Then J. C. Marrero [10] have obtained
the local structure of trans-Sasakian manifolds. In general a trans-Sasakian manifold
(M, $,&,1,9,a,B) is called a trans-Sasakian manifold of type («, 8). Ann (=2m+1)
dimensional Riemannian manifold (M, g) is called an almost contact manifold if there
exists a (1,1) tensor field ¢, a vector field £ and a 1-form 7 on M such that

P*(X) = =X +n(X)¢, (
n(€) = 1,n(¢X) =0, (
»§ =0, (5
(
(
(

(N

(=2}

n(X) = g(X,¢),
9(¢X, 9Y) = g(X,Y) — n(X)n(Y),
9(X,9Y) +g(Y,9X) =0,
for any vector fields X,Y on M.

o~ — D o

o
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A 3-dimensional almost contact metric manifold M is called a trans-Sasakian man-
ifold if it satisfies the following condition

(Vxo)(Y) = a{g(X,Y)E = n(Y) X} + B{g(6X,Y)§ —n(Y)o X}, 9)
for some smooth functions «, 8 on M and we say that the trans-Sasakian structure
is of type (a, ). For 3-dimensional trans-Sasakian manifold, from (9) we have,

Vx§=—apX + B(X — (X)), (10)

(Vxn)(Y) = —ag(¢X,Y) + Bg(¢X, ¢Y). (11)
In a 3-dimensional trans-Sasakian manifold, we have

R(X,Y)Z =[5 = 2(a® = 82 = £8)| [9(¥. 2)X — 9(X, 2)Y]

— [5 3% = 8% + €8] [9(Y, Zn(X) — g(X, Z)n(¥ )¢
+ [9(Y, Z)n(X) = g(X, Z)n(Y)][¢ grad o — grad f]
— |5~ 302 = ) + 8| n(2)In(¥) X —n(X)Y]
~ 128 + (62)aln(Z) (V) X — n(X)Y]
— [XB + (6X)allg(¥. 2)§ = n(Z)Y] = [V B+ (6Y )a][g(X, 2)¢ — n(2)X],
S(LY) = |5 — (o = 82 = €8)] 9(X,Y) — |5 = 3(a® = 8%) + €8] n(X)n(Y)
~ [V B+ (6Y)aln(X) = [XB + (6X)aln(Y).

When « and 8 are constants the above equations reduce to,

R(§, X)E = (a® = 1) (n(X)€ — X), (12)
S(X,€) = 2(a” - B*)n(X), (13)

R(§, X)Y = (a® = B%)(9(X, V)€ — n(Y)X). (14)
R(X,Y)E = (o = B)(n(Y)X —n(X)Y). (15)

Definition 2.1. A trans-Sasakian manifold M? is said to be 7-Einstein manifold if
its Ricci tensor S is of the form

S(Xv Y) - ag(X, Y) + bn(X)U(Y),

where a, b are smooth functions.
3. n-Einstein solitons on trans-Sasakian manifolds
To study the existence conditions of n-Einstein solitons on 3-dimensional trans-

Sasakian manifolds, first we consider a symmetric (0, 2)-tensor field L which is parallel
with respect to the Levi-Civita connection (VL = 0). Then it follows that

L(R(X,Y)Z,W)+ L(Z,R(X,Y)W) =0, (16)
for an arbitrary vector field W, X, Y, Zon M. Put X =Z =W = ¢ we get
L(R(X,Y)§,€) =0, (17)

for any X, Y € x(M) By using the equation (15)
L(Y,€) = g(Y,§)L(&,€), (18)
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for any Y € x(M). Differentiating the equation (18) covariantly with respect to the
vector field X € x(M) we have

L(VxY,§) + L(Y,Vx§) = g(VxY,§)L(§, ) + (Y. VxE)L(E, §), (19)
Using the equation (10) we have
BLX,Y) — aL(¢X,Y) = —ag(¢X,Y)L(£, &) + BL(E, )g(X,Y). (20)
Interchanging X by Y we have
BL(X,Y) — aL(X,¢Y) = —ag(X, ¢Y)L(§,§) + BL(E,§)g(X,Y). (21)
Then adding the above two equations we get
BLIX,Y) = SIL(6X,Y) + L(X,6Y)] = BL(E, E)g(X, ). (22)

We see that SL(X,Y) — §[L(¢X,Y) + L(X, ¢Y)] is a symmetric tensor of type (0,2).
Let BL(X,Y) — $[L(X,Y) + L(X, )] = Leg(X,Y) +25(X,Y) + 2un(X)n(Y) -
rg(X,Y).

Then we compute

BL(E,)g(X,Y) = Leg(X,Y) + 2X0g(X,Y) + 2un(X)n(Y) — rg(X,Y).

As L is parallel so, L(&,€) is constant. Hence, we can write L(, &) = —%)\ where (3
is constant and 5 # 0.

Therefore Leg(X,Y) +25(X,Y) + 2un(X)n(Y) —rg(X,Y) = —2Xg(X,Y) and so
(9,&, ) becomes an n-Einstein soliton. Hence we have the following theorem.

Theorem 3.1. Let (M,g,¢,n,&,,8) be a 3-dimensional trans-Sasakian manifold
with «, B constants (B # 0). If the symmetric (0,2) tensor field L satisfying the con-
dition BL(X,Y) = S[L(¢X,Y )+ L(X,9Y)] = Leg(X, V) +2S(X,Y) +2un(X)n(Y) —
rg(X,Y) is parallel with respect to the Levi-Civita connection associated to g. Then
(g9,&, 1) becomes an n-FEinstein soliton.

Corollary 3.2. Let (M,g,$,n,&,«,8) be a 3-dimensional trans-Sasakian manifold
with «, B constants (8 # 0). If the symmetric (0,2) tensor field L satisfying the
condition BL(X,Y)—=S[L(¢X,Y)+L(X,9Y)] = Leg(X,Y)+25(X,Y)+2un(X)n(Y)
is parallel with respect to the Levi-Civita connection associated to g. Then (g,&, 1)
becomes an n-Ricci soliton.

Next we obtain some results on 3-dimensional trans-Sasakian manifold satisfying
an n-Ricci soliton when the manifold is Ricci-symmetric, has Codazzi or cyclic n-
recurrent Ricci curvature tensor.

Theorem 3.3. Let (M,g,¢,1n,&,a,8) be a 3-dimensional trans-Sasakian manifold
with «, B constants (8 # 0) satisfying n-Ricci soliton.

(i) If the manifold (M, g) is Ricci symmetric (i.e. VS =0), then u = .

(i) If the Ricci tensor is n-recurrent (i.e. VS =n®S), then u =25 — C“T;

(i) If the Ricci tensor is Codazzi (i.e. (VxS)(Y,Z) = (VyS)(X, Z), for all vector
fields X, Y, Z), then p = 3.

Proof. From the equation (1) we get
25(X,Y) = —g(Vx&Y) = g(X, Vy§) = 209(X,Y) = 2un(X)n(Y).  (23)
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By using the equation (10) we get

SXY) ==(B+Ng(X,Y) + (B = p)n(X)n(Y) (24)
and
S(X,8) = —(A + wn(X). (25)
Also from (25) we have
A =2(B% - a?). (26)
The Ricci operator @ is defined by ¢g(QX,Y) = S(X,Y). Then we get
QX = (p—B+2(a® - )X + (8- wn(X)E. (27)

(i) We consider that the manifold (M, g) is Ricci symmetric i.e.
VS =0. (28)
Now we have
VxS(Y,Z) = XS(Y, Z) — S(VxY, Z) — S(Vx Z,Y).
Using the equations (24) and (28), we obtain
(8- —alg(6X, Y ) +g(0X, 2))+B(g(X, Y n(Z)—g(X, Z)n(Y))~260(X)n(Y )n(Z)] = 0.

Putting Y = Z = £, the above equation becomes p = 5.
(ii) We assume that the manifold (M, g) is n-recurrent i.e.

VS =n®S. (29)
Now we have
for all vector fields X,Y, Z. Using the equations (24) and (30), we obtain p = 28— %2

(iii) If the Ricci tensor is Codazzi i.e. (VxS)(Y,Z) = (VyS)(X, Z), for all vector
fields X,Y, Z, then we have

XSY,Z2)-S(VxY,Z)-S(VxZ,Y)=YS(X,Z2) - S(VyX,Z) - S(VyZ,X).
Using the equation (24) and then putting Y = Z = £, we observe p = . U

4. Example of almost 7-Ricci solitons on 3-dimensional trans-Sasakian
manifolds

We consider the three dimensional manifold M = {(z,y,2) € R® : z # 0} where
(7,9, z) are the standard coordinates in R®. The vector fields

e _9 e *ng e *ng
178.’1,"27 ay73* Dz
are linearly independent at each point of M. Let g be the Riemannian metric defined

by
)1 for i=y,
9571 0 for i#j.
Let 1 be the 1-form defined by n(Z) = g(Z, e1) for any Z € x(M?3). Let ¢ be the (1,1)
tensor field defined by ¢(e;) = 0,¢d(es) = —es, d(e3) = es. Then using the linearity
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property of ¢ and g we have

n(er) =1, $*(2) = =Z +n(Z)er, g(¢Z, ¢W) = g(Z,W) — n(Z)n(W),
for any Z, W € x(M?). Thus for e; = £, (¢,&,1,g) defines an almost contact metric
structure on M. Now, after some calculation we have,

2 2
3 = —E€3, ’ = 07 y = —€2.
[61 63] .1'63 [62 63] [61 62] xe2

The Riemannian connection V of the metric is given by the Koszul’s formula which
is

29(VxY,Z) = Xg(Y, Z)+Y g(Z, X)~Zg(X,Y)—g(X,[Y, Z])—9(Y, [X, Z])+9(Z, [ X, Y]).

By Koszul’s formula we get,
2 2 2
Vee1 =0,Ve,er = _5627V6361 = —563,V8162 =0,Ve,e2 = 561,

2
ve3€2 = 0, v31€3 = 0, v32€3 = 07 Vegeg = —e1.
T

From the above it can be easily shown that M?3(¢,&,n, g) is a trans-Sasakian manifold
of type (0, —2).

Here
_ 6 _ 4 _ 6 B 4
R(e1,ez)es = —961,]%(62,63)62 = ?63,]%(61,63)63 = —?61,]%(62,@3)@3 =——e,
6
Rle1, es)er = ﬁerR(ehez)ﬁ =3
So, we have
2 10
5(61,61) = 7935(62762) = 5(63,63) = 7;

From the equation (1) we get A = % and p = 12;7222 Therefore, (g,&, A\, ) is an

almost n-Ricci soliton on M3(¢,&,m, g).

5. n-Ricci solitons on 3-dimensional trans-Sasakian manifolds satisfying
7(£,X)-S=0

M.M. Tripathi and P. Gupta introduced a new curvature tensor named as the 7-
curvature tensor of semi-Riemannian manifold M is defined by [16]

7(X.Y)Z =aoR(X,Y)Z + a1S(Y, Z)X + asS(X, Z)Y +a5S(X,Y)Z + asg(Y, Z)QX
+ a5g(X7 Z)QY + aﬁg(Xv Y)QZ + a77"(9(Ya Z)X - g(Xv Z)Y)v (31)

where a;, i = 1,2, ..., 7 are some smooth functions on M and R, S, @ and r are the
curvature tensor, the Ricci tensor, the Ricci operator of type (1,1) and the scalar
curvature respectively.
(i) T-curvature tensor becomes Ricci curvature tensor R if ag = 1,, a; = 0 for i =
1,2,...,7.
(ii) T-curvature tensor becomes concircular curvature tensor K if ag = 1, a7 = —%
a; =0fori=1,2,..,6.

First we suppose that 3-dimensional trans-Sasakian manifolds with 7-Ricci solitons
satisfy the condition
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7€, X)-S=0.
Then we have
S(r(&,X)Y,Z)+S(Y,7(§,X)Z) =0

for any X,Y, Z € x(M).
Using the equations (14), (24), (25), (26) we get

9(X,Y)n(Z)[ao(8* = o)A + p) + a1(B + N (A + p) + 2a4(8” — @) (A + p) — arr(A + )
—ao(B* = a®) (A + B) + a2(B + N (A + ) — as(p — B — 2(8* — a®))(A + B) + arr(A + B)]
+9(X, Z)n(Y)[ao(B* — a®) (A + ) + a1 (B + A A + 1) + 2a4(8° = o) (A + )
—arr(A+ p) — ao(8” — a®)(A+ B) + az(B+ N (A + ) — as(n— 8= 2(8° — a®))(A + 8)
+arr(A + B)] + (Y, 2)n(X)[2a3(8 + A) (A + ) — as(n — B = 2(8% — a®))(A + B)]
+2n(X)n(Y)n(Z)[(ao — arr)(B — p) — (a1 + as)(A + ) (B — p)
+ (as + a6)](8 — p)(2(a” = %) = A = )] = 0. (32)
Put Z = ¢ we have
9(X,V)[ao(B* — @) (A+ ) + a1 (B + A) (A + p) + 2a4(8* — o®) (A + p) — arr(A + p)
—ao(B” = a®)(A+ B) + az(B+ N (A + ) —as(u — = 2(8” — a”))(A + B) + arr(A + B)]
+9(X,n(YV)[ao(B* — a®) (A + ) + a1 (B + XN (A + ) + 2a4(8” — o) (A + p)
—arr(A+ ) — ao(B2 — o)A+ B) + a2(B+ N (A + ) — as(p — B —2(8° — @*)) (A + B)
+arr(A + B)] + g(Y, E)n(X)[2as (B + A (A + p) — as(p — B = 2(8% — a®)) (A + B)]
+ 2n(X)n(Y)[(a0 — arr)(B — p) — (a1 + as)(A + p) (B — )
+ (as + as)](B — ) (2(a® — %) =X = B)] =0
Setting X = ¢X and Y = ¢Y in the above equation we get
9(¢X,9Y)[ao(8* — a®) (A + p) + ar(B+ N (A + p) + 2a4(8* — @)X + ) — arr(A + p)
—ao(B” = a®) (A + B) + az(B+ N\ + p) —as(p — = 2(8* — a”))(A + B)
+arr(A+ )] =0. (33)
If ay + ag = —2k, ay = k and a5 = k with k(#£ 0) € R then we get
(1= B)2k(n — B) + ao(A + p) — 2raz] = 0,
Again using the equation (26) we have
p=p8 A=2(8"-a*) -8

or

M=5+a ’)\:ﬂ+a7r+(ao+:k)(a2—ﬂ2)

Also we can easily see that M is an Einstein manifold. So we have the following
theorem.

7 — 2a9(8? — a?)
k

Theorem 5.1. If a 3-dimensional trans-Sasakian manifold (M, g, d,n, &, o, B) with
a, B constants admitting an n-Ricci soliton satisfies the condition 7(£,X)-S =0 and
ai+ag = —2k, ay =k and as = k with k(#0) € R then p =3, A=2(8%—a?)—f or

2 2 2 2
= 6+ a77‘72aok(ﬁ —« )’ A\ = B+ a7r+(ag+ik:)(a —B7)

and M is an Finstein manifold.
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Corollary 5.2. A 3-dimensional trans-Sasakian manifold with «, 8 constants satis-
fies the condition T(&,X) - S = 0, there is no Ricci soliton with the potential vector

field €.

Theorem 5.3. If a 3-dimensional trans-Sasakian manifold (M, g, ¢,n, &, a, B) with
a, B constants admitting an n-Ricci soliton satisfies the condition R(§,X)-S =0 i.e.
ap=1,a; =0 fori=1,2,...7 then p = 8, A\ = 2(8? —a?) — B and M is an Einstein
manifold.

Theorem 5.4. If a 3-dimensional trans-Sasakian manifold (M,g,d,n,&, a, B) with
a, B constants admitting an n-Ricci soliton satisfies the condition K(§,X)-S =0
ie. ag = 1,, a7 = —% a; =0 fori=1,2,...,6 then p = 3, A\ =2(B%> —a?) — 3 or
r =6(a® — $2) and M is an Einstein manifold.

6. n-Ricci solitons on 3-dimensional trans-Sasakian manifolds satisfying

S, X)-7=0

We consider 3-dimensional trans-Sasakian manifolds with n-Ricci solitons satisfying
the condition

S, X)-r=0.
So we have

S(X, 7Y, Z2)W), = S 7Y, 2) W)X + S(X,Y)T(&, 2)W — S Y)1(X, Z2)W

+S(X, Z)r(Y, W = S(& Z)r(Y, X)W + S(X, W)7 (Y, 2)§ = S(, W) (Y, Z)X = 0.
Taking inner product with £ then the above equation becomes

S(X,7(Y, 2)W) = 5(&,7(Y, 2)W)n(X) + S(X,Y)n(r (£, 2)W)
=S Y)n(r(X, 2)W) + S(X, Z)n(r(Y, W) = 5(&, Z)n(r (Y, X)W)

Put W = £ and using the equations (12), (14), (24), (25),

9(Y, Z)n(X)[~2(a” — B%)as(B + X) + das(a® — 8°)°] + (X )n(Y)n(Z)[as(8 — 1)’]
+9(X,Y)n(Z)[=(B+ Mao(a® = 8%) + arr +2a1(a” — %) + aa(p — B +2(a” — 57))}]
+9(X, Z)n(YV)[=(B8 + N{-ao(a® = %) — arr + 2a2(a” = 5%) + as(p — B+ 2(a” — 5%))}]

5
+ (XN )(Z)[=(B +N(B = 1) Y ai +2(a” = %) (8 — w)(ar + az + as + as)]

1=3

X)=0. (34)
26) we get

—~ —

+ A+ wg(Y, Z)n(X)[—as(B + N) + 2as(a” = %) + (A + w)n(X)n(Y)n(Z)[— (X + p) Z a;

3

FB-w ait+{n-B+20® =B} al—2(® =B mX ) )INZ)(B -1 a

- - =1
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+2(0® = B%)> " ai[-(B+ Ng(X,Y)n(Z) + (B — w)n(X)n(Y)n(Z)

+2(a” = %) (g(Y, 2)n(X) = g(X, Z)n(Y) — g(X,Y)n(Z))(~as(B + ) + 2a¢(a” — 5%))

=2(a” = B XYV =N+ 1) D _ai+ (B =) 3 _ai+ {n = B+2(a” = B} ) _ail

1=3 =4
—2(a® = B%)g(X, Z)n(Y)[ao(a® = B) + arr + 2a4(a® = %) — a1 (B + N)]
—2(a” = B%)g(X,Y)n(Z)[~ao(a® = B°) — arr + 2a5(a” — B7) — az(B8 + N)]
= 2(a” = B7)g(Y, Z)n(X)[2a6(a” — §°)* — as(B + A)] = 0.
Putting Z = ¢ and setting X = ¢X and Y = ¢Y in the above equation we get
9(6X, 8Y)[= (B + N{ao(a® = B%) + arr + 2a1(a” — B%) + aa(p — B+ 2(a” — 57))}]

6
— (B+N2(0” = B°) D ai+2a3(8 + N)(® — B%) — dag(a® — B%)* + 2a0(a” — B°)°

+ 2a7r(a® — B%) 4+ 2(” — B%)aa(B + A) — 4as(a”® — 5°)*] = 0. (35)
i.e.
9(¢X, 8Y)[= (B + M{ao(a® = B%) + arr +2(a0 — az — az)(a® — B%) — as(B + )

6
+2(0” = 85> ai} +2(a” - B){(e® — (a0 — 2a5 — 2a6) + arr}] = 0.
=1
Ifr = @[2%—1—2&6 —ap] with a7 # 0 then we obtain A = —3, u = 3—2(a?—3?).
So we have the following theorem.

Theorem 6.1. If a 3-dimensional trans-Sasakian manifold (M, g, d,n, &, a, B) with
a, B constants admitting an n-Ricci soliton satisfies the condition S(&, X) -7 =0 and

r= %[2@5 + 2a6 — ap] with a7 #0 then A\ = —f3, u = B — 2(a? — 32).

Corollary 6.2. A 3-dimensional trans-Sasakian manifold with «, B constants satis-
fies the condition S(&,X) - T = 0, there is no Ricci soliton with the potential vector

field €.

Theorem 6.3. If a 3-dimensional trans-Sasakian manifold (M, g, o,n,&, a, B) with
a, B constants admitting an n-Ricci soliton satisfies the condition S(§,X)-R =0 i.e.
ap=1,a; =0 fori=1,2,...7 then p= B+ 4(B* —a?), A= —[2(8? —a?) + 4]

Theorem 6.4. If a 3-dimensional trans-Sasakian manifold (M, g, d,n, &, a, B) with
a, B constants admitting an n-Ricci soliton satisfies the condition S(§,X)-K =0 i.e.
ap=1,a7 = —% a; =0 fori=1,2,...,6 then u = B+4(B>—a?), A = —[2(8*—a?)+4],
orr = 6(a? — B?).

7. n-Ricci solitons on 3-dimensional trans-Sasakian manifolds satisfying

Definition 7.1. Let M be 3-dimensional trans-Sasakian manifold. The M-projective
curvature tensor of M is defined by [14]

M(X,Y)Z = R(X, Y)Z—i(S(Y, DNX-S(X,2)Y+g9(Y,2)QX —g(X,Z)QY). (36)
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We assume 3-dimensional trans-Sasakian manifolds with n-Ricci solitons satisfying
the condition
M(,X)-S=0.
Then we have
S(M(E X)Y, Z) + S(Y,M(§, X)Z) = 0
for any X,Y,Z € x(M).
Using the equations (14), (24), (25), (26), (36) we get

[—5(0% = B+ 1) = 1(B+ V) + (o = B+ )
o)t N - P e )]0 YINE) + g(X, ()

10 = 86 - )+ LT (20? — 57) — (B MY )n(2) = 0.

Put Z = £ in the above equation we get

[-5(0* = A+ 1) = 1(B+ N + (o — B+ )

o an - A g - ) Y) + (X, On(r))
(02 = 88—+ P 00?5 — (84 A)(nr) = 0.

Setting X = ¢X and Y = ¢Y in the above equation we get

=50 = B+ ) = 38+ X) + (0 = BN+ )
o - A - ggexen =0, @)

Again using the equation (26) we have

=75, )‘:2(ﬁ2_a2)_ﬁ~

So we have the following theorem.

Theorem 7.1. If a 3-dimensional trans-Sasakian manifold (M, g, ®,n,&, a, B) with
a, B constants admitting an n-Ricci soliton satisfies the condition M(£,X)-S =0

then u= B, A =2(p%—a?) - p.

Corollary 7.2. A 3-dimensional trans-Sasakian manifold with a, B constants satis-
fies the condition M(&,X) - S =0, there is no Ricci soliton with the potential vector
field €.

8. n-Ricci solitons on 3-dimensional trans-Sasakian manifolds satisfying

Suppose that 3-dimensional trans-Sasakian manifolds with n-Ricci solitons satisfy
the condition
S, X)- M=0.
So we have

S(X, MY, 2)V)E—=SEMY,Z)V)X + S(X,Y)M(E Z)V - SEYIM(X, Z)V
+S(X, Z2)MY, )V =S(& Z)MY, X)V+S(X, VI)M(Y, Z){=S(EVI)M(Y, Z)X = 0.
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Taking inner product with £ then the above equation becomes
S(X, MY, Z)V) = S(§ MY, Z2)V)n(X) + S(X, Y )n(M(E, Z2)V)
=S Y)nM(X, 2)V) + S(X, Z)n(M(Y, V) = 5(&, Z)n(M(Y, X)V)
+ (X, V)n(M(Y, 2)§) — S(E,V)n(M(Y, Z2)X) = 0. (38)

Put V = £ and using the equations (10), (14), (24), (25), (26), (36) the equation (38)
becomes

[(2A+ p+ B)(a® - %) + w + @A+ p+ B){(a® — 5%)
AR D(x, 2m(r) — (X YIm(Z) =0, (39)

Using the equation (27) we have
p=p8 A=2(8"-a*) -8
or
A=2(a® — %) = B, p=—4(a” - 57) + 5.

So we have the following theorem.

Theorem 8.1. If Let a 3-dimensional trans-Sasakian manifold (M, g, ,n,&, a, B)
with «,  constants admitting an n-Ricci soliton satisfies the condition S(§, X)- M =0
then

/u‘:ﬂa )‘:2(627042)*5
or A=2(a® = %) = B, p=—4(a® - *) + B.

Corollary 8.2. A 3-dimensional trans-Sasakian manifold with o, B8 constants satis-
fies the condition S(&, X) - M = 0, there is no Ricci soliton with the potential vector

field €.
Acknowledgement.

The author wish to express her sincere thanks and gratitude to the referee for
valuable suggestions towards the improvement of the paper.

References

[1] C. S. Bagewadi, G. Ingalahalli, S. R. Ashoka, A study on Ricci solitons in Kenmotsu Manifolds,
ISRN Geometry (2013), Article ID 412593, 6 pages.

[2] A. Bhattacharyya, T. Dutta, S. Pahan, Ricci Soliton, Conformal Ricci Soliton And Torqued
Vector Fields, Bulletin of the Transilvania University of Brasov Series III: Mathematics, In-
formatics, Physics 10 (2017), 39-52.

[3] A.M. Blaga, Eta-Ricci solitons on para-Kenmotsu manifolds, Balkan Journal of Geometry and
Its Applications 20 (2015), no. 1, 1-13.

[4] A.M. Blaga, On Gradient n-Einstein Solitons, Kragujevac Journal of Mathematics 42 (2018),
no. 2, 229-237.

[5] B.Y. Chen, S. Deshmukh, Geometry of compact shrinking Ricci solitons, Balkan Journal of
Geometry and Its Applications 19 (2014), no. 1, 13-21.

[6] J.C. Cho, M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku
Math. J. 61 (2009), no. 2, 205-2012.

[7] R.S. Hamilton, The formation of singularities in the Ricci flow, Surveys in Differential Geometry
2 (1995), 7-136,



A NOTE ON 7n-RICCI SOLITONS IN 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS 87

[8] R.S. Hamilton, The Ricci flow on surfaces, Mathematical and general relativity, Contemp. math
71 (1988), 237-261.
[9] G. Ingalahalli, C.S. Bagewadi, Ricci solitons on a-Sasakian Manifolds, ISRN Geometry (2012),
Article ID 421384, 13 pages.
[10] J.C. Marrero, Ihe local structure of trans-Sasakian manifolds, Ann. Mat. Pura. Appl. 162 (1992),
77-86.
[11] J.A. Oubina, New classes of almost contact metric structures, Pub. Math. Debrecen 20 (2015),
no. 1, 1-13.
[12] S.Pahan, T. Dutta, A. Bhattacharyya, Ricci Soliton and n-Ricci Soliton on Generalized Sasakian
Space Form, Filomat 31 (2017), no. 13, 4051-4062.
[13] S. Pigola, M. Rigoli, M. Rimoldi, A. Setti, Ricci almost solitons, Ann. Sc. Norm. Super. Pisa
CL Sci. 10 (2011), 757-799.
[14] G.P. Pokhariyal, R.S. Mishra, Curvature tensor and their relativistic significance II, Yokohama
Math. J. 19 (1971), 97-103.
[15] D.G. Prakasha, B. S. Hadimani, n-Ricci solitons on para-Sasakian manifolds, Journal of Geom-
etry 108 (2016), 383-392.
[16] M.M. Tripathi, P. Gupta, 7-Curvature Tensor On A Semi-Riemannian Manifold, J. Adv. Math.
Studies 4 (2011), no. 1, 117-129.

(Sampa Pahan)
DEPARTMENT OF MATHEMATICS, MRINALINI DATTA MAHAVIDYAPITH, KOLKATA-700051, INDIA
E-mail address: E-mail: sampapahan25@gmail.com



