ISSN: 1223-6934

A note on η -Ricci solitons in 3-dimensional trans-Sasakian manifolds

Sampa Pahan

ABSTRACT. In this paper we study η -Ricci soliton on 3-dimensional trans-Sasakian manifold. First we obtain the existence of η -Einstein soliton on 3-dimensional trans-Sasakian manifold. Next we establish some results on 3-dimensional trans-Sasakian manifold satisfying an η -Ricci soliton when the manifold is Ricci-symmetric, has Codazzi or cyclic η -recurrent Ricci curvature tensor. Later we observe η -Ricci Soliton on 3-dimensional trans-Sasakian manifold satisfying the conditions $\tau \cdot S = 0$, $S \cdot \tau = 0$, $\mathcal{M} \cdot S = 0$ and $S \cdot \mathcal{M} = 0$. Also we construct an example of almost- η -Ricci soliton on 3-dimensional trans-Sasakian manifold.

2010 Mathematics Subject Classification. 53C21, 53C25, 53C44. Key words and phrases. Trans-Sasakian manifold, η -Ricci solitons, τ -curvature tensor, \mathcal{M} -projective curvature tensor.

1. Introduction

In 1982, Hamilton introduced the concept of the Ricci flow in [7] to find a canonical metric on a smooth manifold. The Ricci flow is an evolution equation on a smooth manifold M with Riemannian metric g(t) given by

$$\frac{\partial}{\partial t}g(t) = -2S.$$

Ricci solitons appear as self-similar solutions to Hamiltons's Ricci flow and often arise as limits of dilations of singularities in the Ricci flow [8]. Ricci solitons and η -Ricci solitons are natural generalizations of Einstein metrics. A Ricci soliton is defined on a Riemannian manifold (M,g) by

$$S + \frac{1}{2}\mathcal{L}_Y g = \lambda g$$

where $\mathcal{L}_Y g$ is the Lie derivative along the vector field Y, S is the Ricci tensor of (M,g) and λ is a real constant. If $Y=\nabla f$ for some function f on M, the Ricci soliton alters to a gradient Ricci soliton. A soliton becomes shrinking, steady and expanding according as $\lambda>0$, $\lambda=0$ and $\lambda<0$ respectively.

The concept of η -Ricci soliton was introduced by J.C. Cho and M. Kimura [6] in 2009. They established that in a non-flat complex space form, a real hypersurface considering an η -Ricci soliton becomes a Hopf-hypersurface. An η -Ricci soliton is defined on a Riemannian manifold (M, g) by the following equation

$$2S + \mathcal{L}_{\xi}g + 2\lambda g + 2\mu \eta \otimes \eta = 0, \tag{1}$$

where \mathcal{L}_{ξ} is the Lie derivative operator along the vector field ξ , S is the Ricci tensor of (M,g) and λ , μ are real constants. When λ , μ are smooth functions, η -Ricci soliton becomes almost η -Ricci soliton [13]. If $\mu = 0$, then η -Ricci soliton becomes Ricci soliton.

In [4], A. M. Blaga introduced η -Einstein soliton that is generalization of η -Ricci soliton is defined by the following equation

$$2S + \mathcal{L}_{\xi}g + (2\lambda - r)g + 2\mu\eta \otimes \eta = 0, \tag{2}$$

where \mathcal{L}_{ξ} is the Lie derivative operator along the vector field ξ , S, r are the Ricci tensor and scalar curvature, respectively of the metric, and λ , μ are real constants.

In the last few years, many geometers have studied various types of Ricci soliton and their generalizations in different Contact metric manfolds in [1], [2], [9] etc. In 2014, B. Y. Chen and S. Deshmukh [5] proved the characterizations of compact shrinking trivial Ricci solitons. A.M. Blada worked on η -Ricci soliton on para-kenmotsu manifold in [3]. D. G. Prakasha, B. S. Hadimani [15] studied the non-existence of certain geometric characteristics of para-Sasakian η -Ricci solitons in 2016. In [12], S. Pahan, T. Dutta, and A. Bhattacharyya worked on various types of curvature tensors on Generalized Sasakian space form admitting Ricci soliton and η -Ricci soliton. They also studied conformal Killing vector field, torse forming vector field on Generalized Sasakian space form.

In this paper we study the existence of η -Einstein soliton on 3-dimensional trans-Sasakian manifold. Next we observe some results on 3-dimensional trans-Sasakian manifold satisfying an η -Ricci soliton when the manifold becomes Ricci-symmetric, has Codazzi or cyclic η -recurrent Rici curvature tensor. Next we give an example of an almost η -Ricci soliton on 3-dimensional trans-Sasaian manifold. Later we obtain some different types of curvature tensors and their properties under certain conditions.

2. Preliminaries

The product $\bar{M}=M\times R$ has a natural almost complex structure J with the product metric G being Hermitian metric. The geometry of the almost Hermitian manifold (\bar{M},J,G) gives the geometry of the almost contact metric manifold (M,ϕ,ξ,η,g) . Sixteen different types of structures on M like Sasakian manifold, Kenmotsu manifold etc are given by the almost Hermitian manifold (\bar{M},J,G) . Oubina [11] introduced the idea of trans-Sasakian manifolds in 1985. Then J. C. Marrero [10] have obtained the local structure of trans-Sasakian manifolds. In general a trans-Sasakian manifold $(M,\phi,\xi,\eta,g,\alpha,\beta)$ is called a trans-Sasakian manifold of type (α,β) . An n (= 2m+1) dimensional Riemannian manifold (M,g) is called an almost contact manifold if there exists a (1,1) tensor field ϕ , a vector field ξ and a 1-form η on M such that

$$\phi^2(X) = -X + \eta(X)\xi,\tag{3}$$

$$\eta(\xi) = 1, \eta(\phi X) = 0,\tag{4}$$

$$\phi \xi = 0, \tag{5}$$

$$\eta(X) = q(X, \xi),\tag{6}$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \tag{7}$$

$$g(X, \phi Y) + g(Y, \phi X) = 0, \tag{8}$$

for any vector fields X, Y on M.

A 3-dimensional almost contact metric manifold M is called a trans-Sasakian manifold if it satisfies the following condition

$$(\nabla_X \phi)(Y) = \alpha \{ g(X, Y)\xi - \eta(Y)X \} + \beta \{ g(\phi X, Y)\xi - \eta(Y)\phi X \}, \tag{9}$$

for some smooth functions α , β on M and we say that the trans-Sasakian structure is of type (α, β) . For 3-dimensional trans-Sasakian manifold, from (9) we have,

$$\nabla_X \xi = -\alpha \phi X + \beta (X - \eta(X)\xi), \tag{10}$$

$$(\nabla_X \eta)(Y) = -\alpha g(\phi X, Y) + \beta g(\phi X, \phi Y). \tag{11}$$

In a 3-dimensional trans-Sasakian manifold, we have

$$\begin{split} R(X,Y)Z &= \left[\frac{r}{2} - 2(\alpha^2 - \beta^2 - \xi\beta)\right] [g(Y,Z)X - g(X,Z)Y] \\ &- \left[\frac{r}{2} - 3(\alpha^2 - \beta^2) + \xi\beta\right] [g(Y,Z)\eta(X) - g(X,Z)\eta(Y)]\xi \\ &+ [g(Y,Z)\eta(X) - g(X,Z)\eta(Y)] [\phi \ grad \ \alpha - \ grad \ \beta] \\ &- \left[\frac{r}{2} - 3(\alpha^2 - \beta^2) + \xi\beta\right] \eta(Z) [\eta(Y)X - \eta(X)Y] \\ &- [Z\beta + (\phi Z)\alpha]\eta(Z) [\eta(Y)X - \eta(X)Y] \\ &- [X\beta + (\phi X)\alpha] [g(Y,Z)\xi - \eta(Z)Y] - [Y\beta + (\phi Y)\alpha] [g(X,Z)\xi - \eta(Z)X], \\ S(X,Y) &= \left[\frac{r}{2} - (\alpha^2 - \beta^2 - \xi\beta)\right] g(X,Y) - \left[\frac{r}{2} - 3(\alpha^2 - \beta^2) + \xi\beta\right] \eta(X)\eta(Y) \\ &- [Y\beta + (\phi Y)\alpha]\eta(X) - [X\beta + (\phi X)\alpha]\eta(Y). \end{split}$$

When α and β are constants the above equations reduce to,

$$R(\xi, X)\xi = (\alpha^2 - \beta^2)(\eta(X)\xi - X), \tag{12}$$

$$S(X,\xi) = 2(\alpha^2 - \beta^2)\eta(X),\tag{13}$$

$$R(\xi, X)Y = (\alpha^2 - \beta^2)(g(X, Y)\xi - \eta(Y)X). \tag{14}$$

$$R(X,Y)\xi = (\alpha^2 - \beta^2)(\eta(Y)X - \eta(X)Y).$$
 (15)

Definition 2.1. A trans-Sasakian manifold M^3 is said to be η -Einstein manifold if its Ricci tensor S is of the form

$$S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y),$$

where a, b are smooth functions.

3. η -Einstein solitons on trans-Sasakian manifolds

To study the existence conditions of η -Einstein solitons on 3-dimensional trans-Sasakian manifolds, first we consider a symmetric (0,2)-tensor field L which is parallel with respect to the Levi-Civita connection $(\nabla L=0)$. Then it follows that

$$L(R(X,Y)Z,W) + L(Z,R(X,Y)W) = 0, (16)$$

for an arbitrary vector field W, X, Y, Z on M. Put $X = Z = W = \xi$ we get

$$L(R(X,Y)\xi,\xi) = 0, (17)$$

for any $X, Y \in \chi(M)$ By using the equation (15)

$$L(Y,\xi) = g(Y,\xi)L(\xi,\xi),\tag{18}$$

for any $Y \in \chi(M)$. Differentiating the equation (18) covariantly with respect to the vector field $X \in \chi(M)$ we have

$$L(\nabla_X Y, \xi) + L(Y, \nabla_X \xi) = g(\nabla_X Y, \xi) L(\xi, \xi) + g(Y, \nabla_X \xi) L(\xi, \xi), \tag{19}$$

Using the equation (10) we have

$$\beta L(X,Y) - \alpha L(\phi X,Y) = -\alpha g(\phi X,Y) L(\xi,\xi) + \beta L(\xi,\xi) g(X,Y). \tag{20}$$

Interchanging X by Y we have

$$\beta L(X,Y) - \alpha L(X,\phi Y) = -\alpha g(X,\phi Y) L(\xi,\xi) + \beta L(\xi,\xi) g(X,Y). \tag{21}$$

Then adding the above two equations we get

$$\beta L(X,Y) - \frac{\alpha}{2} [L(\phi X,Y) + L(X,\phi Y)] = \beta L(\xi,\xi) g(X,Y). \tag{22}$$

We see that $\beta L(X,Y) - \frac{\alpha}{2}[L(\phi X,Y) + L(X,\phi Y)]$ is a symmetric tensor of type (0,2). Let $\beta L(X,Y) - \frac{\alpha}{2}[L(\phi X,Y) + L(X,\phi Y)] = \mathcal{L}_{\xi}g(X,Y) + 2S(X,Y) + 2\mu\eta(X)\eta(Y) - rg(X,Y)$.

Then we compute

$$\beta L(\xi, \xi)g(X, Y) = \mathcal{L}_{\xi}g(X, Y) + 2\lambda g(X, Y) + 2\mu \eta(X)\eta(Y) - rg(X, Y).$$

As L is parallel so, $L(\xi,\xi)$ is constant. Hence, we can write $L(\xi,\xi)=-\frac{2}{\beta}\lambda$ where β is constant and $\beta\neq 0$.

Therefore $\mathcal{L}_{\xi}g(X,Y) + 2S(X,Y) + 2\mu\eta(X)\eta(Y) - rg(X,Y) = -2\lambda g(X,Y)$ and so (g,ξ,μ) becomes an η -Einstein soliton. Hence we have the following theorem.

Theorem 3.1. Let $(M, g, \phi, \eta, \xi, \alpha, \beta)$ be a 3-dimensional trans-Sasakian manifold with α , β constants $(\beta \neq 0)$. If the symmetric (0,2) tensor field L satisfying the condition $\beta L(X,Y) - \frac{\alpha}{2}[L(\phi X,Y) + L(X,\phi Y)] = \mathcal{L}_{\xi}g(X,Y) + 2S(X,Y) + 2\mu\eta(X)\eta(Y) - rg(X,Y)$ is parallel with respect to the Levi-Civita connection associated to g. Then (g,ξ,μ) becomes an η -Einstein soliton.

Corollary 3.2. Let $(M, g, \phi, \eta, \xi, \alpha, \beta)$ be a 3-dimensional trans-Sasakian manifold with α , β constants $(\beta \neq 0)$. If the symmetric (0,2) tensor field L satisfying the condition $\beta L(X,Y) - \frac{\alpha}{2}[L(\phi X,Y) + L(X,\phi Y)] = \mathcal{L}_{\xi}g(X,Y) + 2S(X,Y) + 2\mu\eta(X)\eta(Y)$ is parallel with respect to the Levi-Civita connection associated to g. Then (g,ξ,μ) becomes an η -Ricci soliton.

Next we obtain some results on 3-dimensional trans-Sasakian manifold satisfying an η -Ricci soliton when the manifold is Ricci-symmetric, has Codazzi or cyclic η -recurrent Ricci curvature tensor.

Theorem 3.3. Let $(M, g, \phi, \eta, \xi, \alpha, \beta)$ be a 3-dimensional trans-Sasakian manifold with α , β constants $(\beta \neq 0)$ satisfying η -Ricci soliton.

- (i) If the manifold (M, g) is Ricci symmetric (i.e. $\nabla S = 0$), then $\mu = \beta$.
- (ii) If the Ricci tensor is η -recurrent (i.e. $\nabla S = \eta \otimes S$), then $\mu = 2\beta \frac{\alpha^2}{\beta}$.
- (iii) If the Ricci tensor is Codazzi (i.e. $(\nabla_X S)(Y,Z) = (\nabla_Y S)(X,Z)$, for all vector fields X,Y,Z), then $\mu = \beta$.

Proof. From the equation (1) we get

$$2S(X,Y) = -g(\nabla_X \xi, Y) - g(X, \nabla_Y \xi) - 2\lambda g(X,Y) - 2\mu \eta(X)\eta(Y). \tag{23}$$

By using the equation (10) we get

$$S(X,Y) = -(\beta + \lambda)g(X,Y) + (\beta - \mu)\eta(X)\eta(Y) \tag{24}$$

and

$$S(X,\xi) = -(\lambda + \mu)\eta(X). \tag{25}$$

Also from (25) we have

$$\lambda + \mu = 2(\beta^2 - \alpha^2). \tag{26}$$

The Ricci operator Q is defined by g(QX,Y) = S(X,Y). Then we get

$$QX = (\mu - \beta + 2(\alpha^2 - \beta^2))X + (\beta - \mu)\eta(X)\xi.$$
 (27)

(i) We consider that the manifold (M, g) is Ricci symmetric i.e.

$$\nabla S = 0. \tag{28}$$

Now we have

$$\nabla_X S(Y, Z) = XS(Y, Z) - S(\nabla_X Y, Z) - S(\nabla_X Z, Y).$$

Using the equations (24) and (28), we obtain

$$(\beta - \mu)[-\alpha(g(\phi X, Y) + g(\phi X, Z)) + \beta(g(X, Y)\eta(Z) - g(X, Z)\eta(Y)) - 2\beta\eta(X)\eta(Y)\eta(Z)] = 0.$$

Putting $Y = Z = \xi$, the above equation becomes $\mu = \beta$.

(ii) We assume that the manifold (M, g) is η -recurrent i.e.

$$\nabla S = \eta \otimes S. \tag{29}$$

Now we have

$$\nabla_X S(Y, Z) = \eta(X) S(Y, Z), \tag{30}$$

for all vector fields X, Y, Z. Using the equations (24) and (30), we obtain $\mu = 2\beta - \frac{\alpha^2}{\beta}$. (iii) If the Ricci tensor is Codazzi i.e. $(\nabla_X S)(Y, Z) = (\nabla_Y S)(X, Z)$, for all vector fields X, Y, Z, then we have

$$XS(Y,Z) - S(\nabla_X Y, Z) - S(\nabla_X Z, Y) = YS(X,Z) - S(\nabla_Y X, Z) - S(\nabla_Y Z, X).$$

Using the equation (24) and then putting $Y = Z = \xi$, we observe $\mu = \beta$.

4. Example of almost η -Ricci solitons on 3-dimensional trans-Sasakian manifolds

We consider the three dimensional manifold $M = \{(x, y, z) \in \mathbb{R}^3 : x \neq 0\}$ where (x, y, z) are the standard coordinates in \mathbb{R}^3 . The vector fields

$$e_1 = \frac{\partial}{\partial x}, e_2 = x^2 \frac{\partial}{\partial y}, e_3 = x^2 \frac{\partial}{\partial z}$$

are linearly independent at each point of M. Let g be the Riemannian metric defined by

$$g_{ij} = \begin{cases} 1 & \text{for } i = j, \\ 0 & \text{for } i \neq j. \end{cases}$$

Let η be the 1-form defined by $\eta(Z) = g(Z, e_1)$ for any $Z \in \chi(M^3)$. Let ϕ be the (1, 1) tensor field defined by $\phi(e_1) = 0$, $\phi(e_2) = -e_3$, $\phi(e_3) = e_2$. Then using the linearity

property of ϕ and g we have

$$\eta(e_1) = 1, \ \phi^2(Z) = -Z + \eta(Z)e_1, \ g(\phi Z, \phi W) = g(Z, W) - \eta(Z)\eta(W),$$

for any $Z, W \in \chi(M^3)$. Thus for $e_1 = \xi, (\phi, \xi, \eta, g)$ defines an almost contact metric structure on M. Now, after some calculation we have,

$$[e_1, e_3] = \frac{2}{x}e_3, [e_2, e_3] = 0, [e_1, e_2] = \frac{2}{x}e_2.$$

The Riemannian connection ∇ of the metric is given by the Koszul's formula which is

$$2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) - g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y]).$$

By Koszul's formula we get,

$$\begin{split} \nabla_{e_1}e_1 &= 0, \nabla_{e_2}e_1 = -\frac{2}{x}e_2, \nabla_{e_3}e_1 = -\frac{2}{x}e_3, \nabla_{e_1}e_2 = 0, \nabla_{e_2}e_2 = \frac{2}{x}e_1, \\ \nabla_{e_3}e_2 &= 0, \nabla_{e_1}e_3 = 0, \nabla_{e_2}e_3 = 0, \nabla_{e_3}e_3 = \frac{2}{x}e_1. \end{split}$$

From the above it can be easily shown that $M^3(\phi, \xi, \eta, g)$ is a trans-Sasakian manifold of type (0, -2).

Here

$$R(e_1, e_2)e_2 = -\frac{6}{x^2}e_1, R(e_2, e_3)e_2 = \frac{4}{x^2}e_3, R(e_1, e_3)e_3 = -\frac{6}{x^2}e_1, R(e_2, e_3)e_3 = -\frac{4}{x^2}e_2,$$

$$R(e_1, e_3)e_1 = \frac{6}{x^2}e_3, R(e_1, e_2)e_1 = \frac{6}{x^2}e_2.$$

So, we have

$$S(e_1, e_1) = -\frac{12}{r^2}, S(e_2, e_2) = S(e_3, e_3) = -\frac{10}{r^2}.$$

From the equation (1) we get $\lambda = \frac{2}{x}$ and $\mu = \frac{12-2x}{x^2}$. Therefore, (g, ξ, λ, μ) is an almost η -Ricci soliton on $M^3(\phi, \xi, \eta, g)$.

5. $\eta\text{-Ricci}$ solitons on 3-dimensional trans-Sasakian manifolds satisfying $\tau(\xi,X)\cdot S=0$

M.M. Tripathi and P. Gupta introduced a new curvature tensor named as the τ -curvature tensor of semi-Riemannian manifold M is defined by [16]

$$\tau(X,Y)Z = a_0 R(X,Y)Z + a_1 S(Y,Z)X + a_2 S(X,Z)Y + a_3 S(X,Y)Z + a_4 g(Y,Z)QX + a_5 g(X,Z)QY + a_6 g(X,Y)QZ + a_7 r(g(Y,Z)X - g(X,Z)Y),$$
(31)

where a_i , i = 1, 2, ..., 7 are some smooth functions on M and R, S, Q and r are the curvature tensor, the Ricci tensor, the Ricci operator of type (1,1) and the scalar curvature respectively.

(i) τ -curvature tensor becomes Ricci curvature tensor R if $a_0 = 1, a_i = 0$ for i = 1, 2, ..., 7.

(ii) τ -curvature tensor becomes concircular curvature tensor K if $a_0 = 1$, $a_7 = -\frac{1}{6}$ $a_i = 0$ for i = 1, 2, ..., 6.

First we suppose that 3-dimensional trans-Sasakian manifolds with η -Ricci solitons satisfy the condition

$$\tau(\xi, X) \cdot S = 0.$$

Then we have

$$S(\tau(\xi, X)Y, Z) + S(Y, \tau(\xi, X)Z) = 0$$

for any $X, Y, Z \in \chi(M)$.

Using the equations (14), (24), (25), (26) we get

$$g(X,Y)\eta(Z)[a_{0}(\beta^{2}-\alpha^{2})(\lambda+\mu)+a_{1}(\beta+\lambda)(\lambda+\mu)+2a_{4}(\beta^{2}-\alpha^{2})(\lambda+\mu)-a_{7}r(\lambda+\mu)\\-a_{0}(\beta^{2}-\alpha^{2})(\lambda+\beta)+a_{2}(\beta+\lambda)(\lambda+\mu)-a_{5}(\mu-\beta-2(\beta^{2}-\alpha^{2}))(\lambda+\beta)+a_{7}r(\lambda+\beta)]\\+g(X,Z)\eta(Y)[a_{0}(\beta^{2}-\alpha^{2})(\lambda+\mu)+a_{1}(\beta+\lambda)(\lambda+\mu)+2a_{4}(\beta^{2}-\alpha^{2})(\lambda+\mu)\\-a_{7}r(\lambda+\mu)-a_{0}(\beta^{2}-\alpha^{2})(\lambda+\beta)+a_{2}(\beta+\lambda)(\lambda+\mu)-a_{5}(\mu-\beta-2(\beta^{2}-\alpha^{2}))(\lambda+\beta)\\+a_{7}r(\lambda+\beta)]+g(Y,Z)\eta(X)[2a_{3}(\beta+\lambda)(\lambda+\mu)-a_{6}(\mu-\beta-2(\beta^{2}-\alpha^{2}))(\lambda+\beta)]\\+2\eta(X)\eta(Y)\eta(Z)[(a_{0}-a_{7}r)(\beta-\mu)-(a_{1}+a_{3})(\lambda+\mu)(\beta-\mu)\\+(a_{5}+a_{6})](\beta-\mu)(2(\alpha^{2}-\beta^{2})-\lambda-\beta)]=0.$$
(32)

Put $Z = \xi$ we have

$$\begin{split} g(X,Y)[a_0(\beta^2 - \alpha^2)(\lambda + \mu) + a_1(\beta + \lambda)(\lambda + \mu) + 2a_4(\beta^2 - \alpha^2)(\lambda + \mu) - a_7r(\lambda + \mu) \\ - a_0(\beta^2 - \alpha^2)(\lambda + \beta) + a_2(\beta + \lambda)(\lambda + \mu) - a_5(\mu - \beta - 2(\beta^2 - \alpha^2))(\lambda + \beta) + a_7r(\lambda + \beta)] \\ + g(X,\xi)\eta(Y)[a_0(\beta^2 - \alpha^2)(\lambda + \mu) + a_1(\beta + \lambda)(\lambda + \mu) + 2a_4(\beta^2 - \alpha^2)(\lambda + \mu) \\ - a_7r(\lambda + \mu) - a_0(\beta^2 - \alpha^2)(\lambda + \beta) + a_2(\beta + \lambda)(\lambda + \mu) - a_5(\mu - \beta - 2(\beta^2 - \alpha^2))(\lambda + \beta) \\ + a_7r(\lambda + \beta)] + g(Y,\xi)\eta(X)[2a_3(\beta + \lambda)(\lambda + \mu) - a_6(\mu - \beta - 2(\beta^2 - \alpha^2))(\lambda + \beta)] \\ + 2\eta(X)\eta(Y)[(a_0 - a_7r)(\beta - \mu) - (a_1 + a_3)(\lambda + \mu)(\beta - \mu) \\ + (a_5 + a_6)](\beta - \mu)(2(\alpha^2 - \beta^2) - \lambda - \beta)] = 0. \end{split}$$

Setting $X = \phi X$ and $Y = \phi Y$ in the above equation we get

$$g(\phi X, \phi Y)[a_0(\beta^2 - \alpha^2)(\lambda + \mu) + a_1(\beta + \lambda)(\lambda + \mu) + 2a_4(\beta^2 - \alpha^2)(\lambda + \mu) - a_7r(\lambda + \mu) - a_0(\beta^2 - \alpha^2)(\lambda + \beta) + a_2(\beta + \lambda)(\lambda + \mu) - a_5(\mu - \beta - 2(\beta^2 - \alpha^2))(\lambda + \beta) + a_7r(\lambda + \beta)] = 0.$$
(33)

If $a_1 + a_2 = -2k$, $a_4 = k$ and $a_5 = k$ with $k \neq 0 \in \mathbb{R}$ then we get

$$(\mu - \beta)[2k(\mu - \beta) + a_0(\lambda + \mu) - 2ra_7] = 0,$$

Again using the equation (26) we have

$$\mu = \beta, \ \lambda = 2(\beta^2 - \alpha^2) - \beta$$

or

$$\mu = \beta + \frac{a_7r - 2a_0(\beta^2 - \alpha^2)}{k}, \ \lambda = \beta + \frac{a_7r + (a_0 + 2k)(\alpha^2 - \beta^2)}{k}$$

Also we can easily see that M is an Einstein manifold. So we have the following theorem.

Theorem 5.1. If a 3-dimensional trans-Sasakian manifold $(M, g, \phi, \eta, \xi, \alpha, \beta)$ with α , β constants admitting an η -Ricci soliton satisfies the condition $\tau(\xi, X) \cdot S = 0$ and $a_1 + a_2 = -2k$, $a_4 = k$ and $a_5 = k$ with $k(\neq 0) \in \mathbb{R}$ then $\mu = \beta$, $\lambda = 2(\beta^2 - \alpha^2) - \beta$ or $\mu = \beta + \frac{a_7r - 2a_0(\beta^2 - \alpha^2)}{k}$, $\lambda = \beta + \frac{a_7r + (a_0 + 2k)(\alpha^2 - \beta^2)}{k}$ and M is an Einstein manifold.

Corollary 5.2. A 3-dimensional trans-Sasakian manifold with α , β constants satisfies the condition $\tau(\xi, X) \cdot S = 0$, there is no Ricci soliton with the potential vector field ξ .

Theorem 5.3. If a 3-dimensional trans-Sasakian manifold $(M, g, \phi, \eta, \xi, \alpha, \beta)$ with α , β constants admitting an η -Ricci soliton satisfies the condition $R(\xi, X) \cdot S = 0$ i.e. $a_0 = 1, a_i = 0$ for i = 1, 2, ..., 7 then $\mu = \beta$, $\lambda = 2(\beta^2 - \alpha^2) - \beta$ and M is an Einstein manifold.

Theorem 5.4. If a 3-dimensional trans-Sasakian manifold $(M, g, \phi, \eta, \xi, \alpha, \beta)$ with α , β constants admitting an η -Ricci soliton satisfies the condition $K(\xi, X) \cdot S = 0$ i.e. $a_0 = 1, a_7 = -\frac{1}{6} \ a_i = 0$ for i = 1, 2, ..., 6 then $\mu = \beta$, $\lambda = 2(\beta^2 - \alpha^2) - \beta$ or $r = 6(\alpha^2 - \beta^2)$ and M is an Einstein manifold.

6. η -Ricci solitons on 3-dimensional trans-Sasakian manifolds satisfying $S(\xi,X)\cdot \tau=0$

We consider 3-dimensional trans-Sasakian manifolds with η -Ricci solitons satisfying the condition

$$S(\xi, X) \cdot \tau = 0.$$

So we have

$$S(X,\tau(Y,Z)W)\xi-S(\xi,\tau(Y,Z)W)X+S(X,Y)\tau(\xi,Z)W-S(\xi,Y)\tau(X,Z)W\\ +S(X,Z)\tau(Y,\xi)W-S(\xi,Z)\tau(Y,X)W+S(X,W)\tau(Y,Z)\xi-S(\xi,W)\tau(Y,Z)X=0.$$
 Taking inner product with ξ then the above equation becomes

$$S(X, \tau(Y, Z)W) - S(\xi, \tau(Y, Z)W)\eta(X) + S(X, Y)\eta(\tau(\xi, Z)W)$$
$$-S(\xi, Y)\eta(\tau(X, Z)W) + S(X, Z)\eta(\tau(Y, \xi)W) - S(\xi, Z)\eta(\tau(Y, X)W)$$
$$+S(X, W)\eta(\tau(Y, Z)\xi) - S(\xi, W)\eta(\tau(Y, Z)X) = 0. \tag{34}$$

Put $W = \xi$ and using the equations (12), (14), (24), (25), (26) we get

$$+ (\beta - \mu) \sum_{i=3}^{5} a_i + \{\mu - \beta + 2(\alpha^2 - \beta^2)\} \sum_{i=4}^{5} a_i] - 2(\alpha^2 - \beta^2) \eta(X) \eta(Y) \eta(Z) (\beta - \mu) \sum_{i=1}^{3} a_i$$

$$+ 2(\alpha^{2} - \beta^{2}) \sum_{i=1}^{6} a_{i} [-(\beta + \lambda)g(X,Y)\eta(Z) + (\beta - \mu)]\eta(X)\eta(Y)\eta(Z)$$

$$+ 2(\alpha^{2} - \beta^{2})(g(Y,Z)\eta(X) - g(X,Z)\eta(Y) - g(X,Y)\eta(Z))(-a_{3}(\beta + \lambda) + 2a_{6}(\alpha^{2} - \beta^{2}))$$

$$- 2(\alpha^{2} - \beta^{2})\eta(X)\eta(Y)\eta(Z)[-(\lambda + \mu)\sum_{i=1}^{2} a_{i} + (\beta - \mu)\sum_{i=3}^{5} a_{i} + \{\mu - \beta + 2(\alpha^{2} - \beta^{2})\}\sum_{i=4}^{5} a_{i}]$$

$$- 2(\alpha^{2} - \beta^{2})g(X,Z)\eta(Y)[a_{0}(\alpha^{2} - \beta^{2}) + a_{7}r + 2a_{4}(\alpha^{2} - \beta^{2}) - a_{1}(\beta + \lambda)]$$

$$- 2(\alpha^{2} - \beta^{2})g(X,Y)\eta(Z)[-a_{0}(\alpha^{2} - \beta^{2}) - a_{7}r + 2a_{5}(\alpha^{2} - \beta^{2}) - a_{2}(\beta + \lambda)]$$

$$- 2(\alpha^{2} - \beta^{2})g(Y,Z)\eta(X)[2a_{6}(\alpha^{2} - \beta^{2})^{2} - a_{3}(\beta + \lambda)] = 0.$$
Putting $Z = \xi$ and setting $X = \phi X$ and $Y = \phi Y$ in the above equation we get
$$g(\phi X, \phi Y)[-(\beta + \lambda)\{a_{0}(\alpha^{2} - \beta^{2}) + a_{7}r + 2a_{1}(\alpha^{2} - \beta^{2}) + a_{4}(\mu - \beta + 2(\alpha^{2} - \beta^{2}))\}]$$

$$g(\phi X, \phi Y)[-(\beta + \lambda)(a_0(\alpha - \beta') + a_7 Y + 2a_1(\alpha - \beta') + a_4(\mu - \beta + 2(\alpha' - \beta'))]]$$

$$-(\beta + \lambda)2(\alpha^2 - \beta^2) \sum_{i=1}^{6} a_i + 2a_3(\beta + \lambda)(\alpha^2 - \beta^2) - 4a_6(\alpha^2 - \beta^2)^2 + 2a_0(\alpha^2 - \beta^2)^2$$

$$+ 2a_7 r(\alpha^2 - \beta^2) + 2(\alpha^2 - \beta^2)a_2(\beta + \lambda) - 4a_5(\alpha^2 - \beta^2)^2] = 0.$$
(35)

i.e.

$$g(\phi X, \phi Y)[-(\beta + \lambda)\{a_0(\alpha^2 - \beta^2) + a_7r + 2(a_0 - a_2 - a_3)(\alpha^2 - \beta^2) - a_4(\beta + \lambda) + 2(\alpha^2 - \beta^2)\sum_{i=1}^{6} a_i\} + 2(\alpha^2 - \beta^2)\{(\alpha^2 - \beta^2)(a_0 - 2a_5 - 2a_6) + a_7r\}] = 0.$$

If $r = \frac{(\alpha^2 - \beta^2)}{a_7} [2a_5 + 2a_6 - a_0]$ with $a_7 \neq 0$ then we obtain $\lambda = -\beta$, $\mu = \beta - 2(\alpha^2 - \beta^2)$. So we have the following theorem.

Theorem 6.1. If a 3-dimensional trans-Sasakian manifold $(M, g, \phi, \eta, \xi, \alpha, \beta)$ with α , β constants admitting an η -Ricci soliton satisfies the condition $S(\xi, X) \cdot \tau = 0$ and $r = \frac{(\alpha^2 - \beta^2)}{a_7} [2a_5 + 2a_6 - a_0]$ with $a_7 \neq 0$ then $\lambda = -\beta$, $\mu = \beta - 2(\alpha^2 - \beta^2)$.

Corollary 6.2. A 3-dimensional trans-Sasakian manifold with α , β constants satisfies the condition $S(\xi, X) \cdot \tau = 0$, there is no Ricci soliton with the potential vector field ξ .

Theorem 6.3. If a 3-dimensional trans-Sasakian manifold $(M, g, \phi, \eta, \xi, \alpha, \beta)$ with α , β constants admitting an η -Ricci soliton satisfies the condition $S(\xi, X) \cdot R = 0$ i.e. $a_0 = 1, a_i = 0$ for i = 1, 2, ..., 7 then $\mu = \beta + 4(\beta^2 - \alpha^2), \lambda = -[2(\beta^2 - \alpha^2) + \beta].$

Theorem 6.4. If a 3-dimensional trans-Sasakian manifold $(M, g, \phi, \eta, \xi, \alpha, \beta)$ with α , β constants admitting an η -Ricci soliton satisfies the condition $S(\xi, X) \cdot K = 0$ i.e. $a_0 = 1, a_7 = -\frac{1}{6} a_i = 0$ for i = 1, 2, ..., 6 then $\mu = \beta + 4(\beta^2 - \alpha^2), \lambda = -[2(\beta^2 - \alpha^2) + \beta],$ or $r = 6(\alpha^2 - \beta^2)$.

7. η -Ricci solitons on 3-dimensional trans-Sasakian manifolds satisfying $\mathcal{M}(\xi,X)\cdot S=0$

Definition 7.1. Let M be 3-dimensional trans-Sasakian manifold. The \mathcal{M} -projective curvature tensor of M is defined by [14]

$$\mathcal{M}(X,Y)Z = R(X,Y)Z - \frac{1}{4}(S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY).$$
(36)

We assume 3-dimensional trans-Sasakian manifolds with η -Ricci solitons satisfying the condition

$$\mathcal{M}(\xi, X) \cdot S = 0.$$

Then we have

$$S(\mathcal{M}(\xi, X)Y, Z) + S(Y, \mathcal{M}(\xi, X)Z) = 0$$

for any $X, Y, Z \in \chi(M)$.

Using the equations (14), (24), (25), (26), (36) we get

$$[-\frac{1}{2}(\alpha^{2} - \beta^{2})(\lambda + \mu) - \frac{1}{4}(\beta + \lambda) + (\alpha^{2} - \beta^{2})(\lambda + \beta)$$

$$+ \frac{1}{4}(\lambda + \beta)(\mu + \lambda) - \frac{(\lambda + \beta)}{4}(\mu - \beta + 2(\alpha^{2} - \beta^{2}))](g(X, Y)\eta(Z) + g(X, Z)\eta(Y))$$

$$+ [-(\alpha^{2} - \beta^{2})(\beta - \mu) + \frac{(\beta - \mu)}{4}(2(\alpha^{2} - \beta^{2}) - (\beta + \lambda))]\eta(X)\eta(Y)\eta(Z) = 0.$$

Put $Z = \xi$ in the above equation we get

$$[-\frac{1}{2}(\alpha^{2} - \beta^{2})(\lambda + \mu) - \frac{1}{4}(\beta + \lambda) + (\alpha^{2} - \beta^{2})(\lambda + \beta) + \frac{1}{4}(\lambda + \beta)(\mu + \lambda) - \frac{(\lambda + \beta)}{4}(\mu - \beta + 2(\alpha^{2} - \beta^{2}))](g(X, Y) + g(X, \xi)\eta(Y)) + [-(\alpha^{2} - \beta^{2})(\beta - \mu) + \frac{(\beta - \mu)}{4}(2(\alpha^{2} - \beta^{2}) - (\beta + \lambda))]\eta(X)\eta(Y) = 0.$$

Setting $X = \phi X$ and $Y = \phi Y$ in the above equation we get

$$[-\frac{1}{2}(\alpha^{2} - \beta^{2})(\lambda + \mu) - \frac{1}{4}(\beta + \lambda) + (\alpha^{2} - \beta^{2})(\lambda + \beta) + \frac{1}{4}(\lambda + \beta)(\mu + \lambda) - \frac{(\lambda + \beta)}{4}(\mu - \beta + 2(\alpha^{2} - \beta^{2}))]g(\phi X, \phi Y) = 0.$$
 (37)

Again using the equation (26) we have

$$\mu = \beta$$
, $\lambda = 2(\beta^2 - \alpha^2) - \beta$.

So we have the following theorem.

Theorem 7.1. If a 3-dimensional trans-Sasakian manifold $(M, g, \phi, \eta, \xi, \alpha, \beta)$ with α , β constants admitting an η -Ricci soliton satisfies the condition $\mathcal{M}(\xi, X) \cdot S = 0$ then $\mu = \beta$, $\lambda = 2(\beta^2 - \alpha^2) - \beta$.

Corollary 7.2. A 3-dimensional trans-Sasakian manifold with α , β constants satisfies the condition $\mathcal{M}(\xi, X) \cdot S = 0$, there is no Ricci soliton with the potential vector field ξ .

8. $\eta\text{-Ricci solitons}$ on 3-dimensional trans-Sasakian manifolds satisfying $S(\xi,X)\cdot\mathcal{M}=0$

Suppose that 3-dimensional trans-Sasakian manifolds with η -Ricci solitons satisfy the condition

$$S(\xi, X) \cdot \mathcal{M} = 0.$$

So we have

$$S(X, \mathcal{M}(Y, Z)V)\xi - S(\xi, \mathcal{M}(Y, Z)V)X + S(X, Y)\mathcal{M}(\xi, Z)V - S(\xi, Y)\mathcal{M}(X, Z)V$$
$$+S(X, Z)\mathcal{M}(Y, \xi)V - S(\xi, Z)\mathcal{M}(Y, X)V + S(X, V)\mathcal{M}(Y, Z)\xi - S(\xi, V)\mathcal{M}(Y, Z)X = 0.$$

Taking inner product with ξ then the above equation becomes

$$S(X, \mathcal{M}(Y, Z)V) - S(\xi, \mathcal{M}(Y, Z)V)\eta(X) + S(X, Y)\eta(\mathcal{M}(\xi, Z)V)$$

$$- S(\xi, Y)\eta(\mathcal{M}(X, Z)V) + S(X, Z)\eta(\mathcal{M}(Y, \xi)V) - S(\xi, Z)\eta(\mathcal{M}(Y, X)V)$$

$$+ S(X, V)\eta(\mathcal{M}(Y, Z)\xi) - S(\xi, V)\eta(\mathcal{M}(Y, Z)X) = 0.$$
(38)

Put $V = \xi$ and using the equations (10), (14), (24), (25), (26), (36) the equation (38) becomes

$$[(2\lambda + \mu + \beta)(\alpha^2 - \beta^2) + \frac{(2\lambda + \mu + \beta)^2}{4} + (2\lambda + \mu + \beta)\{(\alpha^2 - \beta^2) + \frac{(2\lambda + \mu + \beta)}{4}\}](g(X, Z)\eta(Y) - g(X, Y)\eta(Z)) = 0.$$
(39)

Using the equation (27) we have

$$\mu = \beta$$
, $\lambda = 2(\beta^2 - \alpha^2) - \beta$

or

$$\lambda = 2(\alpha^2 - \beta^2) - \beta, \ \mu = -4(\alpha^2 - \beta^2) + \beta.$$

So we have the following theorem.

Theorem 8.1. If Let a 3-dimensional trans-Sasakian manifold $(M, g, \phi, \eta, \xi, \alpha, \beta)$ with α , β constants admitting an η -Ricci soliton satisfies the condition $S(\xi, X) \cdot \mathcal{M} = 0$ then

$$\mu = \beta, \ \lambda = 2(\beta^2 - \alpha^2) - \beta$$
 or $\lambda = 2(\alpha^2 - \beta^2) - \beta$, $\mu = -4(\alpha^2 - \beta^2) + \beta$.

Corollary 8.2. A 3-dimensional trans-Sasakian manifold with α , β constants satisfies the condition $S(\xi, X) \cdot \mathcal{M} = 0$, there is no Ricci soliton with the potential vector field ξ .

Acknowledgement.

The author wish to express her sincere thanks and gratitude to the referee for valuable suggestions towards the improvement of the paper.

References

- C. S. Bagewadi, G. Ingalahalli, S. R. Ashoka, A study on Ricci solitons in Kenmotsu Manifolds, ISRN Geometry (2013), Article ID 412593, 6 pages.
- [2] A. Bhattacharyya, T. Dutta, S. Pahan, Ricci Soliton, Conformal Ricci Soliton And Torqued Vector Fields, Bulletin of the Transilvania University of Brasov Series III: Mathematics, Informatics, Physics 10 (2017), 39–52.
- [3] A.M. Blaga, Eta-Ricci solitons on para-Kenmotsu manifolds, Balkan Journal of Geometry and Its Applications 20 (2015), no. 1, 1–13.
- [4] A.M. Blaga, On Gradient η-Einstein Solitons, Kragujevac Journal of Mathematics 42 (2018), no. 2, 229–237.
- [5] B.Y. Chen, S. Deshmukh, Geometry of compact shrinking Ricci solitons, Balkan Journal of Geometry and Its Applications 19 (2014), no. 1, 13–21.
- [6] J.C. Cho, M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, *Tohoku Math. J.* 61 (2009), no. 2, 205–2012.
- [7] R.S. Hamilton, The formation of singularities in the Ricci flow, Surveys in Differential Geometry 2 (1995), 7–136,

- [8] R.S. Hamilton, The Ricci flow on surfaces, Mathematical and general relativity, Contemp. math 71 (1988), 237–261.
- [9] G. Ingalahalli, C.S. Bagewadi, Ricci solitons on α -Sasakian Manifolds, ISRN Geometry (2012), Article ID 421384, 13 pages.
- [10] J.C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. Pura. Appl. 162 (1992), 77–86.
- [11] J.A. Oubina, New classes of almost contact metric structures, Pub. Math. Debrecen 20 (2015), no. 1, 1–13.
- [12] S. Pahan, T. Dutta, A. Bhattacharyya, Ricci Soliton and η-Ricci Soliton on Generalized Sasakian Space Form, Filomat 31 (2017), no. 13, 4051–4062.
- [13] S. Pigola, M. Rigoli, M. Rimoldi, A. Setti, Ricci almost solitons, Ann. Sc. Norm. Super. Pisa Cl. Sci. 10 (2011), 757–799.
- [14] G.P. Pokhariyal, R.S. Mishra, Curvature tensor and their relativistic significance II, Yokohama Math. J. 19 (1971), 97–103.
- [15] D.G. Prakasha, B. S. Hadimani, η-Ricci solitons on para-Sasakian manifolds, Journal of Geometry 108 (2016), 383–392.
- [16] M.M. Tripathi, P. Gupta, τ -Curvature Tensor On A Semi-Riemannian Manifold, J. Adv. Math. Studies 4 (2011), no. 1, 117–129.

(Sampa Pahan)

Department of Mathematics, Mrinalini Datta Mahavidyapith, Kolkata-700051, India $E\text{-}mail\ address$: E-mail: sampaphan250gmail.com