A note on η-Ricci solitons in 3-dimensional trans-Sasakian manifolds

Sampa Pahan

Abstract

In this paper we study η-Ricci soliton on 3-dimensional trans-Sasakian manifold. First we obtain the existence of η-Einstein soliton on 3 -dimensional trans-Sasakian manifold. Next we establish some results on 3 -dimensional trans-Sasakian manifold satisfying an η-Ricci soliton when the manifold is Ricci-symmetric, has Codazzi or cyclic η-recurrent Ricci curvature tensor. Later we observe η-Ricci Soliton on 3-dimensional trans-Sasakian manifold satisfying the conditions $\tau \cdot S=0, S \cdot \tau=0, \mathcal{M} \cdot S=0$ and $S \cdot \mathcal{M}=0$. Also we construct an example of almost- η-Ricci soliton on 3-dimensional trans-Sasakian manifold.

2010 Mathematics Subject Classification. 53C21, 53C25, 53C44.
Key words and phrases. Trans-Sasakian manifold, η-Ricci solitons, τ-curvature tensor, \mathcal{M}-projective curvature tensor.

1. Introduction

In 1982, Hamilton introduced the concept of the Ricci flow in [7] to find a canonical metric on a smooth manifold. The Ricci flow is an evolution equation on a smooth manifold M with Riemannian metric $g(t)$ given by

$$
\frac{\partial}{\partial t} g(t)=-2 S
$$

Ricci solitons appear as self-similar solutions to Hamiltons's Ricci flow and often arise as limits of dilations of singularities in the Ricci flow [8]. Ricci solitons and η-Ricci solitons are natural generalizations of Einstein metrics. A Ricci soliton is defined on a Riemannian manifold (M, g) by

$$
S+\frac{1}{2} \mathcal{L}_{Y} g=\lambda g
$$

where $\mathcal{L}_{Y} g$ is the Lie derivative along the vector field Y, S is the Ricci tensor of (M, g) and λ is a real constant. If $Y=\nabla f$ for some function f on M, the Ricci soliton alters to a gradient Ricci soliton. A soliton becomes shrinking, steady and expanding according as $\lambda>0, \lambda=0$ and $\lambda<0$ respectively.

The concept of η-Ricci soliton was introduced by J.C. Cho and M. Kimura [6] in 2009. They established that in a non-flat complex space form, a real hypersurface considering an η-Ricci soliton becomes a Hopf-hypersurface. An η-Ricci soliton is defined on a Riemannian manifold (M, g) by the following equation

$$
\begin{equation*}
2 S+\mathcal{L}_{\xi} g+2 \lambda g+2 \mu \eta \otimes \eta=0 \tag{1}
\end{equation*}
$$

where \mathcal{L}_{ξ} is the Lie derivative operator along the vector field ξ, S is the Ricci tensor of (M, g) and λ, μ are real constants. When λ, μ are smooth functions, η-Ricci soliton becomes almost η-Ricci soliton [13]. If $\mu=0$, then η-Ricci soliton becomes Ricci soliton.

In [4], A. M. Blaga introduced η-Einstein soliton that is generalization of η-Ricci soliton is defined by the following equation

$$
\begin{equation*}
2 S+\mathcal{L}_{\xi} g+(2 \lambda-r) g+2 \mu \eta \otimes \eta=0 \tag{2}
\end{equation*}
$$

where \mathcal{L}_{ξ} is the Lie derivative operator along the vector field ξ, S, r are the Ricci tensor and scalar curvature, respectively of the metric, and λ, μ are real constants.

In the last few years, many geometers have studied various types of Ricci soliton and their generalizations in different Contact metric manfolds in [1], [2], [9] etc. In 2014, B. Y. Chen and S. Deshmukh [5] proved the characterizations of compact shrinking trivial Ricci solitons. A.M. Blada worked on η-Ricci soliton on para-kenmotsu manifold in [3]. D. G. Prakasha, B. S. Hadimani [15] studied the non-existence of certain geometric characteristics of para-Sasakian η-Ricci solitons in 2016. In [12], S. Pahan, T. Dutta, and A. Bhattacharyya worked on various types of curvature tensors on Generalized Sasakian space form admitting Ricci soliton and η-Ricci soliton. They also studied conformal Killing vector field, torse forming vector field on Generalized Sasakian space form.

In this paper we study the existence of η-Einstein soliton on 3-dimensional transSasakian manifold. Next we observe some results on 3-dimensional trans-Sasakian manifold satisfying an η-Ricci soliton when the manifold becomes Ricci-symmetric, has Codazzi or cyclic η-recurrent Rici curvature tensor. Next we give an example of an almost η-Ricci soliton on 3-dimensional trans-Sasaian manifold. Later we obtain some different types of curvature tensors and their properties under certain conditions.

2. Preliminaries

The product $\bar{M}=M \times R$ has a natural almost complex structure J with the product metric G being Hermitian metric. The geometry of the almost Hermitian manifold (\bar{M}, J, G) gives the geometry of the almost contact metric manifold (M, ϕ, ξ, η, g). Sixteen different types of structures on M like Sasakian manifold, Kenmotsu manifold etc are given by the almost Hermitian manifold (\bar{M}, J, G). Oubina [11] introduced the idea of trans-Sasakian manifolds in 1985. Then J. C. Marrero [10] have obtained the local structure of trans-Sasakian manifolds. In general a trans-Sasakian manifold $(M, \phi, \xi, \eta, g, \alpha, \beta)$ is called a trans-Sasakian manifold of type (α, β). An $n(=2 m+1)$ dimensional Riemannian manifold (M, g) is called an almost contact manifold if there exists a $(1,1)$ tensor field ϕ, a vector field ξ and a 1-form η on M such that

$$
\begin{gather*}
\phi^{2}(X)=-X+\eta(X) \xi \tag{3}\\
\eta(\xi)=1, \eta(\phi X)=0 \tag{4}\\
\phi \xi=0 \tag{5}\\
\eta(X)=g(X, \xi) \tag{6}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{7}\\
g(X, \phi Y)+g(Y, \phi X)=0 \tag{8}
\end{gather*}
$$

for any vector fields X, Y on M.

A 3-dimensional almost contact metric manifold M is called a trans-Sasakian manifold if it satisfies the following condition

$$
\begin{equation*}
\left(\nabla_{X} \phi\right)(Y)=\alpha\{g(X, Y) \xi-\eta(Y) X\}+\beta\{g(\phi X, Y) \xi-\eta(Y) \phi X\} \tag{9}
\end{equation*}
$$

for some smooth functions α, β on M and we say that the trans-Sasakian structure is of type (α, β). For 3-dimensional trans-Sasakian manifold, from (9) we have,

$$
\begin{gather*}
\nabla_{X} \xi=-\alpha \phi X+\beta(X-\eta(X) \xi) \tag{10}\\
\left(\nabla_{X} \eta\right)(Y)=-\alpha g(\phi X, Y)+\beta g(\phi X, \phi Y) \tag{11}
\end{gather*}
$$

In a 3 -dimensional trans-Sasakian manifold, we have

$$
\begin{aligned}
R(X, Y) Z= & {\left[\frac{r}{2}-2\left(\alpha^{2}-\beta^{2}-\xi \beta\right)\right][g(Y, Z) X-g(X, Z) Y] } \\
& -\left[\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)+\xi \beta\right][g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] \xi \\
& +[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)][\phi \operatorname{grad} \alpha-\operatorname{grad} \beta] \\
& -\left[\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)+\xi \beta\right] \eta(Z)[\eta(Y) X-\eta(X) Y] \\
& -[Z \beta+(\phi Z) \alpha] \eta(Z)[\eta(Y) X-\eta(X) Y] \\
& -[X \beta+(\phi X) \alpha][g(Y, Z) \xi-\eta(Z) Y]-[Y \beta+(\phi Y) \alpha][g(X, Z) \xi-\eta(Z) X], \\
S(X, Y)= & {\left[\frac{r}{2}-\left(\alpha^{2}-\beta^{2}-\xi \beta\right)\right] g(X, Y)-\left[\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)+\xi \beta\right] \eta(X) \eta(Y) } \\
& -[Y \beta+(\phi Y) \alpha] \eta(X)-[X \beta+(\phi X) \alpha] \eta(Y) .
\end{aligned}
$$

When α and β are constants the above equations reduce to,

$$
\begin{gather*}
R(\xi, X) \xi=\left(\alpha^{2}-\beta^{2}\right)(\eta(X) \xi-X) \tag{12}\\
S(X, \xi)=2\left(\alpha^{2}-\beta^{2}\right) \eta(X) \tag{13}\\
R(\xi, X) Y=\left(\alpha^{2}-\beta^{2}\right)(g(X, Y) \xi-\eta(Y) X) \tag{14}\\
R(X, Y) \xi=\left(\alpha^{2}-\beta^{2}\right)(\eta(Y) X-\eta(X) Y) \tag{15}
\end{gather*}
$$

Definition 2.1. A trans-Sasakian manifold M^{3} is said to be η-Einstein manifold if its Ricci tensor S is of the form

$$
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y)
$$

where a, b are smooth functions.

3. η-Einstein solitons on trans-Sasakian manifolds

To study the existence conditions of η-Einstein solitons on 3-dimensional transSasakian manifolds, first we consider a symmetric (0,2)-tensor field L which is parallel with respect to the Levi-Civita connection $(\nabla L=0)$. Then it follows that

$$
\begin{equation*}
L(R(X, Y) Z, W)+L(Z, R(X, Y) W)=0 \tag{16}
\end{equation*}
$$

for an arbitrary vector field W, X, Y, Z on M. Put $X=Z=W=\xi$ we get

$$
\begin{equation*}
L(R(X, Y) \xi, \xi)=0 \tag{17}
\end{equation*}
$$

for any $X, Y \in \chi(M)$ By using the equation (15)

$$
\begin{equation*}
L(Y, \xi)=g(Y, \xi) L(\xi, \xi) \tag{18}
\end{equation*}
$$

for any $Y \in \chi(M)$. Differentiating the equation (18) covariantly with respect to the vector field $X \in \chi(M)$ we have

$$
\begin{equation*}
L\left(\nabla_{X} Y, \xi\right)+L\left(Y, \nabla_{X} \xi\right)=g\left(\nabla_{X} Y, \xi\right) L(\xi, \xi)+g\left(Y, \nabla_{X} \xi\right) L(\xi, \xi) \tag{19}
\end{equation*}
$$

Using the equation (10) we have

$$
\begin{equation*}
\beta L(X, Y)-\alpha L(\phi X, Y)=-\alpha g(\phi X, Y) L(\xi, \xi)+\beta L(\xi, \xi) g(X, Y) \tag{20}
\end{equation*}
$$

Interchanging X by Y we have

$$
\begin{equation*}
\beta L(X, Y)-\alpha L(X, \phi Y)=-\alpha g(X, \phi Y) L(\xi, \xi)+\beta L(\xi, \xi) g(X, Y) \tag{21}
\end{equation*}
$$

Then adding the above two equations we get

$$
\begin{equation*}
\beta L(X, Y)-\frac{\alpha}{2}[L(\phi X, Y)+L(X, \phi Y)]=\beta L(\xi, \xi) g(X, Y) \tag{22}
\end{equation*}
$$

We see that $\beta L(X, Y)-\frac{\alpha}{2}[L(\phi X, Y)+L(X, \phi Y)]$ is a symmetric tensor of type $(0,2)$. Let $\beta L(X, Y)-\frac{\alpha}{2}[L(\phi X, Y)+L(X, \phi Y)]=\mathcal{L}_{\xi} g(X, Y)+2 S(X, Y)+2 \mu \eta(X) \eta(Y)-$ $r g(X, Y)$.
Then we compute

$$
\beta L(\xi, \xi) g(X, Y)=\mathcal{L}_{\xi} g(X, Y)+2 \lambda g(X, Y)+2 \mu \eta(X) \eta(Y)-r g(X, Y)
$$

As L is parallel so, $L(\xi, \xi)$ is constant. Hence, we can write $L(\xi, \xi)=-\frac{2}{\beta} \lambda$ where β is constant and $\beta \neq 0$.
Therefore $\mathcal{L}_{\xi} g(X, Y)+2 S(X, Y)+2 \mu \eta(X) \eta(Y)-r g(X, Y)=-2 \lambda g(X, Y)$ and so (g, ξ, μ) becomes an η-Einstein soliton. Hence we have the following theorem.
Theorem 3.1. Let $(M, g, \phi, \eta, \xi, \alpha, \beta)$ be a 3-dimensional trans-Sasakian manifold with α, β constants $(\beta \neq 0)$. If the symmetric $(0,2)$ tensor field L satisfying the condition $\beta L(X, Y)-\frac{\alpha}{2}[L(\phi X, Y)+L(X, \phi Y)]=\mathcal{L}_{\xi} g(X, Y)+2 S(X, Y)+2 \mu \eta(X) \eta(Y)-$ $r g(X, Y)$ is parallel with respect to the Levi-Civita connection associated to g. Then (g, ξ, μ) becomes an η-Einstein soliton.
Corollary 3.2. Let $(M, g, \phi, \eta, \xi, \alpha, \beta)$ be a 3-dimensional trans-Sasakian manifold with α, β constants $(\beta \neq 0)$. If the symmetric $(0,2)$ tensor field L satisfying the condition $\beta L(X, Y)-\frac{\alpha}{2}[L(\phi X, Y)+L(X, \phi Y)]=\mathcal{L}_{\xi} g(X, Y)+2 S(X, Y)+2 \mu \eta(X) \eta(Y)$ is parallel with respect to the Levi-Civita connection associated to g. Then (g, ξ, μ) becomes an η-Ricci soliton.

Next we obtain some results on 3-dimensional trans-Sasakian manifold satisfying an η-Ricci soliton when the manifold is Ricci-symmetric, has Codazzi or cyclic η recurrent Ricci curvature tensor.
Theorem 3.3. Let $(M, g, \phi, \eta, \xi, \alpha, \beta)$ be a 3-dimensional trans-Sasakian manifold with α, β constants $(\beta \neq 0)$ satisfying η-Ricci soliton.
(i) If the manifold (M, g) is Ricci symmetric (i.e. $\nabla S=0$), then $\mu=\beta$.
(ii) If the Ricci tensor is η-recurrent (i.e. $\nabla S=\eta \otimes S$), then $\mu=2 \beta-\frac{\alpha^{2}}{\beta}$.
(iii) If the Ricci tensor is Codazzi (i.e. $\left(\nabla_{X} S\right)(Y, Z)=\left(\nabla_{Y} S\right)(X, Z)$, for all vector fields $X, Y, Z)$, then $\mu=\beta$.
Proof. From the equation (1) we get

$$
\begin{equation*}
2 S(X, Y)=-g\left(\nabla_{X} \xi, Y\right)-g\left(X, \nabla_{Y} \xi\right)-2 \lambda g(X, Y)-2 \mu \eta(X) \eta(Y) \tag{23}
\end{equation*}
$$

By using the equation (10) we get

$$
\begin{equation*}
S(X, Y)=-(\beta+\lambda) g(X, Y)+(\beta-\mu) \eta(X) \eta(Y) \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
S(X, \xi)=-(\lambda+\mu) \eta(X) \tag{25}
\end{equation*}
$$

Also from (25) we have

$$
\begin{equation*}
\lambda+\mu=2\left(\beta^{2}-\alpha^{2}\right) \tag{26}
\end{equation*}
$$

The Ricci operator Q is defined by $g(Q X, Y)=S(X, Y)$. Then we get

$$
\begin{equation*}
Q X=\left(\mu-\beta+2\left(\alpha^{2}-\beta^{2}\right)\right) X+(\beta-\mu) \eta(X) \xi \tag{27}
\end{equation*}
$$

(i) We consider that the manifold (M, g) is Ricci symmetric i.e.

$$
\begin{equation*}
\nabla S=0 \tag{28}
\end{equation*}
$$

Now we have

$$
\nabla_{X} S(Y, Z)=X S(Y, Z)-S\left(\nabla_{X} Y, Z\right)-S\left(\nabla_{X} Z, Y\right)
$$

Using the equations (24) and (28), we obtain
$(\beta-\mu)[-\alpha(g(\phi X, Y)+g(\phi X, Z))+\beta(g(X, Y) \eta(Z)-g(X, Z) \eta(Y))-2 \beta \eta(X) \eta(Y) \eta(Z)]=0$.
Putting $Y=Z=\xi$, the above equation becomes $\mu=\beta$.
(ii) We assume that the manifold (M, g) is η-recurrent i.e.

$$
\begin{equation*}
\nabla S=\eta \otimes S \tag{29}
\end{equation*}
$$

Now we have

$$
\begin{equation*}
\nabla_{X} S(Y, Z)=\eta(X) S(Y, Z) \tag{30}
\end{equation*}
$$

for all vector fields X, Y, Z. Using the equations (24) and (30), we obtain $\mu=2 \beta-\frac{\alpha^{2}}{\beta}$. (iii) If the Ricci tensor is Codazzi i.e. $\left(\nabla_{X} S\right)(Y, Z)=\left(\nabla_{Y} S\right)(X, Z)$, for all vector fields X, Y, Z, then we have

$$
X S(Y, Z)-S\left(\nabla_{X} Y, Z\right)-S\left(\nabla_{X} Z, Y\right)=Y S(X, Z)-S\left(\nabla_{Y} X, Z\right)-S\left(\nabla_{Y} Z, X\right)
$$

Using the equation (24) and then putting $Y=Z=\xi$, we observe $\mu=\beta$.

4. Example of almost η-Ricci solitons on 3-dimensional trans-Sasakian manifolds

We consider the three dimensional manifold $M=\left\{(x, y, z) \in R^{3}: x \neq 0\right\}$ where (x, y, z) are the standard coordinates in R^{3}. The vector fields

$$
e_{1}=\frac{\partial}{\partial x}, e_{2}=x^{2} \frac{\partial}{\partial y}, e_{3}=x^{2} \frac{\partial}{\partial z}
$$

are linearly independent at each point of M. Let g be the Riemannian metric defined by

$$
g_{i j}=\left\{\begin{array}{lll}
1 & \text { for } \quad i=j \\
0 & \text { for } \quad i \neq j
\end{array}\right.
$$

Let η be the 1-form defined by $\eta(Z)=g\left(Z, e_{1}\right)$ for any $Z \in \chi\left(M^{3}\right)$. Let ϕ be the $(1,1)$ tensor field defined by $\phi\left(e_{1}\right)=0, \phi\left(e_{2}\right)=-e_{3}, \phi\left(e_{3}\right)=e_{2}$. Then using the linearity
property of ϕ and g we have

$$
\eta\left(e_{1}\right)=1, \phi^{2}(Z)=-Z+\eta(Z) e_{1}, g(\phi Z, \phi W)=g(Z, W)-\eta(Z) \eta(W)
$$

for any $Z, W \in \chi\left(M^{3}\right)$. Thus for $e_{1}=\xi,(\phi, \xi, \eta, g)$ defines an almost contact metric structure on M. Now, after some calculation we have,

$$
\left[e_{1}, e_{3}\right]=\frac{2}{x} e_{3},\left[e_{2}, e_{3}\right]=0,\left[e_{1}, e_{2}\right]=\frac{2}{x} e_{2}
$$

The Riemannian connection ∇ of the metric is given by the Koszul's formula which is

$$
2 g\left(\nabla_{X} Y, Z\right)=X g(Y, Z)+Y g(Z, X)-Z g(X, Y)-g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y])
$$

By Koszul's formula we get,

$$
\begin{gathered}
\nabla_{e_{1}} e_{1}=0, \nabla_{e_{2}} e_{1}=-\frac{2}{x} e_{2}, \nabla_{e_{3}} e_{1}=-\frac{2}{x} e_{3}, \nabla_{e_{1}} e_{2}=0, \nabla_{e_{2}} e_{2}=\frac{2}{x} e_{1}, \\
\nabla_{e_{3}} e_{2}=0, \nabla_{e_{1}} e_{3}=0, \nabla_{e_{2}} e_{3}=0, \nabla_{e_{3}} e_{3}=\frac{2}{x} e_{1} .
\end{gathered}
$$

From the above it can be easily shown that $M^{3}(\phi, \xi, \eta, g)$ is a trans-Sasakian manifold of type $(0,-2)$.
Here

$$
\begin{aligned}
R\left(e_{1}, e_{2}\right) e_{2}=-\frac{6}{x^{2}} e_{1}, R\left(e_{2}, e_{3}\right) e_{2} & =\frac{4}{x^{2}} e_{3}, R\left(e_{1}, e_{3}\right) e_{3}
\end{aligned}=-\frac{6}{x^{2}} e_{1}, R\left(e_{2}, e_{3}\right) e_{3}=-\frac{4}{x^{2}} e_{2}, ~ 子 ~ R\left(e_{1}, e_{3}\right) e_{1}=\frac{6}{x^{2}} e_{3}, R\left(e_{1}, e_{2}\right) e_{1}=\frac{6}{x^{2}} e_{2} . ~ \$
$$

So, we have

$$
S\left(e_{1}, e_{1}\right)=-\frac{12}{x^{2}}, S\left(e_{2}, e_{2}\right)=S\left(e_{3}, e_{3}\right)=-\frac{10}{x^{2}}
$$

From the equation (1) we get $\lambda=\frac{2}{x}$ and $\mu=\frac{12-2 x}{x^{2}}$. Therefore, (g, ξ, λ, μ) is an almost η-Ricci soliton on $M^{3}(\phi, \xi, \eta, g)$.

5. η-Ricci solitons on 3-dimensional trans-Sasakian manifolds satisfying $\tau(\xi, X) \cdot S=0$

M.M. Tripathi and P. Gupta introduced a new curvature tensor named as the τ curvature tensor of semi-Riemannian manifold M is defined by [16]

$$
\begin{align*}
\tau(X, Y) Z= & a_{0} R(X, Y) Z+a_{1} S(Y, Z) X+a_{2} S(X, Z) Y+a_{3} S(X, Y) Z+a_{4} g(Y, Z) Q X \\
& +a_{5} g(X, Z) Q Y+a_{6} g(X, Y) Q Z+a_{7} r(g(Y, Z) X-g(X, Z) Y) \tag{31}
\end{align*}
$$

where $a_{i}, i=1,2, \ldots, 7$ are some smooth functions on M and R, S, Q and r are the curvature tensor, the Ricci tensor, the Ricci operator of type $(1,1)$ and the scalar curvature respectively.
(i) τ-curvature tensor becomes Ricci curvature tensor R if $a_{0}=1, a_{i}=0$ for $i=$ $1,2, \ldots, 7$.
(ii) τ-curvature tensor becomes concircular curvature tensor K if $a_{0}=1, a_{7}=-\frac{1}{6}$ $a_{i}=0$ for $i=1,2, \ldots, 6$.

First we suppose that 3 -dimensional trans-Sasakian manifolds with η-Ricci solitons satisfy the condition

$$
\tau(\xi, X) \cdot S=0
$$

Then we have

$$
S(\tau(\xi, X) Y, Z)+S(Y, \tau(\xi, X) Z)=0
$$

for any $X, Y, Z \in \chi(M)$.
Using the equations (14), (24), (25), (26) we get

$$
\begin{align*}
& g(X, Y) \eta(Z)\left[a_{0}\left(\beta^{2}-\alpha^{2}\right)(\lambda+\mu)+a_{1}(\beta+\lambda)(\lambda+\mu)+2 a_{4}\left(\beta^{2}-\alpha^{2}\right)(\lambda+\mu)-a_{7} r(\lambda+\mu)\right. \\
& \left.-a_{0}\left(\beta^{2}-\alpha^{2}\right)(\lambda+\beta)+a_{2}(\beta+\lambda)(\lambda+\mu)-a_{5}\left(\mu-\beta-2\left(\beta^{2}-\alpha^{2}\right)\right)(\lambda+\beta)+a_{7} r(\lambda+\beta)\right] \\
& +g(X, Z) \eta(Y)\left[a_{0}\left(\beta^{2}-\alpha^{2}\right)(\lambda+\mu)+a_{1}(\beta+\lambda)(\lambda+\mu)+2 a_{4}\left(\beta^{2}-\alpha^{2}\right)(\lambda+\mu)\right. \\
& -a_{7} r(\lambda+\mu)-a_{0}\left(\beta^{2}-\alpha^{2}\right)(\lambda+\beta)+a_{2}(\beta+\lambda)(\lambda+\mu)-a_{5}\left(\mu-\beta-2\left(\beta^{2}-\alpha^{2}\right)\right)(\lambda+\beta) \\
& \left.+a_{7} r(\lambda+\beta)\right]+g(Y, Z) \eta(X)\left[2 a_{3}(\beta+\lambda)(\lambda+\mu)-a_{6}\left(\mu-\beta-2\left(\beta^{2}-\alpha^{2}\right)\right)(\lambda+\beta)\right] \\
& +2 \eta(X) \eta(Y) \eta(Z)\left[\left(a_{0}-a_{7} r\right)(\beta-\mu)-\left(a_{1}+a_{3}\right)(\lambda+\mu)(\beta-\mu)\right. \\
& \left.\left.+\left(a_{5}+a_{6}\right)\right](\beta-\mu)\left(2\left(\alpha^{2}-\beta^{2}\right)-\lambda-\beta\right)\right]=0 \tag{32}
\end{align*}
$$

Put $Z=\xi$ we have

$$
\begin{aligned}
& g(X, Y)\left[a_{0}\left(\beta^{2}-\alpha^{2}\right)(\lambda+\mu)+a_{1}(\beta+\lambda)(\lambda+\mu)+2 a_{4}\left(\beta^{2}-\alpha^{2}\right)(\lambda+\mu)-a_{7} r(\lambda+\mu)\right. \\
& \left.-a_{0}\left(\beta^{2}-\alpha^{2}\right)(\lambda+\beta)+a_{2}(\beta+\lambda)(\lambda+\mu)-a_{5}\left(\mu-\beta-2\left(\beta^{2}-\alpha^{2}\right)\right)(\lambda+\beta)+a_{7} r(\lambda+\beta)\right] \\
& +g(X, \xi) \eta(Y)\left[a_{0}\left(\beta^{2}-\alpha^{2}\right)(\lambda+\mu)+a_{1}(\beta+\lambda)(\lambda+\mu)+2 a_{4}\left(\beta^{2}-\alpha^{2}\right)(\lambda+\mu)\right. \\
& -a_{7} r(\lambda+\mu)-a_{0}\left(\beta^{2}-\alpha^{2}\right)(\lambda+\beta)+a_{2}(\beta+\lambda)(\lambda+\mu)-a_{5}\left(\mu-\beta-2\left(\beta^{2}-\alpha^{2}\right)\right)(\lambda+\beta) \\
& \left.+a_{7} r(\lambda+\beta)\right]+g(Y, \xi) \eta(X)\left[2 a_{3}(\beta+\lambda)(\lambda+\mu)-a_{6}\left(\mu-\beta-2\left(\beta^{2}-\alpha^{2}\right)\right)(\lambda+\beta)\right] \\
& +2 \eta(X) \eta(Y)\left[\left(a_{0}-a_{7} r\right)(\beta-\mu)-\left(a_{1}+a_{3}\right)(\lambda+\mu)(\beta-\mu)\right. \\
& \left.\left.+\left(a_{5}+a_{6}\right)\right](\beta-\mu)\left(2\left(\alpha^{2}-\beta^{2}\right)-\lambda-\beta\right)\right]=0 .
\end{aligned}
$$

Setting $X=\phi X$ and $Y=\phi Y$ in the above equation we get

$$
\begin{align*}
& g(\phi X, \phi Y)\left[a_{0}\left(\beta^{2}-\alpha^{2}\right)(\lambda+\mu)+a_{1}(\beta+\lambda)(\lambda+\mu)+2 a_{4}\left(\beta^{2}-\alpha^{2}\right)(\lambda+\mu)-a_{7} r(\lambda+\mu)\right. \\
& -a_{0}\left(\beta^{2}-\alpha^{2}\right)(\lambda+\beta)+a_{2}(\beta+\lambda)(\lambda+\mu)-a_{5}\left(\mu-\beta-2\left(\beta^{2}-\alpha^{2}\right)\right)(\lambda+\beta) \\
& \left.+a_{7} r(\lambda+\beta)\right]=0 . \tag{33}
\end{align*}
$$

If $a_{1}+a_{2}=-2 k, a_{4}=k$ and $a_{5}=k$ with $k(\neq 0) \in \mathbb{R}$ then we get

$$
(\mu-\beta)\left[2 k(\mu-\beta)+a_{0}(\lambda+\mu)-2 r a_{7}\right]=0,
$$

Again using the equation (26) we have

$$
\mu=\beta, \lambda=2\left(\beta^{2}-\alpha^{2}\right)-\beta
$$

or

$$
\mu=\beta+\frac{a_{7} r-2 a_{0}\left(\beta^{2}-\alpha^{2}\right)}{k}, \lambda=\beta+\frac{a_{7} r+\left(a_{0}+2 k\right)\left(\alpha^{2}-\beta^{2}\right)}{k}
$$

Also we can easily see that M is an Einstein manifold. So we have the following theorem.

Theorem 5.1. If a 3-dimensional trans-Sasakian manifold ($M, g, \phi, \eta, \xi, \alpha, \beta$) with α, β constants admitting an η-Ricci soliton satisfies the condition $\tau(\xi, X) \cdot S=0$ and $a_{1}+a_{2}=-2 k, a_{4}=k$ and $a_{5}=k$ with $k(\neq 0) \in \mathbb{R}$ then $\mu=\beta, \lambda=2\left(\beta^{2}-\alpha^{2}\right)-\beta$ or $\mu=\beta+\frac{a_{7} r-2 a_{0}\left(\beta^{2}-\alpha^{2}\right)}{k}, \lambda=\beta+\frac{a_{7} r+\left(a_{0}+2 k\right)\left(\alpha^{2}-\beta^{2}\right)}{k}$ and M is an Einstein manifold.

Corollary 5.2. A 3-dimensional trans-Sasakian manifold with α, β constants satisfies the condition $\tau(\xi, X) \cdot S=0$, there is no Ricci soliton with the potential vector field ξ.

Theorem 5.3. If a 3-dimensional trans-Sasakian manifold ($M, g, \phi, \eta, \xi, \alpha, \beta$) with α, β constants admitting an η-Ricci soliton satisfies the condition $R(\xi, X) \cdot S=0$ i.e. $a_{0}=1, a_{i}=0$ for $i=1,2, \ldots, 7$ then $\mu=\beta, \lambda=2\left(\beta^{2}-\alpha^{2}\right)-\beta$ and M is an Einstein manifold.

Theorem 5.4. If a 3-dimensional trans-Sasakian manifold ($M, g, \phi, \eta, \xi, \alpha, \beta$) with α, β constants admitting an η-Ricci soliton satisfies the condition $K(\xi, X) \cdot S=0$ i.e. $a_{0}=1,, a_{7}=-\frac{1}{6} a_{i}=0$ for $i=1,2, \ldots, 6$ then $\mu=\beta, \lambda=2\left(\beta^{2}-\alpha^{2}\right)-\beta$ or $r=6\left(\alpha^{2}-\beta^{2}\right)$ and M is an Einstein manifold.

6. η-Ricci solitons on 3-dimensional trans-Sasakian manifolds satisfying $S(\xi, X) \cdot \tau=0$

We consider 3-dimensional trans-Sasakian manifolds with η-Ricci solitons satisfying the condition

$$
S(\xi, X) \cdot \tau=0
$$

So we have

$$
\begin{aligned}
& S(X, \tau(Y, Z) W) \xi-S(\xi, \tau(Y, Z) W) X+S(X, Y) \tau(\xi, Z) W-S(\xi, Y) \tau(X, Z) W \\
+ & S(X, Z) \tau(Y, \xi) W-S(\xi, Z) \tau(Y, X) W+S(X, W) \tau(Y, Z) \xi-S(\xi, W) \tau(Y, Z) X=0 .
\end{aligned}
$$

Taking inner product with ξ then the above equation becomes

$$
\begin{gather*}
S(X, \tau(Y, Z) W)-S(\xi, \tau(Y, Z) W) \eta(X)+S(X, Y) \eta(\tau(\xi, Z) W) \\
-S(\xi, Y) \eta(\tau(X, Z) W)+S(X, Z) \eta(\tau(Y, \xi) W)-S(\xi, Z) \eta(\tau(Y, X) W) \\
+S(X, W) \eta(\tau(Y, Z) \xi)-S(\xi, W) \eta(\tau(Y, Z) X)=0 \tag{34}
\end{gather*}
$$

Put $W=\xi$ and using the equations (12), (14), (24), (25), (26) we get

$$
\begin{aligned}
& g(Y, Z) \eta(X)\left[-2\left(\alpha^{2}-\beta^{2}\right) a_{3}(\beta+\lambda)+4 a_{6}\left(\alpha^{2}-\beta^{2}\right)^{2}\right]+\eta(X) \eta(Y) \eta(Z)\left[a_{3}(\beta-\mu)^{2}\right] \\
& +g(X, Y) \eta(Z)\left[-(\beta+\lambda)\left\{a_{0}\left(\alpha^{2}-\beta^{2}\right)+a_{7} r+2 a_{1}\left(\alpha^{2}-\beta^{2}\right)+a_{4}\left(\mu-\beta+2\left(\alpha^{2}-\beta^{2}\right)\right)\right\}\right] \\
& +g(X, Z) \eta(Y)\left[-(\beta+\lambda)\left\{-a_{0}\left(\alpha^{2}-\beta^{2}\right)-a_{7} r+2 a_{2}\left(\alpha^{2}-\beta^{2}\right)+a_{5}\left(\mu-\beta+2\left(\alpha^{2}-\beta^{2}\right)\right)\right\}\right] \\
& +\eta(X) \eta(Y) \eta(Z)\left[-(\beta+\lambda)(\beta-\mu) \sum_{i=3}^{5} a_{i}+2\left(\alpha^{2}-\beta^{2}\right)(\beta-\mu)\left(a_{1}+a_{2}+a_{4}+a_{5}\right)\right] \\
& +(\lambda+\mu) g(Y, Z) \eta(X)\left[-a_{3}(\beta+\lambda)+2 a_{6}\left(\alpha^{2}-\beta^{2}\right)\right]+(\lambda+\mu) \eta(X) \eta(Y) \eta(Z)\left[-(\lambda+\mu) \sum_{i=1}^{2} a_{i}\right. \\
& \left.+(\beta-\mu) \sum_{i=3}^{5} a_{i}+\left\{\mu-\beta+2\left(\alpha^{2}-\beta^{2}\right)\right\} \sum_{i=4}^{5} a_{i}\right]-2\left(\alpha^{2}-\beta^{2}\right) \eta(X) \eta(Y) \eta(Z)(\beta-\mu) \sum_{i=1}^{3} a_{i}
\end{aligned}
$$

$$
\begin{aligned}
& +2\left(\alpha^{2}-\beta^{2}\right) \sum_{i=1}^{6} a_{i}[-(\beta+\lambda) g(X, Y) \eta(Z)+(\beta-\mu)] \eta(X) \eta(Y) \eta(Z) \\
& +2\left(\alpha^{2}-\beta^{2}\right)(g(Y, Z) \eta(X)-g(X, Z) \eta(Y)-g(X, Y) \eta(Z))\left(-a_{3}(\beta+\lambda)+2 a_{6}\left(\alpha^{2}-\beta^{2}\right)\right) \\
& -2\left(\alpha^{2}-\beta^{2}\right) \eta(X) \eta(Y) \eta(Z)\left[-(\lambda+\mu) \sum_{i=1}^{2} a_{i}+(\beta-\mu) \sum_{i=3}^{5} a_{i}+\left\{\mu-\beta+2\left(\alpha^{2}-\beta^{2}\right)\right\} \sum_{i=4}^{5} a_{i}\right] \\
& -2\left(\alpha^{2}-\beta^{2}\right) g(X, Z) \eta(Y)\left[a_{0}\left(\alpha^{2}-\beta^{2}\right)+a_{7} r+2 a_{4}\left(\alpha^{2}-\beta^{2}\right)-a_{1}(\beta+\lambda)\right] \\
& -2\left(\alpha^{2}-\beta^{2}\right) g(X, Y) \eta(Z)\left[-a_{0}\left(\alpha^{2}-\beta^{2}\right)-a_{7} r+2 a_{5}\left(\alpha^{2}-\beta^{2}\right)-a_{2}(\beta+\lambda)\right] \\
& -2\left(\alpha^{2}-\beta^{2}\right) g(Y, Z) \eta(X)\left[2 a_{6}\left(\alpha^{2}-\beta^{2}\right)^{2}-a_{3}(\beta+\lambda)\right]=0 .
\end{aligned}
$$

Putting $Z=\xi$ and setting $X=\phi X$ and $Y=\phi Y$ in the above equation we get

$$
\begin{align*}
& g(\phi X, \phi Y)\left[-(\beta+\lambda)\left\{a_{0}\left(\alpha^{2}-\beta^{2}\right)+a_{7} r+2 a_{1}\left(\alpha^{2}-\beta^{2}\right)+a_{4}\left(\mu-\beta+2\left(\alpha^{2}-\beta^{2}\right)\right)\right\}\right] \\
& -(\beta+\lambda) 2\left(\alpha^{2}-\beta^{2}\right) \sum_{i=1}^{6} a_{i}+2 a_{3}(\beta+\lambda)\left(\alpha^{2}-\beta^{2}\right)-4 a_{6}\left(\alpha^{2}-\beta^{2}\right)^{2}+2 a_{0}\left(\alpha^{2}-\beta^{2}\right)^{2} \\
& \left.+2 a_{7} r\left(\alpha^{2}-\beta^{2}\right)+2\left(\alpha^{2}-\beta^{2}\right) a_{2}(\beta+\lambda)-4 a_{5}\left(\alpha^{2}-\beta^{2}\right)^{2}\right]=0 . \tag{35}
\end{align*}
$$

i.e.

$$
\begin{aligned}
& g(\phi X, \phi Y)\left[-(\beta+\lambda)\left\{a_{0}\left(\alpha^{2}-\beta^{2}\right)+a_{7} r+2\left(a_{0}-a_{2}-a_{3}\right)\left(\alpha^{2}-\beta^{2}\right)-a_{4}(\beta+\lambda)\right.\right. \\
& \left.\left.+2\left(\alpha^{2}-\beta^{2}\right) \sum_{i=1}^{6} a_{i}\right\}+2\left(\alpha^{2}-\beta^{2}\right)\left\{\left(\alpha^{2}-\beta^{2}\right)\left(a_{0}-2 a_{5}-2 a_{6}\right)+a_{7} r\right\}\right]=0 .
\end{aligned}
$$

If $r=\frac{\left(\alpha^{2}-\beta^{2}\right)}{a_{7}}\left[2 a_{5}+2 a_{6}-a_{0}\right]$ with $a_{7} \neq 0$ then we obtain $\lambda=-\beta, \mu=\beta-2\left(\alpha^{2}-\beta^{2}\right)$. So we have the following theorem.

Theorem 6.1. If a 3-dimensional trans-Sasakian manifold ($M, g, \phi, \eta, \xi, \alpha, \beta$) with α, β constants admitting an η-Ricci soliton satisfies the condition $S(\xi, X) \cdot \tau=0$ and $r=\frac{\left(\alpha^{2}-\beta^{2}\right)}{a_{7}}\left[2 a_{5}+2 a_{6}-a_{0}\right]$ with $a_{7} \neq 0$ then $\lambda=-\beta, \mu=\beta-2\left(\alpha^{2}-\beta^{2}\right)$.

Corollary 6.2. A 3-dimensional trans-Sasakian manifold with α, β constants satisfies the condition $S(\xi, X) \cdot \tau=0$, there is no Ricci soliton with the potential vector field ξ.

Theorem 6.3. If a 3-dimensional trans-Sasakian manifold ($M, g, \phi, \eta, \xi, \alpha, \beta$) with α, β constants admitting an η-Ricci soliton satisfies the condition $S(\xi, X) \cdot R=0$ i.e. $a_{0}=1, a_{i}=0$ for $i=1,2, \ldots, 7$ then $\mu=\beta+4\left(\beta^{2}-\alpha^{2}\right), \lambda=-\left[2\left(\beta^{2}-\alpha^{2}\right)+\beta\right]$.
Theorem 6.4. If a 3-dimensional trans-Sasakian manifold ($M, g, \phi, \eta, \xi, \alpha, \beta$) with α, β constants admitting an η-Ricci soliton satisfies the condition $S(\xi, X) \cdot K=0$ i.e. $a_{0}=1, a_{7}=-\frac{1}{6} a_{i}=0$ for $i=1,2, \ldots, 6$ then $\mu=\beta+4\left(\beta^{2}-\alpha^{2}\right), \lambda=-\left[2\left(\beta^{2}-\alpha^{2}\right)+\beta\right]$, or $r=6\left(\alpha^{2}-\beta^{2}\right)$.

7. η-Ricci solitons on 3-dimensional trans-Sasakian manifolds satisfying $\mathcal{M}(\xi, X) \cdot S=0$

Definition 7.1. Let M be 3-dimensional trans-Sasakian manifold. The \mathcal{M}-projective curvature tensor of M is defined by [14]

$$
\begin{equation*}
\mathcal{M}(X, Y) Z=R(X, Y) Z-\frac{1}{4}(S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y) \tag{36}
\end{equation*}
$$

We assume 3-dimensional trans-Sasakian manifolds with η-Ricci solitons satisfying the condition

$$
\mathcal{M}(\xi, X) \cdot S=0
$$

Then we have

$$
S(\mathcal{M}(\xi, X) Y, Z)+S(Y, \mathcal{M}(\xi, X) Z)=0
$$

for any $X, Y, Z \in \chi(M)$.
Using the equations (14), (24), (25), (26), (36) we get

$$
\begin{aligned}
& {\left[-\frac{1}{2}\left(\alpha^{2}-\beta^{2}\right)(\lambda+\mu)-\frac{1}{4}(\beta+\lambda)+\left(\alpha^{2}-\beta^{2}\right)(\lambda+\beta)\right.} \\
& \left.+\frac{1}{4}(\lambda+\beta)(\mu+\lambda)-\frac{(\lambda+\beta)}{4}\left(\mu-\beta+2\left(\alpha^{2}-\beta^{2}\right)\right)\right](g(X, Y) \eta(Z)+g(X, Z) \eta(Y)) \\
& +\left[-\left(\alpha^{2}-\beta^{2}\right)(\beta-\mu)+\frac{(\beta-\mu)}{4}\left(2\left(\alpha^{2}-\beta^{2}\right)-(\beta+\lambda)\right)\right] \eta(X) \eta(Y) \eta(Z)=0 .
\end{aligned}
$$

Put $Z=\xi$ in the above equation we get

$$
\begin{aligned}
& {\left[-\frac{1}{2}\left(\alpha^{2}-\beta^{2}\right)(\lambda+\mu)-\frac{1}{4}(\beta+\lambda)+\left(\alpha^{2}-\beta^{2}\right)(\lambda+\beta)\right.} \\
& \left.+\frac{1}{4}(\lambda+\beta)(\mu+\lambda)-\frac{(\lambda+\beta)}{4}\left(\mu-\beta+2\left(\alpha^{2}-\beta^{2}\right)\right)\right](g(X, Y)+g(X, \xi) \eta(Y)) \\
& +\left[-\left(\alpha^{2}-\beta^{2}\right)(\beta-\mu)+\frac{(\beta-\mu)}{4}\left(2\left(\alpha^{2}-\beta^{2}\right)-(\beta+\lambda)\right)\right] \eta(X) \eta(Y)=0 .
\end{aligned}
$$

Setting $X=\phi X$ and $Y=\phi Y$ in the above equation we get

$$
\begin{align*}
& {\left[-\frac{1}{2}\left(\alpha^{2}-\beta^{2}\right)(\lambda+\mu)-\frac{1}{4}(\beta+\lambda)+\left(\alpha^{2}-\beta^{2}\right)(\lambda+\beta)\right.} \\
& \left.+\frac{1}{4}(\lambda+\beta)(\mu+\lambda)-\frac{(\lambda+\beta)}{4}\left(\mu-\beta+2\left(\alpha^{2}-\beta^{2}\right)\right)\right] g(\phi X, \phi Y)=0 . \tag{37}
\end{align*}
$$

Again using the equation (26) we have

$$
\mu=\beta, \lambda=2\left(\beta^{2}-\alpha^{2}\right)-\beta
$$

So we have the following theorem.
Theorem 7.1. If a 3-dimensional trans-Sasakian manifold ($M, g, \phi, \eta, \xi, \alpha, \beta$) with α, β constants admitting an η-Ricci soliton satisfies the condition $\mathcal{M}(\xi, X) \cdot S=0$ then $\mu=\beta, \lambda=2\left(\beta^{2}-\alpha^{2}\right)-\beta$.

Corollary 7.2. A 3-dimensional trans-Sasakian manifold with α, β constants satisfies the condition $\mathcal{M}(\xi, X) \cdot S=0$, there is no Ricci soliton with the potential vector field ξ.

8. η-Ricci solitons on 3-dimensional trans-Sasakian manifolds satisfying $S(\xi, X) \cdot \mathcal{M}=0$

Suppose that 3-dimensional trans-Sasakian manifolds with η-Ricci solitons satisfy the condition

$$
S(\xi, X) \cdot \mathcal{M}=0
$$

So we have

$$
\begin{aligned}
& S(X, \mathcal{M}(Y, Z) V) \xi-S(\xi, \mathcal{M}(Y, Z) V) X+S(X, Y) \mathcal{M}(\xi, Z) V-S(\xi, Y) \mathcal{M}(X, Z) V \\
+ & S(X, Z) \mathcal{M}(Y, \xi) V-S(\xi, Z) \mathcal{M}(Y, X) V+S(X, V) \mathcal{M}(Y, Z) \xi-S(\xi, V) \mathcal{M}(Y, Z) X=0 .
\end{aligned}
$$

Taking inner product with ξ then the above equation becomes

$$
\begin{align*}
& S(X, \mathcal{M}(Y, Z) V)-S(\xi, \mathcal{M}(Y, Z) V) \eta(X)+S(X, Y) \eta(\mathcal{M}(\xi, Z) V) \\
& -S(\xi, Y) \eta(\mathcal{M}(X, Z) V)+S(X, Z) \eta(\mathcal{M}(Y, \xi) V)-S(\xi, Z) \eta(\mathcal{M}(Y, X) V) \\
& +S(X, V) \eta(\mathcal{M}(Y, Z) \xi)-S(\xi, V) \eta(\mathcal{M}(Y, Z) X)=0 \tag{38}
\end{align*}
$$

Put $V=\xi$ and using the equations (10), (14), (24), (25), (26), (36) the equation (38) becomes

$$
\begin{array}{r}
{\left[(2 \lambda+\mu+\beta)\left(\alpha^{2}-\beta^{2}\right)+\frac{(2 \lambda+\mu+\beta)^{2}}{4}+(2 \lambda+\mu+\beta)\left\{\left(\alpha^{2}-\beta^{2}\right)\right.\right.} \\
\left.\left.+\frac{(2 \lambda+\mu+\beta)}{4}\right\}\right](g(X, Z) \eta(Y)-g(X, Y) \eta(Z))=0 \tag{39}
\end{array}
$$

Using the equation (27) we have

$$
\mu=\beta, \lambda=2\left(\beta^{2}-\alpha^{2}\right)-\beta
$$

or

$$
\lambda=2\left(\alpha^{2}-\beta^{2}\right)-\beta, \mu=-4\left(\alpha^{2}-\beta^{2}\right)+\beta
$$

So we have the following theorem.
Theorem 8.1. If Let a 3-dimensional trans-Sasakian manifold ($M, g, \phi, \eta, \xi, \alpha, \beta$) with α, β constants admitting an η-Ricci soliton satisfies the condition $S(\xi, X) \cdot \mathcal{M}=0$ then

$$
\mu=\beta, \lambda=2\left(\beta^{2}-\alpha^{2}\right)-\beta
$$

or $\lambda=2\left(\alpha^{2}-\beta^{2}\right)-\beta, \mu=-4\left(\alpha^{2}-\beta^{2}\right)+\beta$.
Corollary 8.2. A 3-dimensional trans-Sasakian manifold with α, β constants satisfies the condition $S(\xi, X) \cdot \mathcal{M}=0$, there is no Ricci soliton with the potential vector field ξ.

Acknowledgement.

The author wish to express her sincere thanks and gratitude to the referee for valuable suggestions towards the improvement of the paper.

References

[1] C. S. Bagewadi, G. Ingalahalli, S. R. Ashoka, A study on Ricci solitons in Kenmotsu Manifolds, ISRN Geometry (2013), Article ID 412593, 6 pages.
[2] A. Bhattacharyya, T. Dutta, S. Pahan, Ricci Soliton, Conformal Ricci Soliton And Torqued Vector Fields, Bulletin of the Transilvania University of Brasov Series III: Mathematics, Informatics, Physics 10 (2017), 39-52.
[3] A.M. Blaga, Eta-Ricci solitons on para-Kenmotsu manifolds, Balkan Journal of Geometry and Its Applications 20 (2015), no. 1, 1-13.
[4] A.M. Blaga, On Gradient η-Einstein Solitons, Kragujevac Journal of Mathematics 42 (2018), no. 2, 229-237.
[5] B.Y. Chen, S. Deshmukh, Geometry of compact shrinking Ricci solitons, Balkan Journal of Geometry and Its Applications 19 (2014), no. 1, 13-21.
[6] J.C. Cho, M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. 61 (2009), no. 2, 205-2012.
[7] R.S. Hamilton, The formation of singularities in the Ricci flow, Surveys in Differential Geometry 2 (1995), 7-136,
[8] R.S. Hamilton, The Ricci flow on surfaces, Mathematical and general relativity, Contemp. math 71 (1988), 237-261.
[9] G. Ingalahalli, C.S. Bagewadi, Ricci solitons on α-Sasakian Manifolds, ISRN Geometry (2012), Article ID 421384, 13 pages.
[10] J.C. Marrero, Ihe local structure of trans-Sasakian manifolds, Ann. Mat. Pura. Appl. 162 (1992), 77-86.
[11] J.A. Oubina, New classes of almost contact metric structures, Pub. Math. Debrecen 20 (2015), no. 1, 1-13.
[12] S. Pahan, T. Dutta, A. Bhattacharyya, Ricci Soliton and η-Ricci Soliton on Generalized Sasakian Space Form, Filomat 31 (2017), no. 13, 4051-4062.
[13] S. Pigola, M. Rigoli, M. Rimoldi, A. Setti, Ricci almost solitons, Ann. Sc. Norm. Super. Pisa Cl. Sci. 10 (2011), 757-799.
[14] G.P. Pokhariyal, R.S. Mishra, Curvature tensor and their relativistic significance II, Yokohama Math. J. 19 (1971), 97-103.
[15] D.G. Prakasha, B. S. Hadimani, η-Ricci solitons on para-Sasakian manifolds, Journal of Geometry 108 (2016), 383-392.
[16] M.M. Tripathi, P. Gupta, τ-Curvature Tensor On A Semi-Riemannian Manifold, J. Adv. Math. Studies 4 (2011), no. 1, 117-129.
(Sampa Pahan)
Department of Mathematics, Mrinalini Datta Mahavidyapith, Kolkata-700051, India
E-mail address: E-mail: sampapahan25@gmail.com

