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Ideals with linear resolution in Segre products

Gioia Failla

Abstract. We consider a homogeneous graded algebra on a field K, which is the Segre

product of a K−polynomial ring in m variables and the second squarefree Veronese subalgebra

of a K−polynomial ring in n variables, generated over K by elements of degree 1. We describe
a class of graded ideals of the Segre product with a linear resolution, provided that the minimal

system of generators satisfies a suitable condition of combinatorial kind.
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1. Introduction

Let A and B be two homogeneous graded algebras and let A ∗ B be their Segre
product K[u1, . . . , un], where all generators have degree 1. In [14] the notion of
strongly Koszul algebra is introduced and the main consequence is that the max-
imal graded ideal has linear quotients, hence a linear resolution. In particular if
A = K[x1, . . . , xn] and B = K[y1, . . . , ym] are polynomial rings, the graded maximal
ideal (x1y1, . . . , xnym) of A ∗ B has linear quotients and a linear resolution. For the
significant applications in combinatorics, the case where A and B are monomial alge-
bras received a lot of attention from algebrists. In this case, note that the generators
u1, . . . , un are monomials and the subtended affine semigroup reflects properties of
the algebra. The problem to yield monomial ideals with linear quotients and having
linear resolution is particularly interesting for homogeneous semigroup rings. The aim
of this paper is to investigate if the class of monomial ideals of the semigroup ring
studied in [12], and with linear quotients, has a linear resolution.
More precisely, in Section 1, we consider two polynomials rings A = K[x1, . . . , xn]
and B = K[y1, . . . , ym] with the standard graduation and the Segre product B ∗
A(2) between B and the second squarefree Veronese ring A(2) generated over K by
all squarefree monomials of degree 2 of A. We recall in particular the property P
considered in [12], on ordered subsets of the generators of C, that has an interpretation
in algebraic combinatorics. In Section 2, we focus our attention to monomial ideals
of B ∗A(2), that admit quotient ideals linearly generated and, as a consequence, they
have a linear resolution, being linear modules, following the definition given in [3]. We
examine a class of ideals, generated by a suitable subset of the set of the generators
of the K-algebra B ∗ A(2), studied in [12] and with linear quotients. The main point
is to require that the set of generators satisfies a property able to guarantee that a
family of colon ideals of the ideal has linear quotients.
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2. Preliminaries and known results

Let A = K[x1, . . . , xn] and B = K[y1, . . . , ym] be two polynomial rings in n and
m variables respectively with coefficients in any field K. Let A(2) ⊂ A be the 2nd
squarefree Veronese algebra of A and let C = B ∗ A(2) be the Segre product of B
and A(2). We consider C as a standard K−algebra generated in degree 1 by the
monomials yαxixj , with 1 ≤ α ≤ m, 1 ≤ i < j ≤ n. For convenience, we will indicate
such a monomial by αij.

In [12] we computed all quotient ideals of principal ideals of C, generated by
generators of the graded maximal ideal m∗ of C in order to obtain the intersection
degree of this algebra [13], [14]. The description of the generators of the colon ideals
will be used in the following.

Theorem 2.1. [12, Theorem 1.1] Let C = B ∗A(2) be the Segre product and let m∗ =
(u1, . . . , uN ), N = m

(
n
2

)
the maximal ideal of C. Let (ur) : (us), 1 ≤ r, s ≤ N, r 6= s,

a colon ideal of generators of m∗, in the lexicographic order. Then we have:
1. (α ij1) : (α ij2) = (βkj1, k 6= j1, j2, β ∈ {1, . . . ,m})
2. (α1ij1) : (α2ij2) = (α1kj1, k 6= j1, j2)
3. (α i1j) : (α i2j) = (βi1k, k 6= i1, i2, β ∈ {1, . . . ,m})
4. (α1i1j) : (α2i2j) = (α1i1k, k 6= i1, i2)
5. (α i1j) : (α jj2) = (βi1k, k 6= i1, j2, β ∈ {1, . . . ,m})
6. (α ij1) : (α i2i) = (βkj1, k 6= j1, i2, β ∈ {1, . . . ,m})
7. (α1i1j) : (α2jj2) = (α1i1k, k 6= i1, j2)
8. (α1ij1) : (α2i2i) = (α1kj1, k 6= i2, j1)
9. (α1i1j1) : (α2i2j2) = (α1i1j1, (α1i1s)(βj1s), β ∈ {1, . . . ,m}, s 6= i1, j1, i2, j2)
10 (α1ij) : (α2ij) = (α1kl, k 6= l)

Corollary 2.2. [12, Corollary 1.2] Let B ∗ A(2) be the Segre product as in Theorem
2.1, where all generators are of degree 1. Then the intersection degree of the monomial
algebra B ∗A(2) is equal to 3 for n > 4.

The fact that there are colon ideals not generated in degree 1 can to not be a
problem for special classes of monomial ideals. In particular the strong condition
that we consider monomial ideals generated by subsets of generators that verify the
property P implies that a family of associated quotients ideals are generated in degree
1, provided a suitable order on the generators.

For this end, we introduce in the set of monomials of K[x1, . . . , xn, y1, . . . , ym] the
lexicographic order with the order on the variables y1 > . . . > ym > x1 > . . . > xn.
Moreover, following [12], we call ”bad pair” a pair of monomials ij, kl in A(2) or
α ij, β kl in C, with i 6= k and j 6= l.

Definition 2.1. Let (u1, . . . , ut) be an ideal of C = B ∗A(2) generated by a sequence
L = {α1i1j1, . . . , αtitjt} of generators of C, with u1 > . . . > ut. Fixed αkl ∈ L, let

Lαkl = {βrs ∈ L/βrs > αkl and rs > kl} and L′αkl = {βrs ∈ L/βrs < αkl and rs >
kl} be. We say that the sequence L satisfies the property P if:

(1) for each bad pair αij > αkl in L, αik ∈ Lαkl or αil ∈ Lαkl or αkl ∈ Lαjk or
αjl ∈ Lαkl

(2) for each bad pair αij > βkl in L, with ij > kl, αik ∈ Lβkl or αil ∈ Lβkl or
αjk ∈ Lβkl or αjl ∈ Lβkl



IDEALS WITH LINEAR RESOLUTION IN SEGRE PRODUCTS 151

(3) for each bad pair αij > βkl in L, with ij < kl, or βki ∈ L′αij or βkj ∈ L′αij or

βil ∈ L′αij or βjl ∈ L′αij .

By using this definition, we have:

Theorem 2.3. Let (u1, . . . , ut) be the ideal of B ∗A(2) generated by a sequence L =
{α1i1j1, . . . , αtitjt} of generators of M , with u1 > . . . > ut. Fixed αkl ∈ L, let Lαkl =

{βrs ∈ L/βrs > αkl and rs > kl} and L′αkl = {βrs ∈ L/βrs < αkl and rs > kl}
be. Suppose that the sequence L satisfies the property P . Then (u1, . . . , ut) has linear
quotients.

Proof. See [12, Theorem 2.3]. �

Example 2.1. For n = 2, m = 5, consider C = K[y1, y2] ∗K[x1, x2, x3, x4, x5]. The
sequences L1 = {112, 113, 114, . . . , 145, 212, 213, 214, . . . , 245} and L2 = {112, 113, 123,
125, 135, 212, 213, 223, 225, 235} satisfy the property P . For L1 the result is obvious,
since L1 is the generating sequence of the maximal irrelevant ideal of C. For L2, we
observe that it comes from the colon ideal (112, 113) : (114) = (112, 113, 123, 125, 135,
212, 213, 223, 225, 235). Consider the bad pair 112 > 135, with 12 > 35. Then
L135 = {112, 113, 123, 125}. We have 113 ∈ L135, 123 ∈ L135, 125 ∈ L135, 115 /∈ L135.

Consider the bad pair 125 > 213, with 25 < 13, L′125 = {212, 213, 223}. We have

212 ∈ L′ , 215 /∈ L′ , 223 ∈ L′ , 235 /∈ L′ . Then the property P is satisfied.

3. Monomial Ideals with linear quotients

The aim of this section is to prove that the class of monomial ideals of the Segre
product C = B ∗A(2) described in [12], having linear quotients, has a linear resolution
on C. For this we need the following;

Theorem 3.1. Let (u1, . . . ut) be the ideal of C = B ∗A(2) generated by the sequence
L as in Theorem 2.1 and Iq−1 = (α1i1j1, . . . , αq−1iq−1jq−1), q ≤ t−1. Then the colon
ideal I : αq−1iqjq satisfies condition P .

Proof. Note that the monomial ideal I : αqiqjq is generated by all colon ideals αpipjp :
αqiqjq such that each pair αpipjp, αqiqjq is not a bad pair for p < q (see [12, Theorem
2.3]). Set i = ip and j = jp. Assume i < j. Consider a bad pair a, b ∈ I : αqij:

I case: a ∈ α isjs : α ij, isjs, ij is not a bad pair

b ∈ α itjt : α ij, itjt, ij is not a bad pair

II case: a ∈ α isjs : β ij, isjs, ij is not a bad pair

b ∈ β isjs : β ij, isjs, ij is not a bad pair

III case: a ∈ α isjs : β ij, isjs, ij is not a bad pair

b ∈ γ isjs : β ij, γ 6= α, isjs, ij is not a bad pair

IV case: a ∈ α isjs : α ij, isjs, ij is not a bad pair

b ∈ β itjt : α ij, itjt, ij is not a bad pair
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I case: Note that isjs > ij, itjt > ij and is < js, i < j, it < jt. Write i = it and
j = js, the colon ideals to be considered are αisj : αij and αijt : αij. Let a ∈ α isj :
α ij and b ∈ α ijt : α ij be. Suppose a = α isk, k 6= is, j and b = α ljt, l 6= jt, j.

We look to the following cases:
i) is < k, l < jt. If α isk > α ljt (that is a > b) then isk > ljt, is < l < jt, hence
is < jt. Since i < jt, it follows that α isjt is a generator of the colon ideal I : αij
(since jt 6= is, i). It follows that α isjt > α ljt, that is α isjt ∈ Lα ljt . If a < b,
isk < ljt, l < is, αisk < αlis and isk < lis. It follows αlis ∈ Lα isk (that is the
property P ).

ii) is < k, l > jt, a = α isk, b = αjtl. If a > b, α isk > α jtl and is < jt < l.
Since i < jt, it follows that αisjt is a generator of the colon ideal I : α ij (since
jt 6= is, i) hence α isjt > αjtl, α isjt ∈ Lα jtl(that is the property P ). If a < b,
isk < jtl. Then jt < is < k, hence jtis > isk and αjtis ∈ Lαisk.

iii) is > k, l < jt. If a > b, kis > ljt, then k < l and so k < l < jt. Since k < j,
the element αkjt is a generator of I : αij and αkjt > αljt, so αkjt ∈ Lαljt . If
kis < ljt, l < k < is and, since l < i, it follows that αlis is a generator of I : αij
and αlis > αkis, αlis ∈ Lαkis (that is the property P ).

iv) is > k, l > jt. If a > b, write a = αkis, b = αjtl. If kis > jtl, k < jt < l
and kjt > jtl. Since k < is < i < j, αkjt is a generator of I : αij. It follows
αkjt ∈ Lα jtl (that is the property P ). If kis < jtl, jt < k < is and jt < is < i.
Hence αjtis is a generator of I : αij, αjtis > αkis, and αjtis ∈ Lαkis .

Indeed, we have to achieve the property P for the remaining cases. In synthesis,
we can suppose:

a = β isk, k 6= is, i and β 6= α, β > α

b = γ ljt, l 6= jt, j, β isk > γljt then β > γ.

We can have:

a) isk > ljt
b) isk < ljt.

We look to the following cases:

i’) is < k, l < jt, ii’) is < k, l > jt, iii’) is > k, l < jt, iv’) is > k, l > jt:

i’) For a), is < k and l < jt, hence is < l < jt and jt 6= is. Since jt > i, jt 6= i, it
follows that βisjt is an element of I : αij and βisjt > γljt (that is the property
P ). For b), is > l. Since jt > i, jt 6= i. It follows that the monomial βisjt is an

element of I : αij and βisjt > γljt, γljt ∈ L
′

βisjt
(that is the property P ).

ii’) For a), write isk > jtl. Then is < jt < l. Since i < jt, it follows that βisjt is a
generator of the colon ideal I : α ij (since jt 6= is, i) hence β isjt > γjtl, β isjt ∈
Lγjtl(that is the property P ). For b), isk < jtl. Then jt < is < k, hence
jtis > isk,βjtis > γisk and βjtis ∈ Lγisk.

iii’) For a) kis > ljt, then k < l and so k < l < jt. Since k < j, the element βkjt is
a generator of I : αij and βkjt > γljt, so βkjt ∈ Lγljt . For b), l < k < is and,

since l < i, it follows that γlis < βkis, γlis ∈ L
′

βkis
.
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iv’) For a), write kis > jtl, k < jt < l and kjt > jtl. Since k < is < i < j, γkjt
is a generator of I : αij, and γkjt < βjtl, it follows γkjt ∈ L

′

βjtl
, that is the

property P . For b), write kis < jtl, jt < k < is and jt < is < i. Hence βjtis is
a generator of I : αij, βjtis > γkis, and βjtis ∈ Lγkis .

The proof of cases II, III, IV is analogous. �

Now we recall the definition of linear module, as found in [3].

Definition 3.1. Let R = K[u1, . . . , un] be a homogeneous K−algebra, K a field,
finitely generated over K by elements of degree 1, and let M a graded R−module. M
is said to be linear if it has a system of generators m1, . . . ,mt all of the same degree,
such that for j = 1, . . . , t the colon ideals:

(Rm1 + . . . Rmj−1) : mj

is generated by a subset of {u1, . . . , un}.

Proposition 3.2. [14, Theorem 1.2] Suppose R a strongly Koszul K-algebra. Let
I ⊂ R be a homogeneous ideal generated by a subset of generators of the maximal
irrelevant ideal of R. Then I has linear quotients and a linear resolution on R.

Proposition 3.3. Let C be the monomial algebra B ∗ A(2) and let I be a monomial
ideal (u1, . . . , ut) generated by a sequence L of generators of the algebra that satisfies
the property P . Then I has a linear resolution.

Proof. By Definition 3.1, I is a linear module. Hence the statement will be true if we
show that I has linear relations and its first syzygy module is again a linear module.
For the first assertion, if a1u1 + . . . + arur, 1 ≤ r ≤ t, is a homogeneous generating
relation of I, let aj be the last non zero coefficient of that relation, then aj is a
generator of the colon ideal (u1, . . . , uj−1) : uj . Hence aj is a generator of the algebra
of degree 1, and the relation is linear. Let Syz1(I) be the first syzygy module of I. We
will prove that Syz1(I) is a linear module by induction on the number of generators.
If the ideal I is principal, then Syz1(I) = {0}. Suppose Syz1(I) generated by r
elements g1, . . . , gs, s > 1,such that with respect to them Syz1(I) is a linear module.
Consider the submodule D = Cg1 + . . .+Cgs−1 that is linear by induction and so its
Syz1(D) module, with respect to a system of minimal generators l1, . . . , lu. By the
exact sequence

0→ Syz1(D)→ Syz1(Syz1(I))→ Syz1(Syz1(I)/Syz1(D))→ 0,

the module Syz1(I)/Syz1(D) is cyclic with annihilator ideal Cg1 + . . . + Cgs−1 :
Cgs,then Syz1(Syz1(I)/Syz1(D)) ∼= (ui1 , . . . , uiv ), 1 ≤ i1 < . . . < iv ≤ t, that
verifies the Property P by induction and then it is a linear module. Now we can
complete the set l1, . . . , lu in Syz1(D), hence in Syz1(Syz1(I)), choosing homogeneous
elements h1, h2, . . . , hv of Syz1(Syz1(I)), such that they can be mapped onto in the set
ui1 , . . . , uiv . We claim that the module Syz1(Syz1(I)), generated by the set l1, . . . , lu,
h1, h2, . . . , hv is a linear module with respect to these generators. In fact the quotient
ideals Cl1 + . . . + Clj−1 : Clj , 1 ≤ j ≤ s,are generated by a subset of generators.
By induction, each colon ideal Clij : Chjk = (0), 1 ≤ ij ≤ u, 1 ≤ ik ≤ v, and
Ch1 + Chk−1 : Chk, 1 ≤ k ≤ v, are generated by a subset of variables. For this, let
m be a monomial generator, then mhk = b1h1 + . . .+ bk−1hk−1 and mapping onto in
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Syz1(Syz1/Syz1(D)), we obtain the relation muik = b1ui1 + bk − 1uik−1
in C. So m

is a generator of the quotient ideal (ui1 , . . . , uik−1
) : uik , hence of degree 1. �

Corollary 3.4. Let I = (u1, . . . , ut) be an ideal of B ∗ A(2) as in Theorem 2.1. Let
Ir be any colon ideal (u1, . . . , ur) : (ur+1) of I, r = 1, . . . , t− 1.Then we have:
(1) Ir has linear quotients
(2) Ir has a linear resolution.

Proof. (1) By Theorem 3.1 and (2) by Proposition 3.3. �

Remark 3.1. We proved in Theorem 3.1 that any colon ideal Ir of I verifies the
property P . In the same way any colon ideal of Ir verifies P and so on. The previous
condition characterizes the sequentially Koszul algebras, as defined in [1].

Remark 3.2. For n = 4, A(2) is a strongly Koszul algebra and consequently the
Segre product B ∗ A(2) [14]. As a consequence any ideal generated by a subset of
generators has a linear resolution.

Remark 3.3. For homogeneous semigroup rings arising from Grassmann varieties,
Hankel varieties of Pn and their subvarieties [7], [8], [9], [10], [15], the problem is
more difficult. For G(1, 3) = H(1, 3) its toric ring is strongly Koszul, being a quotient
of the polynomial ring K[[12], [13], [14], [23], [24], [34]] for the ideal generated by the
binomial relation [14][23] − [13][24], where [i, j] is the variable corresponding to the
minor with columns i, j, i < j, of a 2 × 4 generic matrix. The semigroup ring of
G(1, 4) is a subring of K[t11, t12, t13, t14, t15, t21, t22, t23, t24, t25], tij the generic entry
of a 2× 5- matrix (

t11 t12 t13 t14 t15
t21 t22 t23 t24 t25

)

and it is generated by the diagonal initial terms of ten 2 × 2 minors of the matrix.
The semigroup of H(1, 4) is a subring of K[t11, t12, t13, t14, t15, t16], generated by the
diagonal initial terms of ten 2× 2 minors of the Hankel matrix(

t11 t12 t13 t14 t15
t12 t13 t14 t15 t16

)
.

Both rings have a toric ideal generated by a Gröbner basis of degree 2 [15], [8] and they
are Koszul. The problem to find monomial ideals generated by subsets of generators
of the semigroup ring with linear resolution is open, for n > 4.

Remark 3.4. Segre products between polynomial rings on any field K and square-
free Veronese rings have been employed for algebraic models in statistic, in graphs
theory, in transportation problems [4], [5], [6]. In particular, if Ir and Js are re-
spectively the rth squarefree Veronese ideal of K[x1, . . . , xn] and the sth squarefree
Veronese ideal of K[y1, . . . , ym], we can consider the sum Ir + Js or the product
IrJs in the ring K[x1, . . . , xn; y1, . . . , ym] that describe particular simple graphs and
the semigroup rings K[Ir], K[Ir, Js], K[IrJs], respectively subrings of K[x1, . . . , xn],
K[x1, . . . , xm; y1, . . . , yn] generated by the minimal system of generators of Ir,Ir + Js
and IrJs. Observe that we have that C = K[J1I2]. Since the sorted Gröbner basis
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of the defining ideals of the previous semigroup rings is quadratic [15], initial sim-
plicial complexes with respect the a total order received a lot of attention in several
articles. Indeed the subtended affine semigroup presents easy triangulations [11],[15].
Alternately, one studied classify the simplicial complexes defined by the squarefree
monomial ideals Ir + Js and IrJs to obtain combinatorial statements [16].

In this paper we referred to the excellent books whose in [2], [17].
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