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Ideals with linear resolution in Segre products

Gr1o1a FAaILLA

ABSTRACT. We consider a homogeneous graded algebra on a field K, which is the Segre
product of a K —polynomial ring in m variables and the second squarefree Veronese subalgebra
of a K—polynomial ring in n variables, generated over K by elements of degree 1. We describe
a class of graded ideals of the Segre product with a linear resolution, provided that the minimal
system of generators satisfies a suitable condition of combinatorial kind.

2010 Mathematics Subject Classification. Primary, 13A30; Secondary, 13D45.
Key words and phrases. Monomial algebras, graded ideals, linear resolutions.

1. Introduction

Let A and B be two homogeneous graded algebras and let A * B be their Segre

product Kluy,...,u,], where all generators have degree 1. In [14] the notion of
strongly Koszul algebra is introduced and the main consequence is that the max-
imal graded ideal has linear quotients, hence a linear resolution. In particular if
A=Klzxy,...,z,) and B = K|y, ..., Yymn] are polynomial rings, the graded maximal
ideal (z1y1,...,ZnYm) of A x B has linear quotients and a linear resolution. For the
significant applications in combinatorics, the case where A and B are monomial alge-
bras received a lot of attention from algebrists. In this case, note that the generators
u1,...,Uu, are monomials and the subtended affine semigroup reflects properties of
the algebra. The problem to yield monomial ideals with linear quotients and having
linear resolution is particularly interesting for homogeneous semigroup rings. The aim
of this paper is to investigate if the class of monomial ideals of the semigroup ring
studied in [12], and with linear quotients, has a linear resolution.
More precisely, in Section 1, we consider two polynomials rings A = K[xy,..., o]
and B = Klyi,...,Ym] with the standard graduation and the Segre product B x
A®) between B and the second squarefree Veronese ring A®) generated over K by
all squarefree monomials of degree 2 of A. We recall in particular the property P
considered in [12], on ordered subsets of the generators of C, that has an interpretation
in algebraic combinatorics. In Section 2, we focus our attention to monomial ideals
of B A that admit quotient ideals linearly generated and, as a consequence, they
have a linear resolution, being linear modules, following the definition given in [3]. We
examine a class of ideals, generated by a suitable subset of the set of the generators
of the K-algebra B x A(?), studied in [12] and with linear quotients. The main point
is to require that the set of generators satisfies a property able to guarantee that a
family of colon ideals of the ideal has linear quotients.
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2. Preliminaries and known results

Let A = K[x1,...,2,] and B = K[yi,...,Ym] be two polynomial rings in n and
m variables respectively with coefficients in any field K. Let A C A be the 2nd
squarefree Veronese algebra of A and let C' = B * A® be the Segre product of B
and A®). We consider C' as a standard K —algebra generated in degree 1 by the
monomials yox;x;, with 1 < a <m, 1 <7 < j <n. For convenience, we will indicate
such a monomial by azj.

In [12] we computed all quotient ideals of principal ideals of C, generated by
generators of the graded maximal ideal m* of C' in order to obtain the intersection
degree of this algebra [13], [14]. The description of the generators of the colon ideals
will be used in the following.

Theorem 2.1. [12, Theorem 1.1] Let C = B A®) be the Segre product and let m* =
(ut,...,un), N =m(}) the mazimal ideal of C. Let (u,): (us), 1 <r,s < N,r#s,
a colon zdeal of generators of m*, in the lexicographic order. Then we have:

L (aijy) : (avije) = (Bkj1, k # j1, 52, B € {1,...,m})

2. (onigr) : (agije) = (nkji, k # ji, jo)

3 (Ozllj) (Ozigj)z(Bilk‘,k#il,ig,ﬂE{l,...,m})

4 (()(111]) (OéQin) = (Oélilk, k 75 i1,i2)

5. (« 1]) (ajje) = (Birk, k # i1,j2, B € {1,...,m})

6. ( ) (ai?i):(ﬁkjhk#jlvi%ﬂe{l?"'am})

7 (OML?) (ajje) = (auirk, k # i1, j2)

8. (anij1) : (a2izi) = (onkj, k # iz, j1)

9. (arirf) : (azizga) = (arirgi, (uirs)(Bjis), B € {1,...,m}, s # i1, j1,%2, j2)

10 (aqij) : (a2ij) = (crkl, k #£1)

Corollary 2.2. [12, Corollary 1.2] Let B * A®) be the Segre product as in Theorem
2.1, where all generators are of degree 1. Then the intersection degree of the monomial
algebra B« A® is equal to 3 for n > 4.

The fact that there are colon ideals not generated in degree 1 can to not be a
problem for special classes of monomial ideals. In particular the strong condition
that we consider monomial ideals generated by subsets of generators that verify the
property P implies that a family of associated quotients ideals are generated in degree
1, provided a suitable order on the generators.

For this end, we introduce in the set of monomials of K[x1,...,2Zn,y1,.-.,Ym] the
lexicographic order with the order on the variables y; > ... >y, > 1 > ... > .
Moreover, following [12], we call bad pair” a pair of monomials ij, kI in A®) or
aij, Bkl in C, with i # k and j # (.

Definition 2.1. Let (uq,...,u;) be an ideal of C = B x A generated by a sequence
L = {ayi1j1,...,04itje } of generators of C, with u; > ... > u;. Fixed akl € L, let
Lokt = {Brs € L/Brs > akl and rs > kl} and L, ,;, = {frs € L/Brs < akl and rs >
kl} be. We say that the sequence L satisfies the property P if:

1) for each bad pair aij > akl in L, aik € Laop or ail € Lok or akl € Ly or
(1) P J ;
ajl € Lo
2) for each bad pair aij > Bkl in L, with ij > kl, aik € Lg or ail € Ly or
B B
ajk € Lgg or ajl € Lay
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(3) for each bad pair «ij > Bkl in £, with ij < ki, or ki € E/M-j or Bkj € E:M-j or
Bil € L;; or Bjl € L,,;.
By using this definition, we have:

Theorem 2.3. Let (u1,...,u;) be the ideal of B x A generated by a sequence L =
{a1i1J1, ..., 0nirje } of generators of M, withuy > ... > u;. Fized akl € L, let Lok =
{Brs € L/Brs > akl and rs > kl} and L.,, = {Brs € L/Brs < akl and rs > kl}
be. Suppose that the sequence L satisfies the property P. Then (uq,...,us) has linear
quotients.

Proof. See [12, Theorem 2.3]. O

Example 2.1. For n =2, m = 5, consider C' = K{y1,y2] * K[z1, 22,23, 24,25]. The
sequences £1 = {112,113, 114, ... ,145,212, 213,214, ...,245} and Lo = {112,113,123,
125,135,212, 213,223, 225,235} satisfy the property P. For £ the result is obvious,
since £ is the generating sequence of the maximal irrelevant ideal of C. For Ls, we
observe that it comes from the colon ideal (112,113) : (114) = (112,113,123, 125,135,
212,213,223,225,235). Consider the bad pair 112 > 135, with 12 > 35. Then
L35 = {112, 113,123, 125}. We have 113 € L435,123 € L35,125 € L135,115 ¢ L135.
Consider the bad pair 125 > 213, with 25 < 13, 5125 = {212,213,223}. We have
212 € L£',215 ¢ £,223¢e,235 ¢ £'. Then the property P is satisfied.

3. Monomial Ideals with linear quotients

The aim of this section is to prove that the class of monomial ideals of the Segre
product C' = Bx A described in [12], having linear quotients, has a linear resolution
on C. For this we need the following;

Theorem 3.1. Let (uy,...us) be the ideal of C = B * A®) generated by the sequence
L as in Theorem 2.1 and I,_1 = (a1i171,- - -, Qg—19g—1Jg—1),q < t—1. Then the colon
ideal I : og—1%4jq Satisfies condition P.

Proof. Note that the monomial ideal I : agi4j, is generated by all colon ideals apipjp :
Qqiqjq such that each pair a,i,jp, 0giqjq is not a bad pair for p < ¢ (see [12, Theorem
2.3]). Set i =1, and j = j,. Assume i < j. Consider a bad pair a,b € I : ayij:

T case: a € aigjs: i, isjs,tJ is not a bad pair

be airjs s aij, i4js, 17 is not a bad pair

IT case: a € aigjs: Bij, 1isjs,4j is not a bad pair

b€ Bisjs: Bij, 1isjs,ij is not a bad pair

III case: a € aigjs : B1j, 1sjs,tj is not a bad pair

bevisjs: Pij,y# a, isjs,ij is not a bad pair

IV case: a € aigjs : ij, 1isjs,1j is not a bad pair

be Big:atj, 11t ¢ is not a bad pair
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I case: Note that isjs > ij,4:j: > ij and is < js, 0 < j,i¢ < js. Write ¢ = 4, and
j = Jjs, the colon ideals to be considered are aigj : aij and aijy : aij. Let a € aigj :

atj

and b € aijy : aij be. Suppose a = aisk,k #is,j and b= aljy,l # ji, j.

We look to the following cases:

i)

ii)

iii)

iv)

is <k, l <ji. If aisk > alj; (that is a > b) then isk > lj;, is <1 < jg, hence
is < jg. Since i < jy, it follows that a igj; is a generator of the colon ideal I : «aij
(since jy # is,1). It follows that aisjy > alje, that is aisjy € Lay;,. If a < b,
isk < lji,l < is, aighk < aliy and igk < lis. It follows alis € L,k (that is the
property P).

is < k, 1> jy, a = aigk, b =ajl. Ifa > b, aisk > ajl and iy < jp < L
Since i < ji, it follows that «isj: is a generator of the colon ideal I : aij (since
Jt # is,1) hence aigjy > ajil, avisjy € Lqj,i(that is the property P). If a < b,
isk < jil. Then j; < is < k, hence jiis > isk and ajiis € Lo k-

is > k,l < j;. If a > b, kig > ljs, then k < [ and so k <[ < j;. Since k < 7,
the element akj: is a generator of I : aij and akj: > adjs, so akj € Layj,. If
kis < ljs, Il < k < is and, since | < 4, it follows that alis is a generator of I : aij
and alis > akis, alis € Ly ki, (that is the property P).

is > k0 > ji. If a > b, write a = akis, b = agil. If kisg > jil, k < j; < I
and kj; > jil. Since k < is < i < j, akjs is a generator of I : aij. It follows
akj, € Lqj,i (that is the property P). If kis < jil, ju < k < is and j, < i5 < i.
Hence ajis is a generator of I : aij, ajiis > akis, and ajiis € Lo ki, -

Indeed, we have to achieve the property P for the remaining cases. In synthesis,
we can suppose:

a=Pisk, k#is,iand B # a,8 > «
b:,yljta l#jtmja /Blsk>7ljt thenﬂ>7

We can have:

2)
b)

isk > 1j;
isk < ljs.

We look to the following cases:

D)is <k, I <jgp, i) is <k, 1> g, i) i > k, 1 < gy, iV)) 15 > k, 1 > g

)

For a), i < k and [ < ji, hence iy <l < j; and j; # is. Since j; > 4, ji # 14, it
follows that [isj; is an element of I : «ij and Sisj: > vlj;: (that is the property
P). For b), is > I. Since j; > i, j; # i. It follows that the monomial fisj; is an
element of I : awij and Bigsjs > Yljt, ylj: € L/ﬁisjt (that is the property P).

For a), write isk > j:l. Then i5 < j; < l. Since i < ji, it follows that Bisj; is a
generator of the colon ideal I : aij (since j; # is,1) hence Bisjr > vjil, Bisjt €
L. ;. (that is the property P). For b), isk < jil. Then j; < i, < k, hence
jtis > iskaﬂjtis > 'ylsk and 6]'”'5 € £7i3k-

For a) kis > lj;, then k <1 and so k <1 < j;. Since k < j, the element Skj; is
a generator of I : aij and Bkj > lj, so fkj, € L1;,. For b), I <k < iy and,
since I < i, it follows that yli, < Skis, Ylis € Ly, -
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iv’) For a), write kis > jl, k < j; <l and kj; > jil. Since k < is < i@ < j, vkj¢
is a generator of I : «ij, and vkj; < Bjl, it follows vkj; € E’Bjtl’ that is the
property P. For b), write kis < jil, j: < k < is and j; < i5 < i. Hence [jis is
a generator of I : aij, Bjiis > vkis, and Bjiis € Lyki, -

The proof of cases II, III, IV is analogous. (|

Now we recall the definition of linear module, as found in [3].

Definition 3.1. Let R = KJuy,...,u,| be a homogeneous K—algebra, K a field,
finitely generated over K by elements of degree 1, and let M a graded R—module. M
is said to be linear if it has a system of generators my, ..., m; all of the same degree,
such that for j =1,...,¢ the colon ideals:

(le + ... ijfl) My
is generated by a subset of {u1,...,u,}.

Proposition 3.2. [14, Theorem 1.2] Suppose R a strongly Koszul K-algebra. Let
I C R be a homogeneous ideal generated by a subset of generators of the mazimal
irrelevant ideal of R. Then I has linear quotients and a linear resolution on R.

Proposition 3.3. Let C be the monomial algebra B x A and let I be a monomial
ideal (u1,...,us) generated by a sequence L of generators of the algebra that satisfies
the property P. Then I has a linear resolution.

Proof. By Definition 3.1, I is a linear module. Hence the statement will be true if we
show that I has linear relations and its first syzygy module is again a linear module.
For the first assertion, if ayu; + ... + a,u,, 1 < r < ¢, is a homogeneous generating
relation of I, let a; be the last non zero coefficient of that relation, then a; is a
generator of the colon ideal (u1,...,uj_1) : u;. Hence a; is a generator of the algebra
of degree 1, and the relation is linear. Let Syz1(I) be the first syzygy module of I. We
will prove that Syz;(I) is a linear module by induction on the number of generators.
If the ideal I is principal, then Syzi(I) = {0}. Suppose Syz;(I) generated by r
elements g1, ..., gs,s > 1,such that with respect to them Syz;(I) is a linear module.
Consider the submodule D = Cgy + ...+ Cgs_1 that is linear by induction and so its
Syz1(D) module, with respect to a system of minimal generators ly,...,l,. By the
exact sequence

0 — Syz1(D) — Syz1(Syz1(I)) = Syz1(Syz1(1)/Syz1(D)) — 0,

the module Syz;(I)/Syz1(D) is cyclic with annihilator ideal Cg; + ... + Cgs_1 :
Cys,then Syz(Syz1(I)/Syz1(D)) = (wiy,...us,), 1 < i1 < ... < i, < t, that
verifies the Property P by induction and then it is a linear module. Now we can
complete the set I, ..., 1, in Syz1 (D), hence in Syz(Syz1(I)), choosing homogeneous
elements hy, ho, ..., hy, of Syz1(Syz1(I)), such that they can be mapped onto in the set
Uiy, .- u;,. We claim that the module Syz1(Syz1 (1)), generated by the set Iy, ..., ly,
hi,ha, ..., h, is a linear module with respect to these generators. In fact the quotient
ideals Cly + ...+ Clj_1 : Clj, 1 < j < s,are generated by a subset of generators.
By induction, each colon ideal Cl;; : Chy, = (0), 1 < i; < u, 1 <4 < v, and
Chy + Chg—1 : Chg,1 < k < v, are generated by a subset of variables. For this, let
m be a monomial generator, then mhy = b1hy + ...+ br_1hr_1 and mapping onto in
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Syz1(Syz1/Syz1(D)), we obtain the relation mu;, = byu;, + by — lu,,_, in C. So m
is a generator of the quotient ideal (u;,,...,u; _,) : u;,, hence of degree 1. O

Corollary 3.4. Let I = (uy,...,u;) be an ideal of B+ A®) as in Theorem 2.1. Let
I. be any colon ideal (uy,...,uy) : (upi1) of I, r=1,...,t — 1.Then we have:

(1) I, has linear quotients

(2) I, has a linear resolution.

Proof. (1) By Theorem 3.1 and (2) by Proposition 3.3. O

Remark 3.1. We proved in Theorem 3.1 that any colon ideal I,. of I verifies the
property P. In the same way any colon ideal of I,. verifies P and so on. The previous
condition characterizes the sequentially Koszul algebras, as defined in [1].

Remark 3.2. For n = 4, A® is a strongly Koszul algebra and consequently the
Segre product B * A®) [14]. As a consequence any ideal generated by a subset of
generators has a linear resolution.

Remark 3.3. For homogeneous semigroup rings arising from Grassmann varieties,
Hankel varieties of P" and their subvarieties [7], [8], [9], [10], [15], the problem is
more difficult. For G(1,3) = H(1,3) its toric ring is strongly Koszul, being a quotient
of the polynomial ring K[[12], [13], [14], [23], [24], [34]] for the ideal generated by the
binomial relation [14][23] — [13][24], where [i, j] is the variable corresponding to the
minor with columns 4,j, ¢ < j, of a 2 X 4 generic matrix. The semigroup ring of
G(1,4) is a subring of K[t11,t12, t13,t14, 15, t21, t22, 23, toa, tas], ti; the generic entry

of a 2 X 5- matrix
t11 ti2 t13 tia 15
tor oo tag tog tos

and it is generated by the diagonal initial terms of ten 2 x 2 minors of the matrix.
The semigroup of H(1,4) is a subring of K[t11, t12,t13, t14, t15, t16], generated by the
diagonal initial terms of ten 2 x 2 minors of the Hankel matrix

t11 ti2 ti3 tia 15
tig tiz tis tis tie )

Both rings have a toric ideal generated by a Grébner basis of degree 2 [15], [8] and they
are Koszul. The problem to find monomial ideals generated by subsets of generators
of the semigroup ring with linear resolution is open, for n > 4.

Remark 3.4. Segre products between polynomial rings on any field K and square-
free Veronese rings have been employed for algebraic models in statistic, in graphs
theory, in transportation problems [4], [5], [6]. In particular, if I, and Js are re-
spectively the rth squarefree Veronese ideal of K[z1,...,x,] and the sth squarefree
Veronese ideal of Klyi,...,ym], we can consider the sum I. + Js; or the product
I.Js in the ring K[x1,...,2Zn; Y1, ..., Ym] that describe particular simple graphs and
the semigroup rings K|[I,.], K[I,, Js|, K[I,Js], respectively subrings of K[z1,...,x,],
Klx1,. .. Tm; Y1, -, Yn] generated by the minimal system of generators of I,.,I,. + J
and I,.Js. Observe that we have that C' = K[J1I5]. Since the sorted Grobner basis
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of the defining ideals of the previous semigroup rings is quadratic [15], initial sim-
plicial complexes with respect the a total order received a lot of attention in several
articles. Indeed the subtended affine semigroup presents easy triangulations [11],[15].
Alternately, one studied classify the simplicial complexes defined by the squarefree
monomial ideals I, + J; and I,.Js to obtain combinatorial statements [16].

In this paper we referred to the excellent books whose in [2], [17].
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