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Convergent complex uncertain sequences defined by Orlicz
function
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Abstract. In this paper we introduce the notion of convergent sequences of complex uncer-
tain variables with respect to measure, mean, distribution etc. defined by an Orlicz function.

We have investigated some of the properties of these classes of sequences. We have established

some relationships among these notions as well as with other classes of complex uncertain
variables.
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1. Introduction

Uncertainty is an extremely important feature of the real world. How do we under-
stand uncertainty? How do we model uncertainty? In order to answer those questions,
the notion of uncertainty theory was introduced by Liu [2]. Nowadays uncertainty
theory has become a branch of mathematics for modelling human uncertainty.
In this section, we procure some fundamental concepts and theorems in uncertainty
theory are introduced, which will be used throughout the paper.

Definition 1.1. (Liu [2]) Let L be a σ−algebra on a nonempty set Γ. A set function
M is called an uncertain measure if it satisfies the following axioms:
Axiom 1. (Normality Axiom) M{Γ} = 1;
Axiom 2. (Duality Axiom) M{Λ}+ M{Λc} = 1 for any Λ ∈ L;
Axiom 3. (Subadditivity Axiom) For every countable sequence of {λj} ∈ L, we have

M


∞⋃
j=1

λj

 ≤
∞∑
j=1

M{λj}.

The triplet (Γ,L,M) is called an uncertainty space, and each element Λ in L is called
an event.
In order to obtain an uncertain measure of compound event, a product uncertain
measure is define by Liu ([2]) as follows:
Axiom 4. (Product Axiom) Let (Γk,Lk,Mk) be uncertainty space for k = 1, 2, 3, ....
The product uncertain measure M is an measure satisfying

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk}
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where Λk are arbitrarily chosen events from Lk for k = 1, 2, ..., respectively.

Definition 1.2. (Liu [2]) An uncertain variable ξ is a measurable function from an
uncertainty space (Γ,L,M) to the set of real numbers, i.e., for any Borel set B of real
numbers, the set

{ξ ∈ B} = {γ ∈ Γ : ξ(γ) ∈ B}
is an event.

Definition 1.3. (Liu [2]) The uncertainty distribution Φ of an uncertain variable ξ
is defined by

Φ(x) = M{ξ ≤ x}, ∀x ∈ R.

Definition 1.4. (Liu [2]) The uncertain variables ξ1, ξ2, ..., ξn are said to be indepen-
dent if

M


n⋂
j=1

(ξj ∈ Bj)

 =

n∧
j=1

M{ξj ∈ Bj}

for any Borel sets B1, B2, ..., Bn of real numbers.

Definition 1.5. (Liu [2]) Let ξ be an uncertain variable. The expected value of ξ is
defined by

E[ξ] =

∫ +∞

0

M{ξ ≥ r}dr −
∫ 0

−∞
M{ξ ≤ r}dr

provided that at least one of the above two integrals is finite.

Considering the importance of the role of convergence of sequence in mathematics,
some concepts of convergence for uncertain sequences were introduced by Liu (See for
instance [2]) as follows:

Definition 1.6. The uncertain sequence {ξn} is said to be convergent almost surely(a.s.)
to ξ if there exists an event Λ with M{Λ} = 1 such that

lim
n→∞

|ξn(γ)− ξ(γ)| = 0,

for every γ ∈ Λ. In that case we write ξn → ξ, a.s. as n→∞

Definition 1.7. The uncertain sequence {ξn} is said to be convergent in measure to
ξ if

lim
n→∞

M{|ξn − ξ| ≥ ε} = 0,

for every ε > 0.

Definition 1.8. The uncertain sequence {ξn} is said to be convergent in mean to ξ
if

lim
n→∞

E[|ξn − ξ|] = 0.

Definition 1.9. Let Φ,Φ1,Φ2, ... be the uncertainty distributions of uncertain vari-
ables ξ, ξ1, ξ2, ..., respectively. We say the uncertain sequence {ξn} converges in dis-
tribution to ξ if

lim
n→∞

Φn(x) = Φ(x)

for all x at which Φ(x) is continuous.
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Definition 1.10. The uncertain sequence {ξn} is said to be convergent uniformly
almost surely(a.s.) to ξ if there exists an sequence of events {Ek}, M{Ek} → 0 such
that {ξn} converges uniformly to ξ in Γ− Ek, for any fixed k.

Tripathy and Nath [13] have introduced the notion of statistical convergence of
sequence of complex uncertain variables and investigated some of their properties.
Uncertainty theory has also been studied by Liu ([3], [1], [5]) from different aspects.
It is studied from the concept of sequence spaces by You [16] and Chen et.al. [22],
from finance point of view by Chen [21] and many others.

2. Complex Uncertain Variable

In this section, we procure some definitions, concepts and results on complex un-
certain variables those can be found in Peng [23].
As a complex function on uncertainty space, complex uncertain variable is mainly
used to model a complex uncertain quantity.

Definition 2.1. A complex uncertain variable is a measurable function ζ from an
uncertainty space (Γ,L,M) to the set of complex numbers, i.e., for any Borel set B
of complex numbers, the set

{ζ ∈ B} = {γ ∈ Γ : ζ(γ) ∈ B}

is an event.

Theorem 2.1. A variable ζ from an uncertainty space (Γ,L,M) to the set of com-
plex numbers is a complex uncertain variable if and only if Reζ and Imζ are uncertain
variables where Reζ and Imζ represent the real and the imaginary part of ζ, respec-
tively.

Definition 2.2. The complex uncertainty distribution Φ(x) of a complex uncertain
variable ζ is a function from C to [0, 1] defined by

Φ(c) = M{Re(ζ) ≤ Re(c), Im(ζ) ≤ Im(c)}

for any complex c.

Theorem 2.2. A function Φ : C→ [0, 1] is a complex uncertainty distribution if and
only if it is increasing with respect to the real part Re(c) and imaginary part Im(c)
such that
(i) limx→−∞Φ(x+ ib) 6= 1, limy→−∞Φ(a+ iy) 6= 1, for any a, b ∈ R;
(ii) limx→+∞,y→+∞ Φ(x+ iy) 6= 0,
where i =

√
−1 is the imaginary unit.

Definition 2.3. An Orlicz function is a function M : [0,∞) → [0,∞), which is
continuous, non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and
M(x)→∞ as x→∞.

If convexity of Orlicz function M is replaced by

M(x+ y) ≤M(x) +M(y)

then this function is called Modulus function, defined and discussed by Ruckle [20]Lin-
denstrauss and Tzafriri [17] used the idea of Orlicz function to construct the sequence
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space

`M =

{
x ∈ ω :

∞∑
k=1

M
(
|xk|
ρ

)
<∞ for some ρ > 0

}
.

The space `M with the norm

‖x‖ = inf

{
ρ > 0 :

∞∑
k=1

M
(
|xk|
ρ

)
≤ 1

}
.

becomes a Banach space Which is called an Orlicz sequence space. Lindenstrauss
and Tzafriri [17]proved that every Orlicz sequence space `M contains a subspace
isomorphic to c0 or some `p, positively for a class of spaces.

The space `M is closely related to the space `p which is an Orlicz sequence space
with M(x) = xp; 1 ≤ p ≤ ∞.

Applying the concept of Orlicz function, different classes of sequences have been
introduced by Lindenstrauss [18], Tripathy and Borgogain ([14], [15]), Tripathy and
Dutta ([7]), Tripathy and Dutta ([11], [12]), Tripathy and Hazarika [8], Tripathy and
Sarma [10], Thorpe [6] and investigated their algebraic and topological properties
have been investigated. Now we introduce the notion of different types of convergent
sequences of complex uncertain sequences defined by an Orlicz function.

Definition 2.4. The sequence spaces given by Orlicz function for the complex un-
certain sequences {ζn} which are convergent almost surely(a.s.) to ζ is

c(M; a.s) =

{
{ζn} : lim

n→∞
‖ζn(γ)− ζ(γ)‖ = 0,

∞∑
k=1

M
(
|ξk|
ρ

)
<∞ for some ρ > 0

}
.

Definition 2.5. The sequence spaces given by Orlicz function for the complex un-
certain sequences {ζn} which are convergent in measure to ζ is

c(M;m) =

{
{ζn} : lim

n→∞
M{‖ζn − ζ‖ ≥ ε} = 0,

∞∑
k=1

M
(
|ξk|
ρ

)
<∞ for some ρ > 0

}
.

Definition 2.6. The sequence spaces given by Orlicz function for the complex un-
certain sequences {ζn} which are convergent in mean to ζ is

c(M;mean) =

{
{ζn} : lim

n→∞
E[‖ζn − ζ‖] = 0,

∞∑
k=1

M
(
|ξk|
ρ

)
<∞ for some ρ > 0

}
.

Definition 2.7. Let Φ,Φ1,Φ2, ... be the complex uncertainty distributions of complex
uncertain variables ζ, ζ1, ζ2, ..., respectively. Then the sequence spaces given by Orlicz
function for the complex uncertain sequences {ζn} which are converges in distribution
to ζ is

c(M;Dis) =

{
{ζn} : lim

n→∞
Φn(c) = Φ(c) and

∞∑
k=1

M
(
|ξk|
ρ

)
<∞ for some ρ > 0

}
.

Definition 2.8. The sequence spaces given by Orlicz function for the complex un-
certain sequences {ζn} which are convergent uniformly almost surely(u.a.s.) to ζ is

c(M;u.a.s) =

{
{ζn} : ζn →u.a.s ζ and

∞∑
k=1

M
(
|ξk|
ρ

)
<∞ for some ρ > 0

}
.



CONVERGENT COMPLEX UNCERTAIN SEQUENCES DEFINED BY ORLICZ FUNCTION 143

3. Relationship between the Sequence Spaces Introduced

In this section we establish some relationship between the sequence spaces intro-
duced in this article.

Theorem 3.1. c(M;mean) ⊂ c(M;m) and the inclusion is strict.

Proof. Let ζn ∈ c(M;mean). Then by definition there exists ζ ∈ c(M;mean) such
that

lim
n→∞

E[‖ζn − ζ‖] = 0 and

∞∑
k=1

M
(
|ξk|
ρ

)
<∞ for some ρ > 0.

It follows from the Markov inequality that for any given ε > 0, we have

M{‖ζk − ζ‖ ≥ ε} ≤
E[‖ζk − ζ‖]

ε
→ 0.

Thus {ζn} converges in measure to ζ. Hence we get

lim
n→∞

M{‖ζn − ζ‖ ≥ ε} = 0 and

∞∑
k=1

M
(
|ξk|
ρ

)
<∞for some ρ > 0.

�

The inclusion is strict follows from the following example.

Example 3.1. Consider the uncertainty space (Γ,L,M) to be γ1, γ2, ... with

M{Λ} =


supγn∈Λ

1
(n+1) , if supγn∈Λ

1
(n+1) < 0.5

1− supγn∈Λc
1

(n+1) , if supγn∈Λc
1

(n+1) < 0.5

0.5, otherwise

and the complex uncertain variables be defined by

ζn(γ) =

{
(n+ 1)i, if γ = γn
0, otherwise

for n = 1, 2, ... and ζ ≡ 0. For some small number ε > 0 and n ≥ 2, we have

M {‖ζk − ζ‖ ≥ ε} = M {γ : ‖ζk(γ)− ζ(γ)‖ ≥ ε} = M{γn} =
1

n+ 1
→ 0

as n→∞. So the sequence {ζn} converges in measure to ζ. However, for each n ≥ 2,
we have the uncertainty distribution of uncertain variable ‖ζn − ζ‖ = ‖ζn‖ is

Φn(x) =


0, if x < 0
1− 1

n+1 , if 0 ≤ x < n+ 1

1, x ≥ n+ 1.

So for each n ≥ 2, we have

E[‖ζn − ζ‖] =

∫ n+1

0

1− (1− 1

n+ 1
)dx = 1.

That is, the sequence {ζn} does not converge in mean to ζ.
Hence the result follows.

Theorem 3.2. c(M;m) ⊂ c(M;Dis) and the inclusion is strict.
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Proof. Let c = a + ib be a given continuity point of the complex uncertainty distri-
bution Φ. On the one hand, for any α > a, β > b, we have

{ξn ≤ a, ηn ≤ b} ={ξn ≤ a, ηn ≤ b, ξ ≤ α, η ≤ β} ∪ {ξn ≤ a, ηn ≤ b, ξ > α, η > β}
∪ {ξn ≤ a, ηn ≤ b, ξ ≤ α, η > β} ∪ {ξn ≤ a, ηn ≤ b, ξ > α, η ≤ β}
⊂ {ξ ≤ α, η ≤ β} ∪ {|ξn − ξ| ≥ α− a} ∪ {|ηn − η| ≥ β − b}.

It follows from the subadditivity axiom that

Φn(c) = Φn(a+ ib) ≤ Φ(α+ iβ) +M{|ξn − ξ| ≥ α− a}+M{|ηn − η| ≥ β − b}.
Since {ξn} and {ηn} converges in measure to ξ and η, respectively, we have
limn→∞M{|ξk − ξ‖ ≥ α− a} = 0 and limn→∞M{‖ξk − ξ‖ ≥ β − b} = 0.
Thus we obtain lim supn→∞ Φn(c) ≤ Φ(α + iβ) for any α > a, β > b. Letting
α+ iβ → a+ ib, we get

lim sup
n→∞

Φn(c) ≤ Φ(c). (1)

On the other hand, for any x < a, y < b we have

{ξ ≤ x, η ≤ y} ={ξn ≤ a, ηn ≤ b, ξ ≤ x, η ≤ y} ∪ {ξn ≤ a, ηn ≤ b, ξ ≤ x, η ≤ y}
∪ {ξn > a, ηn ≤ b, ξ ≤ x, η ≤ y} ∪ {ξn > a, ηn > b, ξ ≤ x, η ≤ y}
⊂ {ξn ≤ a, ηn ≤ b} ∪ {|ξn − ξ| ≥ a− x} ∪ {|ηn − η| ≥ b− y}.

Which implies

Φ(x+ iy) ≤ Φn(a+ ib) +M{|ξn − ξ| ≥ a− x}+M{|ηn − η| ≥ b− y}.
Since limn→∞M{‖ξk − ξ‖ ≥ a − x} = 0 and limn→∞M{‖ξk − ξ‖ ≥ b − y} = 0, we
obtain Φ(x+ iy) ≤ lim infn→∞Φn(a+ ib) for any x < a, y < b. Taking x+ iy → a+ ib,
we get

Φ(c) ≤ lim inf
n→∞

Φn(c). (2)

It follows from (1) and (2) that Φn(c) → Φ(c) as n → ∞. That is the complex
uncertain sequence {ζn} is convergent in distribution to ζ = ξ + iη. Hence the result
follows. �

The inclusion is strict follows from the following example.

Example 3.2. Consider the uncertainty space (Γ,L,M) to be {γ1, γ2} with M{γ1} =
M{γ2} = 1

2 . We define a complex uncertain variable as

ζ(γ) =

{
i, if γ = γ1

−i, if γ = γ2.

We also define ζn = −ζ for n = 1, 2, .... Then ζn and ζ have the same distribution

Φn(c) = Φn(a+ ib) =


0, if a < 0,−∞ < b < +∞
0, if a ≥ 0, b < −1
1
2 , if a ≥ 0,−1 ≤ b < 1
1, if a ≥ 0, b ≥ 1.

Then {ζn} convergence in distribution to ζ. However, for a given ε > 0, we have

M{‖ζk − ζ‖ ≥ ε} = M{γ : ‖ζk(γ)− ζ(γ)‖ ≥ ε} = 1.

That is, the sequence {ζn} does not converge in measure to ζ. By Theorem 3.2, the
real part and imaginary part of {ζn} also do not convergent in measure.
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In addition, since ζn = −ζ for n = 1, 2, ...., the sequence {ζn} does not converge a.s
to ζ.

Proposition 3.3. c(M; a.s) does not imply c(M;m).

Proof. The result follows from the following example. �

Example 3.3. Consider the uncertainty space (Γ,L,M) to be γ1, γ2, ... with

M{Λ} =


supγn∈Λ

n
(2n+1) , if supγn∈Λ

n
(2n+1) < 0.5

1− supγn∈Λc
n

(2n+1) , if supγn∈Λc
n

(2n+1) < 0.5

0.5, otherwise.

Then we define a complex uncertain variables as

ζn(γ) =

{
in, if γ = γn
0, otherwise

for n = 1, 2, ... and ζ ≡ 0. Then the sequence {ζn} convergence a.s to ζ. However for
some small number ε > 0, we have

M{‖ζk − ζ‖ ≥ ε} = M{γ : ‖ζk(γ)− ζ(γ)‖ ≥ ε} = M{γn} =
n

2n+ 1
→ 1

2

as n→∞.That is, the sequence {ζn} does not converge in measure to ζ.
In addition the complex uncertainty distributions of ‖ζn‖ are

Φn(c) = φn(a+ ib) =


0, if a < 0,−∞ < b < +∞
0, if a ≥ 0, b < 0
1− n

2n+1 , if a ≥ 0, 0 ≤ b < n

1, a ≥ 0, b ≥ n.
for n = 1, 2, ..., respectively. And the complex uncertainty distribution of ζ is

Φ(c) =

 0, if a < 0,−∞ < b < +∞
0, if a ≥ 0, b < 0
1, a ≥ 0, b ≥ 0.

Clearly Φn(c) does not converge to Φ(c) at a ≥ 0, b ≥ 0. That is, the sequence {ζn}
does not converge to ζ in distribution.

Proposition 3.4. c(M;m) also does not imply c(M; a.s).

Proof. The result follows from the following example. �

Example 3.4. Consider the uncertainty space (Γ,L,M) to be [0, 1] with Borel algebra
and Lebesgue measure. For any positive integer n, there is an integer m such that
n = 2m + k where k is an integer between 0 and 2m − 1. Then we define a complex
uncertain variable by

ζn(γ) =

{
i, if k

2m ≤ γ ≤ (k+1)
2m

0, otherwise

for n = 1, 2, ... and ζ ≡ 0. For some small number ε > 0, we have

M{‖ζk − ζ‖ ≥ ε} = M{γ : ‖ζk(γ)− ζ(γ)‖ ≥ ε} =
1

2m
→ 0
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as n→∞. So the sequence {ζn} converges in measure to ζ. In addition, we have

E[‖ζk − ζ‖] =
1

2m
→ 0

as n→∞. Thus the sequence {ζn} also converges in mean to ζ.
However, for any γ ∈ [0, 1], there is an infinite number of intervals of the form [ k2m ,

k+1
2m ]

containing γ. Thus ζn(γ) does not converge to 0. In other words, the sequence {ζn}
does not converge a.s to ζ.

Proposition 3.5. c(M; a.s) does not imply c(M;mean).

Example 3.5. Consider the uncertainty space (Γ,L,M) to be γ1, γ2, ... with

M{Λ} =
∑
γn∈Λ

1

2n
.

The complex uncertain variables are defined by

ζn(γ) =

{
i2n, if γ = γn
0, otherwise

for n = 1, 2, ... and ζ ≡ 0. Then the sequence {ζn} convergence a.s to ζ. However,
the uncertainty distributions of ‖ζn‖ are

Φn(x) =

 0, if x < 0
1− 1

2n , if 0 ≤ x < 2n

1, x ≥ 2n.

for n = 1, 2, ..., respectively. Then we have

E[‖ζk − ζ‖] =

∫ 2n

0

1− (1− 1

2n
)dx = 1.

So the sequence {ζn} does not converge in mean to ζ.
From Example 6, we can obtain c(M;mean) does not imply c(M; a.s).

Proposition 3.6. Let ζ, ζ1, ζ2, ... be complex uncertain variables. Then {ζn} con-
verges a.s to ζ if and only if for any ε > 0, we have

M

( ∞⋂
k=1

∞⋃
n=k

{‖ζn − ζ‖ ≥ ε}

)
= 0.

Proof. By the definition of convergence a.s., we have that there exists an event Λ with
M{Λ} = 1 such that limn→∞ ‖ζn − ζ‖ = 0. Then for any ε > 0, there exists k such
that ‖ζn − ζ‖ < ε where n > k and for any γ ∈ Λ, that is equivalent to

M

( ∞⋂
k=1

∞⋃
n=k

{‖ζn − ζ‖ < ε}

)
= 1.

It follows from the duality axiom of uncertain measure that

M

( ∞⋂
k=1

∞⋃
n=k

{‖ζn − ζ‖ ≥ ε}

)
= 0.

�
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Proposition 3.7. Let ζ, ζ1, ζ2, ... be complex uncertain variables. Then {ζn} con-
verges uniformly a.s to ζ if and only if for any ε > 0, we have

lim
n→∞

M

( ∞⋃
n=k

{‖ζn − ζ‖ ≥ ε}

)
= 0.

Proof. If {ζn} converges uniformly a.s to ζ, then for any δ > 0 there exists B such
that M{B} < δ and {ζn} uniformly converges to ζ on Γ − B. Thus, for any ε > 0,
there exists k > 0 such that ‖ζn − ζ‖ < ε where n ≥ k and γ ∈ Γ−B. That is

∞⋃
n=k

{‖ζn − ζ‖ ≥ ε} ⊂ B.

It follows from the subadditivity axiom that

M

( ∞⋃
n=k

{‖ζk − ζ‖ ≥ ε}

)
≤ M{B}) < δ.

Then

lim
n→∞

M

( ∞⋃
n=k

{‖ζk − ζ‖ ≥ ε}

)
= 0.

On the contrary, if limn→∞M(∪∞n=k{‖ζk− ζ‖ ≥ ε}) = 0. for any ε > 0, then for given
δ > 0 and m ≥ 1, there exists mk such that

M

( ∞⋃
n=mk

{‖ζn − ζ‖ ≥
1

m
}

)
<

δ

2m
.

Let B = ∪∞m=1 ∪∞n=mk
{‖ζn − ζ‖ ≥ 1

m}. Then

M{B} ≤
∞∑
m=1

M(

∞⋃
n=mk

{‖ζn − ζ‖ ≥
1

m
}) ≤

∞∑
m=1

δ

2m
= δ.

Furthermore, we have

sup
γ∈Γ−B

‖ζn − ζ‖ <
1

m

for any m = 1, 2, ... and n > mk. The proposition is thus proved. �

Theorem 3.8. If{ζn} ∈ c(M;u.a.s), then {ζn} ∈ c(M; a.s).

Proof. It follows from above Proposition that if {ζn} converges uniformly a.s to ζ,
then

lim
n→∞

M

( ∞⋃
n=k

{‖ζn − ζ‖ ≥ ε}

)
= 0.

Since

M

( ∞⋂
k=1

∞⋃
n=k

{‖ζn − ζ‖ ≥ ε}

)
≤ M

( ∞⋃
n=k

{‖ζn − ζ‖ ≥ ε}

)
,

taking the limit as n→∞ on both side of above inequality, we obtain

M

( ∞⋂
k=1

∞⋃
n=k

{‖ζn − ζ‖ ≥ ε}

)
= 0.

By Proposition 3.4, {ζn} converges a.s to ζ. �
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Theorem 3.9. If a complex uncertain sequence {ζn} ∈ c(M;u.a.s), then {ζn} ∈
c(M;m).

Proof. If {ζn} converges uniformly a.s. to ζ, then from Proposition above we have

lim
n→∞

1

n
|{k ≤ n : lim

n→∞
M

( ∞⋃
n=k

‖ζk − ζ‖ ≥ ε

)
≥ δ}| = 0.

And

δ (M{‖ζn − ζ‖ ≥ ε}) ≤

(
M

( ∞⋃
n=k

{‖ζn − ζ‖ ≥ ε}

))
.

Letting n→∞, we can obtain {ζn} converges in measure to ζ. �

As in seen from Example 3.4, {ζn} converges in measure to ζ. However, it does not
converges a.s. to zeta. It follows from above Theorem that {ζn} does not converges
uniformly a.s. to ζ.

4. Conclusion

In this paper we have defined different types of convergent sequences of complex
uncertain variables defined by an Orlicz function. We have studied their different
properties and established the relationship between them. The idea can be applied
for introducing some other classes of sequences of complex uncertain variables and
study their properties.
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