
Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 45(2), 2018, Pages 243–257
ISSN: 1223-6934

Converses of the Edmundson-Lah-Ribarič inequality for
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Abstract. In this paper we obtain some estimates for the generalized f -divergence functional

via converses of the Jensen and Edmundson-Lah-Ribarič inequalities for convex functions, and

then we obtain some estimates for the Kullback-Leibler divergence. All of the obtained results
are applied to Zipf-Mandelbrot law and Zipf law.
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1. Introduction and preliminaries

Let us denote the set of all probability densities by P, i.e. P = (p1, ..., pn) ∈ P
if pi ∈ [0, 1] for i = 1, ..., n and

∑n
i=1 pi = 1. One of the numerous applications

of Probability Theory is finding an appropriate measure of distance (difference or
divergence) between two probability distributions.

Consequently, many different divergence measures have been introduced and exten-
sively studied, for example Kullback-Liebler divergence, variation distance, Hellinger
distance, χ2-divergence, α-divergence, Bhattacharyya distance etc. All of the men-
tioned divergences are special cases of Csiszár f -divergence.

These measures of distance between two probability distributions have an impor-
tant application in a great number of fields such as: anthropology, genetics, economics
and political science, biology, approximation of probability distributions, signal pro-
cessing and pattern recognition, ecological studies, music etc.

A large number of papers has been written on the subject of inequalities for dif-
ferent types of divergences. Since the functions that are used to define most of the
divergences are convex, Jensen’s inequality and its converses play an important role
in the mentioned inequalities.

Theorem 1.1. Let f : I → R be a convex function, xi ∈ I for i = 1, ..., n, and let
p1, ..., pn be positive real numbers. Then we have

f

(
1

Pn

n∑
i=1

pixi

)
≤ 1

Pn

n∑
i=1

pif(xi), (1)
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where Pn =
∑n

i=1 pi.

The following converse of the Jensen inequality is known as the Edmundson-Lah-
Ribarič inequality for convex functions.

Theorem 1.2. [13] Let f : [m,M ] → R be a convex function, xi ∈ [m,M ] for i =
1, ..., n, and let p1, ..., pn be positive real numbers. Then

1

Pn

n∑
i=1

pif(xi) ≤
M − x̄
M −m

f(m) +
x̄−m
M −m

f(M), (2)

where Pn =
∑n

i=1 pi and x̄ = 1
Pn

∑n
i=1 pixi.

Csiszár [1]-[2] introduced the f−divergence functional as

Df (P,Q) =

n∑
i=1

qif

(
pi
qi

)
, (3)

where f : [0,+∞〉 is a convex function, and it represent a ”distance function” on
the set of probability distributions P. Many common divergences, such as previ-
ously mentioned Kullback-Liebler divergence, variation distance, Hellinger distance,
χ2-divergence, α-divergence, Bhattacharyya distance etc. are special cases of f -
divergence, coinciding with a particular choice of the function f .

In order to use nonnegative probability distributions in the f -divergence functional,
Horvath et. al. ([8]) defined

f(0) := lim
t→0+

f(t), 0 · f
(

0

0

)
:= 0, 0 · f

(a
0

)
:= lim

t→0+
tf
(a
t

)
and gave the following definition of a generalized f -divergence functional.

Definition 1.1. Let J ⊂ R be an interval, and let f : J → R be a function. Let
P = (p1, ..., pn) be an n-tuple of real numbers and Q = (q1, ..., qn) be an n-tuple of
nonnegative real numbers such that pi/qi ∈ J for every i = 1, ..., n. Then let

D̂f (P,Q) :=

n∑
i=1

qif

(
pi
qi

)
.

Dragomir [4] gave the following upper bound for the Csiszár divergence functional

Df (P,Q) ≤ M − 1

M −m
f(m) +

1−m
M −m

f(M), (4)

where f is a convex function on the interval [m,M ], P = (p1, ..., pn), Q = (q1, ..., qn) ∈
P and m ≤ pi/qi ≤M for every i = 1, ..., n (then it easily follows that 1 ∈ [m,M ]).

The Kullback-Leibler divergence, also called relative entropy or KL divergence

DKL(P,Q) :=

n∑
i=1

pilog

(
pi
qi

)
is a measure of the non-symmetric difference between two probability distributions P
and Q, but it is not a true metric because it does not obey the triangle inequality and
in general DKL(P,Q) 6= DKL(Q,P ). The KullbackLeibler divergence was introduced
by Kullback and Leibler in [12], and it is a special case of the Csiszár divergence for
f(t) = tlogt.
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Aim of this paper is to obtain an improvement of Dragomir’s result (4) for f -
divergence and to prove difference type converses of the obtained results. Those
results will then be applied to Zipf-Mandelbrot law since there are a lot applications
of Zipf and Zipf-Mandelbrot laws.

First we state an improvement of the Edmundson-Lah-Ribarič inequality (2) proved
by Klaričić Bakula, Pečarić and Perić in [9], which we will utilize to obtain an im-
provement of Dragomir’s result (4).

Theorem 1.3. [9] Let f : [m,M ] → R be a convex function, xi ∈ [m,M ] for i =
1, ..., n, and let p1, ..., pn be positive real numbers. Then

1

Pn

n∑
i=1

pif(xi) ≤
M − x̄
M −m

f(m) +
x̄−m
M −m

f(M)

− 1

Pn

n∑
i=1

pi

(
1

2
− 1

M −m

∣∣∣∣xi − m+M

2

∣∣∣∣) δf , (5)

where x̄ = 1
Pn

∑n
i=1 pixi and

δf = f(m) + f(M)− 2f

(
m+M

2

)
. (6)

We also need to state discrete versions of two results found in [10].

Theorem 1.4. [10] Let f be a continuous convex function on an interval I whose
interior contains [m,M ], xi ∈ [m,M ] for i = 1, ..., n, and let p1, ..., pn be positive real
numbers such that

∑n
i=1 pi = 1. Then

0 ≤
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)

≤ (M − x̄)(x̄−m) sup
t∈〈m,M〉

Ψf (t;m,M)−

(
1

2
− 1

M −m

n∑
i=1

pi

∣∣∣∣xi − m+M

2

∣∣∣∣
)
δf

≤ (M − x̄)(x̄−m)

M −m
(f ′−(M)− f ′+(m))−

(
1

2
− 1

M −m

n∑
i=1

pi

∣∣∣∣xi − m+M

2

∣∣∣∣
)
δf

≤ 1

4
(M −m)(f ′−(M)− f ′+(m))−

(
1

2
− 1

M −m

n∑
i=1

pi

∣∣∣∣xi − m+M

2

∣∣∣∣
)
δf , (7)

where δf is defined in (6) and Ψf (·;m,M) : 〈m,M〉 → R is the second order divided
difference of the function f at the points m, t and M for any t ∈ 〈m,M〉

Ψf (t;m,M) =
1

M −m

(
f(M)− f(t)

M − t
− f(t)− f(m)

t−m

)
. (8)

Theorem 1.5. [10] Let f be a continuous convex function on an interval I whose
interior contains [m,M ], xi ∈ [m,M ] for i = 1, ..., n, and let p1, ..., pn be positive real
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numbers such that
∑n

i=1 pi = 1. Then(
1

2
− 1

M −m

n∑
i=1

pi

∣∣∣∣xi − m+M

2

∣∣∣∣
)
δf ≤

M − x̄
M −m

f(m) +
x̄−m
M −m

f(M)−
n∑

i=1

pif(xi)

≤(M − x̄)(x̄−m) sup
t∈〈m,M〉

Ψf (t;m,M)

≤ (M − x̄)(x̄−m)

M −m
(f ′−(M)− f ′+(m))

≤1

4
(M −m)(f ′−(M)− f ′+(m)). (9)

2. Results

Our first result in this section is an improved version of Dragomir’s result (4) for
the generalized f -divergence functional, and it provides us an upper bound for the
mentioned functional.

Theorem 2.1. Let [m,M ] ⊂ R be an interval, let f : [m,M ] → R be a function
and let δf be defined in (6). Let P = (p1, ..., pn) be an n-tuple of real numbers and
Q = (q1, ..., qn) be an n-tuple of nonnegative real numbers such that pi/qi ∈ [m,M ]
for every i = 1, ..., n. If the function f is convex, we have

D̂f (P,Q) ≤ MQn − Pn

M −m
f(m) +

Pn −mQn

M −m
f(M)

−
(Qn

2
− 1

M −m

n∑
i=1

∣∣∣pi − m+M

2
qi

∣∣∣)δf . (10)

If the function f is concave, then the inequality sign is reversed.

Proof. Let f : [m,M ] → R be a convex function. Since Q = (q1, ..., qn) are nonnega-
tive real numbers, we can put

pi = qi and xi =
pi
qi

in Theorem 1.3 and get

1

Qn

n∑
i=1

qif

(
pi
qi

)
≤
M − 1

Qn

∑n
i=1 qi

pi

qi

M −m
f(m) +

1
Qn

∑n
i=1 qi

pi

qi
−m

M −m
f(M)

− 1

Qn

(
Qn

2
− 1

M −m

n∑
i=1

qi

∣∣∣∣piqi − m+M

2

∣∣∣∣
)
δf ,

and after multiplying by Qn we get (10).
�

Remark 2.1. From m ≤ pi/qi ≤M it easily follows that (see [9])

−M −m
2

qi ≤ pi −
m+M

2
qi ≤

M −m
2

qi, i.e.

∣∣∣∣pi − m+M

2
qi

∣∣∣∣ ≤ M −m
2

qi
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which together with δf ≥ 0 for a convex function f gives us

(Qn

2
− 1

M −m

n∑
i=1

∣∣∣pi − m+M

2
qi

∣∣∣)δf ≥ 0.

Remark 2.2. If in the previous theorem we take P and Q to be probability distribu-
tions, we directly get an improvement of Dragomir’s result for the Csiszár f -divergence
functional:

Df (P,Q) ≤ M − 1

M −m
f(m) +

1−m
M −m

f(M)−
(1

2
− 1

M −m

n∑
i=1

∣∣∣pi − m+M

2
qi

∣∣∣)δf .
Next result is a special case of Theorem 2.1, and provides us with bounds for the

Kullback-leibler divergence of two probability distributions.

Corollary 2.2. Let [m,M ] ⊂ R be an interval and let us assume that the base of the
logarithm is greater than 1.
• Let P = (p1, ..., pn) and Q = (q1, ..., qn) be n-tuples of nonnegative real numbers

such that pi/qi ∈ [m,M ] for every i = 1, ..., n. Then

n∑
i=1

pilog

(
pi
qi

)
≤ Qn

Mm

M −m
log
(m
M

)
+

Pn

M −m
log

(
MM

mm

)

−
(Qn

2
− 1

M −m

n∑
i=1

∣∣∣pi − m+M

2
qi

∣∣∣)(mlog
2m

m+M
+M log

2M

m+M

)
. (11)

• Let P = (p1, ..., pn) and Q = (q1, ..., qn) ∈ P be probability distributions such that
m ≤ pi/qi ≤M holds for every i = 1, ..., n. Then

DKL(P,Q) ≤ Mm

M −m
log
(m
M

)
+

1

M −m
log

(
MM

mm

)
−
(1

2
− 1

M −m

n∑
i=1

∣∣∣pi − m+M

2
qi

∣∣∣)(mlog
2m

m+M
+M log

2M

m+M

)
. (12)

If the base of the logarithm is less than 1, the inequality sign in the inequalities above
is reversed.

Proof. Let P = (p1, ..., pn) and Q = (q1, ..., qn) be an n-tuples of nonnegative real
numbers. Since the function t 7→ tlogt is convex when the base of the logarithm
is greater than 1, the inequality (11) follows from Theorem 2.1, inequality (10), by
setting f(t) = tlogt.

Inequality (12) is a special case of the inequality (11) for probability distributions
P and Q. �

Remark 2.3. If in Theorem 2.1, inequality (10), we set f(t) = −logt with the base
greater than 1, we get a bound for the reversed Kullback-Leibler divergence of two
probability distributions:
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• for n-tuples of nonnegative real numbers P = (p1, ..., pn) and Q = (q1, ..., qn)
such that pi/qi ∈ [m,M ] for every i = 1, ..., n we have

n∑
i=1

qilog

(
qi
pi

)
≤ Pn

M −m
log

m

M
+

Qn

M −m
log

Mm

mM

−
(Qn

2
− 1

M −m

n∑
i=1

∣∣∣pi − m+M

2
qi

∣∣∣)log
(m+M)2

4mM
; (13)

• for probability distributions P = (p1, ..., pn) and Q = (q1, ..., qn) ∈ P such that
m ≤ pi/qi ≤M holds for every i = 1, ..., n we have

DKL(Q,P ) ≤ 1

M −m
log

(
Mm−1

mM−1

)
−
(1

2
− 1

M −m

n∑
i=1

∣∣∣pi − m+M

2
qi

∣∣∣)log
(m+M)2

4mM
. (14)

If the base of the logarithm is less than 1, the inequality sign in the inequalities above
is reversed.

Our next result is obtained by utilizing Theorem 1.4, and it also gives us bounds for
the generalized f -divergence functional. Concurrently, it represents an improvement
of bounds for f -divergence functional obtained by Dragomir in the paper [4].

Theorem 2.3. Let I ⊂ R be an interval such that its interior contains the interval
[m,M ], let f : I → R be a continuous function and let δf be defined in (6). Let
P = (p1, ..., pn) be an n-tuple of real numbers and Q = (q1, ..., qn) be an n-tuple of
nonnegative real numbers such that pi/qi ∈ [m,M ] for every i = 1, ..., n. Let δf be
defined in (6), and Ψf in (8). If the function f is convex, then

0 ≤ D̂f (P,Q)−Qnf

(
Pn

Qn

)
≤ Qn

(
M − Pn

Qn

)(
Pn

Qn
−m

)
sup

t∈〈m,M〉
Ψf (t;m,M)

−

(
Qn

2
− 1

M −m

n∑
i=1

∣∣∣∣pi − m+M

2
qi

∣∣∣∣
)
δf (15)

≤ Qn

M −m

(
M − Pn

Qn

)(
Pn

Qn
−m

)(
f ′−(M)− f ′+(m)

)
−

(
Qn

2
− 1

M −m

n∑
i=1

∣∣∣∣pi − m+M

2
qi

∣∣∣∣
)
δf

≤ Qn

4
(M −m)(f ′−(M)− f ′+(m))−

(
Qn

2
− 1

M −m

n∑
i=1

∣∣∣∣pi − m+M

2
qi

∣∣∣∣
)
δf .

If the function f is concave, the inequality signs are reversed.

Proof. Let f : [m,M ] → R be a convex function. Since Q = (q1, ..., qn) are nonnega-
tive real numbers, we can put

pi =
qi∑n
i=1 qi

=
qi
Qn

and xi =
pi
qi
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in Theorem 1.4 and get

0 ≤
n∑

i=1

qi∑n
i=1 qi

f

(
pi
qi

)
− f

(
n∑

i=1

qi∑n
i=1 qi

pi
qi

)

≤

(
M −

n∑
i=1

qi∑n
i=1 qi

pi
qi

)(
n∑

i=1

qi∑n
i=1 qi

pi
qi
−m

)
sup

t∈〈m,M〉
Ψf (t;m,M)

−

(
1

2
− 1

M −m

n∑
i=1

qi∑n
i=1 qi

∣∣∣∣piqi − m+M

2

∣∣∣∣
)
δf

≤
f ′−(M)− f ′+(m)

M −m

(
M −

n∑
i=1

qi∑n
i=1 qi

pi
qi

)(
n∑

i=1

qi∑n
i=1 qi

pi
qi
−m

)

−

(
1

2
− 1

M −m

n∑
i=1

qi∑n
i=1 qi

∣∣∣∣piqi − m+M

2

∣∣∣∣
)
δf

≤ 1

4
(M −m)(f ′−(M)− f ′+(m))−

(
1

2
− 1

M −m

n∑
i=1

qi∑n
i=1 qi

∣∣∣∣piqi − m+M

2

∣∣∣∣
)
δf ,

and after multiplying by Qn we get (15). �

The result that follows is a special cases of Theorem 2.3. It gives us different
bounds of those that we have already obtained for the Kullback-Leibler divergence of
two probability distributions.

Corollary 2.4. Let [m,M ] ⊂ R be an interval and let us assume that the base of the
logarithm is greater than 1.
• Let P = (p1, ..., pn) and Q = (q1, ..., qn) be n-tuples of nonnegative real numbers

such that pi/qi ∈ [m,M ] for every i = 1, ..., n. Then

0 ≤
n∑

i=1

pilog
pi
qi
− Pnlog

(
Pn

Qn

)
≤ Qn

(
M − Pn

Qn

)(
Pn

Qn
−m

)
sup

t∈〈m,M〉
Ψid·log(t;m,M)

−

(
Qn

2
− 1

M −m

n∑
i=1

∣∣∣∣pi − m+M

2
qi

∣∣∣∣
)(

mlog
2m

m+M
+M log

2M

m+M

)
≤ Qn

M −m

(
M − Pn

Qn

)(
Pn

Qn
−m

)
log

M

m

−

(
Qn

2
− 1

M −m

n∑
i=1

∣∣∣∣pi − m+M

2
qi

∣∣∣∣
)(

mlog
2m

m+M
+M log

2M

m+M

)
≤ Qn

4
(M −m)log

M

m

−

(
Qn

2
− 1

M −m

n∑
i=1

∣∣∣∣pi − m+M

2
qi

∣∣∣∣
)(

mlog
2m

m+M
+M log

2M

m+M

)
.

(16)
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• Let P = (p1, ..., pn) and Q = (q1, ..., qn) ∈ P be probability distributions such that
m ≤ pi/qi ≤M holds for every i = 1, ..., n. Then

0 ≤ DKL(P,Q)

≤ (M − 1) (1−m) sup
t∈〈m,M〉

Ψid·log(t;m,M)

−

(
1

2
− 1

M −m

n∑
i=1

∣∣∣∣pi − m+M

2
qi

∣∣∣∣
)(

mlog
2m

m+M
+M log

2M

m+M

)
≤ 1

M −m
(M − 1) (1−m) log

M

m

−

(
1

2
− 1

M −m

n∑
i=1

∣∣∣∣pi − m+M

2
qi

∣∣∣∣
)(

mlog
2m

m+M
+M log

2M

m+M

)
≤ 1

4
(M −m)log

M

m

−

(
1

2
− 1

M −m

n∑
i=1

∣∣∣∣pi − m+M

2
qi

∣∣∣∣
)(

mlog
2m

m+M
+M log

2M

m+M

)
. (17)

If the base of the logarithm is less than 1, the inequality sign in the inequalities above
is reversed.

Proof. Let P = (p1, ..., pn) and Q = (q1, ..., qn) be an n-tuples of nonnegative real
numbers. Function t 7→ tlogt is convex, so inequality (16) follows from Theorem 2.3,
inequality (15), by setting f(t) = tlogt.

Inequality (17) is a special case of the inequality (16) for probability distributions
P and Q. �

Remark 2.4. If in Theorem 2.3, inequality (15), we set f(t) = −logt with the base
greater than 1, we get the following:
• for n-tuples of nonnegative real numbers P = (p1, ..., pn) and Q = (q1, ..., qn)

such that pi/qi ∈ [m,M ] for every i = 1, ..., n we have

0 ≤
n∑

i=1

qilog

(
qi
pi

)
+Qnlog

(
Pn

Qn

)
≤ Qn

(
M − Pn

Qn

)(
Pn

Qn
−m

)
sup

t∈〈m,M〉
Ψ−log(t;m,M)

−

(
Qn

2
− 1

M −m

n∑
i=1

∣∣∣∣pi − m+M

2
qi

∣∣∣∣
)

log
(m+M)2

4mM

≤ Qn

Mm

(
M − Pn

Qn

)(
Pn

Qn
−m

)
−

(
Qn

2
− 1

M −m

n∑
i=1

∣∣∣∣pi − m+M

2
qi

∣∣∣∣
)

log
(m+M)2

4mM

≤ Qn(M −m)2

4Mm
−

(
Qn

2
− 1

M −m

n∑
i=1

∣∣∣∣pi − m+M

2
qi

∣∣∣∣
)

log
(m+M)2

4mM
. (18)
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• for probability distributions P = (p1, ..., pn) and Q = (q1, ..., qn) ∈ P such that
m ≤ pi/qi ≤M holds for every i = 1, ..., n we have

0 ≤ DKL(Q,P )

≤ (M − 1) (1−m) sup
t∈〈m,M〉

Ψ−log(t;m,M)

−

(
1

2
− 1

M −m

n∑
i=1

∣∣∣∣pi − m+M

2
qi

∣∣∣∣
)

log
(m+M)2

4mM

≤ 1

Mm
(M − 1) (1−m)

−

(
1

2
− 1

M −m

n∑
i=1

∣∣∣∣pi − m+M

2
qi

∣∣∣∣
)

log
(m+M)2

4mM

≤ (M −m)2

4Mm
−

(
1

2
− 1

M −m

n∑
i=1

∣∣∣∣pi − m+M

2
qi

∣∣∣∣
)

log
(m+M)2

4mM
. (19)

If the base of the logarithm is less than 1, the inequality sign in the inequalities above
is reversed.

By making the same substitutions in Theorem 1.5 as in the proof of Theorem 2.3,
we get lower and upper bounds for the difference in the results from Theorem 2.1,
and consequently in Dragomir’s result (4).

Theorem 2.5. Let I ⊂ R be an interval such that its interior contains the interval
[m,M ], let f : I → R be a continuous function and let δf be defined in (6). Let
P = (p1, ..., pn) be an n-tuple of real numbers and Q = (q1, ..., qn) be an n-tuple of
nonnegative real numbers such that pi/qi ∈ [m,M ] for every i = 1, ..., n. Let δf be
defined in (6), and Ψf in (8). If the function f is convex, then we have(

Qn

2
− 1

M −m

n∑
i=1

∣∣∣∣pi − m+M

2
qi

∣∣∣∣
)
δf

≤ MQn − Pn

M −m
f(m) +

Pn −mQn

M −m
f(M)− D̂f (P,Q)

≤ Qn

(
M − Pn

Qn

)(
Pn

Qn
−m

)
sup

t∈〈m,M〉
Ψf (t;m,M)

≤ Qn

(
M − Pn

Qn

)(
Pn

Qn
−m

)
f ′−(M)− f ′+(m)

M −m

≤ Qn

4
(M −m)(f ′−(M)− f ′+(m)). (20)

If the function f is concave, the inequality signs are reversed.

We can utilize Theorem 2.5 to obtain lower and upper bounds for the difference in
the results from Corollary 2.2, as well as for the inequalities from Remark 2.3.

Corollary 2.6. Let [m,M ] ⊂ R be an interval and let us assume that the base of the
logarithm is greater than 1.
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• Let P = (p1, ..., pn) and Q = (q1, ..., qn) be n-tuples of nonnegative real numbers
such that pi/qi ∈ [m,M ] for every i = 1, ..., n. Then(
Qn

2
− 1

M −m

n∑
i=1

∣∣∣∣pi − m+M

2
qi

∣∣∣∣
)(

mlog
2m

m+M
+M log

2M

m+M

)

≤ Qn
Mm

M −m
log
(m
M

)
+

Pn

M −m
log

(
MM

mm

)
−

n∑
i=1

pilog

(
pi
qi

)
≤ Qn

(
M − Pn

Qn

)(
Pn

Qn
−m

)
sup

t∈〈m,M〉
Ψid·log(t;m,M)

≤ Qn

M −m

(
M − Pn

Qn

)(
Pn

Qn
−m

)
log

(
M

m

)
≤ Qn

4
(M −m)log

(
M

m

)
. (21)

• Let P = (p1, ..., pn) and Q = (q1, ..., qn) ∈ P be probability distributions such that
m ≤ pi/qi ≤M holds for every i = 1, ..., n. Then(

1

2
− 1

M −m

n∑
i=1

∣∣∣∣pi − m+M

2
qi

∣∣∣∣
)(

mlog
2m

m+M
+M log

2M

m+M

)
≤ Mm

M −m
log
(m
M

)
+

1

M −m
log

(
MM

mm

)
−DKL(P,Q)

≤ (M − 1) (1−m) sup
t∈〈m,M〉

Ψid·log(t;m,M)

≤ 1

M −m
(M − 1) (1−m) log

(
M

m

)
≤ 1

4
(M −m)log

(
M

m

)
. (22)

If the base of the logarithm is less than 1, the inequality sign in the inequalities above
is reversed.

Remark 2.5. As in Remark 2.4, we can set f(t) = −logt with the base greater than 1
in Theorem 2.5, inequality (20), and obtain the following inequalities for the reversed
Kullback-Leibler divergence:
• for n-tuples of nonnegative real numbers P = (p1, ..., pn) and Q = (q1, ..., qn)

such that pi/qi ∈ [m,M ] for every i = 1, ..., n we have(
Qn

2
− 1

M −m

n∑
i=1

∣∣∣∣pi − m+M

2
qi

∣∣∣∣
)

log
(m+M)2

4mM

≤ Qn

M −m
log

(
Mm

mM

)
+

Pn

M −m
log
(m
M

)
−

n∑
i=1

qilog

(
qi
pi

)
≤ Qn

(
M − Pn

Qn

)(
Pn

Qn
−m

)
sup

t∈〈m,M〉
Ψlog(t;m,M)

≤ − Qn

Mm

(
M − Pn

Qn

)(
Pn

Qn
−m

)
≤ − Qn

4Mm
(M −m)2. (23)
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• for probability distributions P = (p1, ..., pn) and Q = (q1, ..., qn) ∈ P such that
m ≤ pi/qi ≤M holds for every i = 1, ..., n we have(

1

2
− 1

M −m

n∑
i=1

∣∣∣∣pi − m+M

2
qi

∣∣∣∣
)

log
(m+M)2

4mM

≤ 1

M −m
log

(
Mm−1

mM−1

)
−DKL(Q,P )

≤ (M − 1) (1−m) sup
t∈〈m,M〉

Ψlog(t;m,M)

≤ − 1

Mm
(M − 1) (1−m) ≤ − 1

4Mm
(M −m)2. (24)

If the base of the logarithm is less than 1, the inequality sign in the inequalities above
is reversed.

3. Applications to Zipf-Mandelbrot law

ZipfMandelbrot law is a discrete probability distribution with parameters N ∈ N,
q, s ∈ R such that q ≥ 0 and s > 0, possible values {1, 2, ..., N} and probability mass
function

f(i;N, q, s) =
1/(i+ q)s

HN,q,s
, where HN,q,s =

N∑
i=1

1

(i+ q)s
. (25)

It is used in various scientific fields: linguistics [17], information sciences [5, 21], eco-
logical field studies [16] and music [14]. Benoit Mandelbrot in 1966 gave improvement
of Zipf law for the count of the low-rank words. Various scientific fields use this law
for different purposes, for example information sciences use it for indexing [5, 21], eco-
logical field studies in predictability of ecosystem [16], in music is used to determine
aesthetically pleasing music [14].

Let P and Q be Zipf-Mandelbrot laws with parameters N ∈ N, q1, q2 ≥ 0 and
s1, s2 > 0 respectively. We can use Corollary 2.4 and Corollary 2.6 in a similar way
as described above in order to obtain inequalities for the Kullback-Leibler divergence.
Let us denote

mP,Q := min

{
pi
qi

}
=
HN,q2,s2

HN,q1,s1

min

{
(i+ q2)s2

(i+ q1)s1

}
MP,Q := max

{
pi
qi

}
=
HN,q2,s2

HN,q1,s1

max

{
(i+ q2)s2

(i+ q1)s1

}
(26)

Corollary 3.1. Let P and Q be Zipf-Mandelbrot laws with parameters N ∈ N,
q1, q2 ≥ 0 and s1, s2 > 0 respectively. If the base of the logarithm is greater than
one, we have

0 ≤ DKL(P,Q)

≤ (MP,Q − 1) (1−mP,Q) sup
t∈〈mP,Q,MP,Q〉

Ψid·log(t;mP,Q,MP,Q)−∆P,Q
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≤ 1

MP,Q −mP,Q
(MP,Q − 1) (1−mP,Q) log

MP,Q

mP,Q
−∆P,Q

≤ 1

4
(MP,Q −mP,Q)log

MP,Q

mP,Q
−∆P,Q (27)

and

∆P,Q ≤
MP,QmP,Q

MP,Q −mP,Q
log

(
mP,Q

MP,Q

)
+

1

MP,Q −mP,Q
log

(
M

MP,Q

P,Q

m
mP,Q

P,Q

)
−DKL(P,Q)

≤ (MP,Q − 1) (1−mP,Q) sup
t∈〈mP,Q,MP,Q〉

Ψid·log(t;mP,Q,MP,Q)

≤ 1

MP,Q −mP,Q
(MP,Q − 1) (1−mP,Q) log

(
MP,Q

mP,Q

)
≤ 1

4
(MP,Q −mP,Q)log

(
MP,Q

mP,Q

)
, (28)

where DKL(P,Q) is the Kullback-Leibler divergence of distributions P and Q, mP,Q

and MP,Q are defined in (26), and

∆P,Q

=

(
1

2
− 1

MP,Q −mP,Q

N∑
i=1

∣∣∣∣ 1

HN ;q1,s1(i+ q1)s1
− mP,Q +MP,Q

2
· 1

HN ;q2,s2(i+ q2)s2

∣∣∣∣
)

×
(
mP,Qlog

2mP,Q

mP,Q +MP,Q
+MP,Qlog

2MP,Q

mP,Q +MP,Q

)
Remark 3.1. If we utilize Remark 2.4 and Remark 2.5 in the same way as described
above, we can obtain companion inequalities for the reversed Kullback-Leibler diver-
gence DKL(Q,P ) of these distributions.

For finite N and q = 0 the Zipf-Mandelbrot law becomes Zipf’s law. I is one
of the basic laws in information science and bibliometrics, but it is also often used
in linguistics. George Zipf’s in 1932 found that we can count how many times each
word appears in the text. So if we ranked (r) word according to the frequency of word
occurrence (f), the product of these two numbers is a constant C = r∗f . Same law in
mathematical sense is also used in other scientific disciplines, but name of the law can
be different, since regularities in different scientific fields are discovered independently
from each other. In economics same law or regularity are called Pareto’s law which
analyze and predicts the distribution of the wealthiest members of the community [3].
The same type of distribution that we have in Zipf’s and Pareto’s law, also known as
the Power law, can be found in wide variety of scientific disciplines, such as: physics,
biology, earth and planetary sciences, computer science, demography and the social
sciences [18] and many others. At this point of time we will not explain usage and their
importance of this law in each scientific field, but we will retain on frequency of the
word usage. Since, words are one of basic properties in human communication system.
That frequency of used word and human communication system can be explained with
plain mathematical formula is extremely interesting and useful in analysis of language
and their usage. Since this law is be applicable in indexing and text mining, it is quite
useful in today’s world in which we use Internet to retrive most of the information
that we need.
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Probability mass function of Zipf’s law is:

f(k;N, s) =
1/ks

HN,s
, where HN,s =

N∑
i=1

1

is
. (29)

Since Zipf’s law is a special case of the ZipfMandelbrot law, all of the results from
above hold for q = 0.

Gelbukh and Sidorov in [6] observed the difference between the coefficients s1 and
s2 in Zipf’s law for the russian and english language. They processed 39 literature
texts for each language, chosen randomly from different genres, with the requirement
that the size be greater than 10,000 running words each. They calculated coefficients
for each of the mentioned texts and as the result they obtained the average of s1 =
0, 892869 for the russian language, and s2 = 0, 973863 for the english language.

If we take q1 = q2 = 0, we can use the results from the above regarding the
Kullback-Leibler divergence of two Zipf-Mandelbrot distributions in order to give
estimates for the Kullback-Leibler divergence of the distributions associated to the
russian and english language. For those experimental values of s1 and s2 we have

mN = min

{
pi
qi

}
=
HN,s2

HN,s1

min

{
is2

is1

}
=
HN,s2

HN,s1

min
{
is2−s1

}
=
HN,s2

HN,s1

and

MN = max

{
pi
qi

}
=
HN,s2

HN,s1

max

{
is2

is1

}
=
HN,s2

HN,s1

max
{
is2−s1

}
=
HN,s2

HN,s1

N0,080994.

Hence the following bounds for the mentioned divergence, depending only on the
parameter N , hold.

0 ≤ DKL(P,Q)

≤ (MN − 1) (1−mN ) sup
t∈〈mN ,MN 〉

Ψid·log(t;mN ,MN )−∆N

≤ 0, 080994

MN −mN
(MN − 1) (1−mN ) logN −∆N

≤ 0, 020249(MN −mN )logN −∆N

We also have

∆N ≤
0, 080994N0,080994

N0,080994 − 1

(
1− HN ;0,973863

HN ;0,892869

)
logN + log

(
HN ;0,973863

HN ;0,892869

)
−DKL(P,Q)

≤ (MN − 1) (1−mN ) sup
t∈〈mN ,MN 〉

Ψid·log(t;mN ,MN )

≤ 0, 080994

MN −mN
(MN − 1) (1−mN ) logN ≤ 0, 020249(MN −mN )logN,

where

∆N =

(
1

2
− 1

HN ;0,973863(N0,080994 − 1)

N∑
i=1

∣∣∣∣ 1

i0,892869
− N0,080994 + 1

2i0,973863

∣∣∣∣
)

×
(

log
2

N0,080994 + 1
+N0,080994log

2N0,080994

N0,080994 + 1

)
HN ;0,973863

HN ;0,892869
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By calculating the above results for the Kullback-Leibler divergence of the distri-
butions associated to the russian (P ) and english (Q) language for different values of
the parameter N , we obtained the following bounds:
• from the first series of inequalities:

N 5000 10000 50000 100000
DKL(P,Q) ≤ 0,0862934 0,100855 0,138862 0,157016

• from the second series of inequalities:
N 5000 10000 50000 100000

DKL(P,Q) ≤ 0,00106 0,001274 0,0018269 0,002091
The base of the logarithm used in our calculations is 2.
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[7] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities 1st ed. and 2nd ed. Cambridge University
Press, Cambridge, England, 1934, 1952.
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