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Mathematical model of mosquito populations dynamics with
logistic growth in a periodic environment
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Abstract. In this paper, we analyze the effect of climate change on the dynamics of mosquito

population. The model is formulated as a nonautonomous system of ordinary differential
equations with Verhulst-Pearl logistic growth. We show that the global dynamics of the model

is determined by the vectorial reproduction ratio, Rv which is defined through the spectral

radius of a linear integral. Indeed, we show that if the threshold Rv is greater than 1, then
the mosquito-free equilibrium is globally asymptotically stable; but if it is smaller than 1, then

the mosquitoes persist and the system admits at least one positive periodic solution. Finally,

we perform some numerical simulations in order to illustrate our mathematical results.
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1. Introduction

Mosquito-borne diseases are a major public health concern because they cause
substantial mortality and morbidity worldwide. Indeed, mosquito abundance is a key
determining factor that affects the persistence or resurgence of mosquito-borne dis-
eases in population. Hence, it is crucial to study the dynamics of mosquitoes, and
devise effective and realistic methods for controlling mosquito population in communi-
ties. Since mosquito biology and disease ecology are strongly linked to environmental
conditions, then the impacts of mosquito-borne diseases increase with warm tempera-
tures and extreme precipitations. Several mathematical models have been established
in order to describe the dynamic behavior of the transmission of mosquito-borne dis-
eases [6, 9, 4, 19]; but many of these models, do not take into account the life cycle
of mosquitoes [1, 5, 8].

In [14], the authors have formulated a mathematical model of the dynamics of vec-
tor population with constant coefficients in the study of the transmission of chikun-
gunya disease. To describe the dynamics of mosquito population, they use the stage
structure model. Their model has three compartments that correspond to the different
stages of mosquito evolution. The compartment E for eggs, the compartment L which
combine larvae and pupae and the compartment A for adult mosquitoes. Through
the mathematical analysis, they have found the threshold between the extinction and
the persistence of the mosquito population.
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However, it must be noticed that climate change affects the distribution and sea-
sonal dynamics of mosquito populations [7, 12, 2, 17]. Thus, to model disease sea-
sonality and persistence, it is essential that epidemiological models be coupled with
accurate seasonal predictions of vector density. So, it would be more realistic to
consider the climatic factors in the modeling of the mosquito population dynamics.
Moreover, even if the larval stage and the pupal stage are two neighboring states,
they have several different biological structures. So, it would be more realistic to
distinguish them [10, 13].

Our model is an extension of the model studied in [14] in the sense that on the one
hand, it takes into account the effect of temperature on the mosquitoes development
cycle and the other hand, the main evolution stages of mosquitoes are distinguished.
Particularly, the larval and pupal stages are clearly distinguished. Thus, the model
is formulated by using ordinary differential equations [3] with periodic coefficients.

The paper is structured as follows. In section 2, we present the model of mosquito
populations. In section 3, we use the theory of uniform persistence, the Floquet
theory and the theorem of comparison to analyze the global behavior of the model.
Numerical simulations are provided in section 4 in order to illustrate our theoretical
results. In the final section, we conclude and give some future works.

2. Model formulation

2.1. Model description. In the evolutionary cycle of mosquitoes, there are mainly
two major stages: the mature stage and the immature stage. The immature stage is
largely aquatic and the mature stage is aerial. The aquatic stage is composed of three
main stages: egg, larval and pupal. Each of these stages is morphologically different
from the other, with even the habitat of each stage differing. Thus, our model is
composed of four compartments: the compartment of eggs, E, the compartment of
larvae, L, the compartment of pupae, P and the compartment of adult mosquitoes,
Nv.

The eggs are laid by female mosquitoes on the surface of water. Some days after,
depending on the temperature, they hatch to larva. Mosquito larvae live in water
from seven to fourteen days depending on the water temperature. Soon after they
hatch out eggs, the larva begins to feed on bacteria and decaying organic matter on
the water surface. Moreover, it has been observed that the larvae of some species
such that Aedes are cannibal because they are able to eat earlier-stage larva under
certain conditions, [15, 16]. After the larvae have completed moulting, they become
pupae. The pupal stage is a resting non-feeding stage. After a few days, depending
on the temperature and other circumstances, the adult mosquito emerges.

In each compartment, mosquitoes leave the population through natural death rates
which depend on the climatic profile. Hence, from the above assumptions, the transfer
diagram of our model is given by Figure 1.

The biological descriptions of the model parameters are given in the Table 1.

2.2. Mathematical formulation. To describe the mosquito populations dynamics,
we use the stage structured model which consists of four stages: eggs (E), larvae (L),
pupae (P ) and adults females (Nv); these stages represent the state variables of the
model. Hence, assuming that the number of laid eggs is proportional to the number
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Figure 1. Transfer diagram: the solid arrows represent the transi-
tion from one class to another and the dashed arrow represents the
eggs laying of female adult mosquitoes.

Parameters Biological descriptions

KE available breeder sites occupied by eggs
KL available breeder sites occupied by larvae
KP available breeder sites occupied by pupae
sE transfer rate from eggs to larvae
sL transfer rate from larvae to pupae
sP transfer rate from pupae to adult mosquitoes
µ death rate of larva due to cannibalism
b(t) number of eggs laid per female at unit time t
dE(t) density-independent, temperature driven, mortality rate of eggs
dL(t) density-independent, temperature driven, mortality rate of larvae
dP (t) density-independent, temperature driven, mortality rate of pupae
dv(t) density-independent, temperature driven, mortality rate of

adult mosquitoes

Table 1. Parameters of the model.

of female mosquitoes, we obtain the following system:
Ė(t) = b(t)Nv(t)− (sE + dE(t))E(t),

L̇(t) = sEE(t)− (sL + µ+ dL(t))L(t),

Ṗ (t) = sLL(t)− (sP + dP (t))P (t),

Ṅv(t) = sPP (t)− dv(t)Nv(t).

Moreover, as we said above, mosquitoes lay their eggs on water or any moist surface,
but they can also breed in natural habitats like vegetation or near rivers. However,
if there are too much eggs in the oviposition habitat or too few nutrients and water
resources, then females laid less eggs or choose another site. Therefore, larvae and
pupae need water or nutrients to complete their development.
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Mathematically, to express this biological phenomenon in the model, we introduce
the availability of nutrients and the occupation by eggs, larvae and pupae of the
available breeder sites. Hence, at any time,
• the per capita oviposition rate is given by,

b(t)

(
1− E(t)

KE

)
Nv(t),

• the number of eggs that hatch and survive is given by,

sE

(
1− L(t)

KL

)
E(t),

• the number of larvae that survive to become pupae is given by,

sL

(
1− P (t)

KP

)
L(t).

Assuming that the temperature varies as a function of time, the proportion of
individuals which survive from recruitment into one class, to maturation to the next,
is defined by the following sequence of ODEs which leads to the final mathematical
model: 

Ė(t) = b(t)

(
1− E(t)

KE

)
Nv(t)− (sE + dE(t))E(t),

L̇(t) = sE

(
1− L(t)

KL

)
E(t)− (sL + µ+ dL(t))L(t),

Ṗ (t) = sL

(
1− P (t)

KP

)
L(t)− (sP + dP (t))P (t),

Ṅv(t) = sPP (t)− dv(t)Nv(t).

(1)

Let

Z(t) = (E(t), L(t), P (t), Nv(t))
T

and

f(t, Z(t)) =



b(t)

(
1− E(t)

KE

)
Nv(t)− (sE + dE(t))E(t)

sE

(
1− L(t)

KL

)
E(t)− (sL + µ+ dL(t))L(t)

sL

(
1− P (t)

KP

)
L(t)− (sP + dP (t))P (t)

sPP (t)− dv(t)Nv(t)


.

Then, the system (1) can be written as follows:

Ż(t) = f(t, Z(t)), (2)

where the function f : R+ × R4 −→ R4 is classe C1.

3. Mathematical analysis

We assume that:
(H1): the parameters of the model are positive except the cannibalism death rate, µ

which is assumed to be nonnegative,
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(H2): dE(t), dL(t), dP (t), b(t) and dv(t) are positive, continuous and periodic functions
with the same period ω,

(H3): all adult mosquitoes measure refer to female mosquitoes.
For a continuous positive ω-periodic function Q(t), we define

Q̂ = sup
t∈[0,ω]

Q(t) and Q̄ = inf
t∈[0,ω]

Q(t).

Remark 3.1. Mathematically, the system (1) is well defined over the whole R4.
Nevertheless, the region of biological interest is given by

Γ =

{
(E,L, P,Nv) ∈ R4

+ : E ≤ KE , L ≤ KL, P ≤ KP , Nv ≤
sP
d̄v
KP

}
.

3.1. Positivity and boundedness of solutions.

Lemma 3.1. The compact Γ is a positively invariant set, which attracts all positive
orbits in R4

+. Moreover, all the solutions are bounded.

Proof. From the system (1), we have

Ė(t) = b(t)

(
1− E(t)

KE

)
Nv(t)− (sE + dE(t))E(t),

≤ b̂sPKP

d̄v
− b̂sPKP

d̄vKE
E(t).

L̇(t) = sE

(
1− L(t)

KL

)
E(t)− (sL + µ+ dL(t))L(t),

≤ sEKE −
sEKE

KL
L(t).

Ṗ (t) = sL

(
1− P (t)

KP

)
L(t)− (sP + dP (t))P (t),

≤ sLKL −
sLKL

KP
P (t).

Ṅv(t) = sPP (t)− dv(t)Nv(t)
≤ sPKP − d̄vNv(t).

Thus, if

E(t) > KE , L(t) > KL, P (t) > KP , Nv(t) >
sPKP

d̄v
then,

Ṅv(t) < 0, Ė(t) < 0, L̇(t) < 0, Ṗ (t) < 0.

Let us consider the following auxiliary ordinary differential equations:

Ė(t) =
b̂sPKP

d̄v
− b̂sPKP

d̄vKE
E(t),

L̇(t) = sEKE −
sEKE

KL
L(t),

Ṗ (t) = sLKL −
sLKL

KP
P (t)

Ṅv(t) = sPKP − d̄vNv(t).
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Using the constant variation formula, we obtain the following solutions:

E(t) = KE +

(
E(0)−KE

)
exp

(
− b̂sPKP

d̄vKE
t

)
,

L(t) = KL +

(
L(0)−KL

)
exp

(
− sEKE

KL
t

)
,

P (t) = KP +

(
P (0)−KP

)
exp

(
− sLKL

KP
t

)
,

Nv(t) =
sPKP

d̄v
+

(
Nv(0)− sPKP

d̄v

)
exp(−d̄vt).

By applying the standard comparison theorem, it then follows that :

E(t) ≤ KE , if E(0) ≤ KE ,

L(t) ≤ KL, if L(0) ≤ KL,

P (t) ≤ KP , if P (0) ≤ KP ,

Nv(t) ≤ sPKP

d̄v
, if Nv(0) ≤ sLKL

d̄v
.

Thus, the compact set Γ is positively invariant and all the solutions are non-negative
and bounded. �

Remark 3.2. The system (1) has always the mosquito-free equilibrium E = (0, 0, 0, 0).

3.2. Threshold dynamics. The vectorial reproduction ratio of the nonautonomous
model (1) can be computed using the technique in [20]. Linearizing the system (1) at
the mosquito-free equilibrium, E = (0, 0, 0, 0), we obtain the following system:

Ė(t) = b(t)Nv(t)− (sE + dE(t))E(t),

L̇(t) = sEE(t)− (sL + µ+ dL(t))L(t),

Ṗ (t) = sLL(t)− (sP + dP (t))P (t),

Ṅv(t) = sPP (t)− dv(t)Nv(t).

(3)

The system (3) can be written as follows:

U̇(t) =

(
F (t)− V (t)

)
U(t), (4)

with

U(t) =
(
E(t), L(t), P (t), Nv(t)

)T
,

V (t) =


(sE + dE(t)) 0 0 0
−sE (sL + µ+ dL(t)) 0 0

0 −sL (sP + dP (t)) 0
0 0 −sP dv(t)

 ,

and

F (t) =


0 0 0 b(t)
0 0 0 0
0 0 0 0
0 0 0 0

 .
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For all t ≥ s, let Y (t, s) be the evolution operator of the linear periodic system

ẏ = −V (t)y.

For each s ∈ R, the 4× 4 matrix Y (t, s) satisfies the equation

Ẏ (t, s) = −V (t)Y (t, s),∀t ≥ s, Y (s, s) = I, (5)

where I is the 4× 4 identity matrix.
Let Cω be the ordered Banach space of all ω-periodic functions from R to R4 which

is equipped with the maximum norm ‖.‖ and the positive cone

C+
ω :=

{
φ ∈ Cω : φ(t) ≥ 0,∀t ∈ R

}
.

Suppose F (s)φ(s) ∈ Cω is the rate of generation (hatching) of new eggs in the breeding
habits at time s in the individuals compartment in the periodic environment at time
s.
Thus,

ψ(t) =

∫ t

−∞
Y (t, s)F (s)φ(s)ds =

∫ ∞
0

Y (t, t− a)F (t− a)φ(t− a)da,

is the distribution of new eggs at time t, hatched by all female adult mosquitoes φ(s)
introduced at the previous time.

Let L : Cω −→ Cω be the linear operator defined by

(Lφ)(t) =

∫ ∞
0

Y (t, t− a)F (t− a)φ(t− a)da, ∀t ∈ R, φ ∈ Cω. (6)

Then, the vectorial reproduction ratio is Rv := ρ(L), the spectral radius of L.
In order to calculate Rv, we consider the following linear ω-periodic system:

ẇ(t) =

[
1

z
F (t)− V (t)

]
w(t), ∀t ∈ R+, z ∈ (0,∞). (7)

Let W (t, s, z), t ≥ s, s ∈ R be the evolution operator of the system (7) on R4.
Clearly, we have W (t, 0, 1) = ΦF−V (t), ∀ t ≥ 0. Thus, the following result will be
used in our numerical calculation of the vectorial reproduction ratio.

Lemma 3.2. [20]
(i) If ρ(W (ω, 0, z)) = 1 has a positive solution z0, then z0 is an eigenvalue of L, and

hence Rv > 0.
(ii) If Rv > 0, then z = Rv is the unique solution of ρ(W (ω, 0, z)) = 1.
(iii) Rv = 0 if and only if ρ(W (ω, 0, z)) < 1, for all z > 0.

Thanks to this Lemma, we have the following main result, which shows that Rv is
in scale with eggs laying, b(t).

Theorem 3.3. Let σ > 0. If R̃v is the vectorial reproduction ratio corresponding to
eggs laying rate b̃(t) = σb(t), then R̃v = σRv.

Proof. If b̃(t) = σb(t) then, the linear system (7) becomes:

ẇ(t) =

[
σ

z
F (t)− V (t)

]
w(t), ∀t ∈ R+, z ∈ (0,∞).
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Let F̃ (t) = σF (t) and Ṽ (t) = V (t). Let W̃ (ω, 0, z) be the monodromy matrix of the
following system:

˙̃w(t) =

[
1

z
F̃ (t)− Ṽ (t)

]
w̃(t), ∀t ∈ R+, z ∈ (0,∞).

It is easy to remark that W̃ (ω, 0, z) = W (ω, 0, zσ ). Thus, it then follows that

ρ(W̃ (ω, 0, R̃v)) = 1⇐⇒ ρ(W (ω, 0, R̃vσ )) = 1. Hence, R̃v = σRv. �

3.3. Stability of mosquito-free equilibrium. To study the stability of the equi-
librium E , we use Floquet theory, [18] with comparison principle.

Lemma 3.4. [2]
i) Rv = 1 if and only if ρ(ΦF−V (ω)) = 1.
ii) Rv < 1 if and only if ρ(ΦF−V (ω) < 1.

iii) Rv > 1 if and only if ρ(ΦF−V (ω)) > 1.
Then, the mosquito-free equilibrium E = (0, 0, 0, 0) is locally asymptotically stable if
Rv < 1 and unstable if Rv > 1.

Lemma 3.5. [21] Let r =
1

ω
ln ρ(ΦB(.)(ω)), then there exists a positive ω-periodic

function v(t) such that ertv(t) is a solution of ẋ(t) = B(t)x(t).

Theorem 3.6. The mosquito-free equilibrium E = (0, 0, 0, 0) is globally asymptotically
stable if Rv < 1.

Proof. For all t ≥ 0, we have:

1− E(t)

KE
≤ 1, 1− L(t)

KL
≤ 1 and 1− P (t)

KP
≤ 1. (8)

Thus, the system (1) can be rewritten as follows:
Ė(t) ≤ b(t)Nv(t)− (sE + dE(t))E(t),

L̇(t) ≤ sEE(t)− (sL + µ+ dL(t))L(t),

Ṗ (t) ≤ sLL(t)− (sP + dP (t))P (t),

Ȧ(t) = sPP (t)− dv(t)Nv(t).
Let us consider the following auxiliary system:

˙̃Z1(t) = A(t)Z̃1(t), (9)

with

Z̃1(t) = (Ẽ(t), L̃(t), P̃ (t), Ñv(t))
T

and

A(t) =


−(sE + dE(t)) 0 0 b(t)

sE −(sL + µ+ dL(t)) 0 0
0 sL −(sP + dP (t)) 0
0 0 sP −dv(t)

 .

From Lemma 3.4, if Rv < 1, then ρ(ΦF−V (ω)) < 1. Moreover, from the Lemma 3.5,

there exists a positive ω-periodic function v(t) such that Z̃1(t) = v(t)ert with r =
1

ω
ln ρ(ΦA(ω)). Since the function v(t) is bounded and ρ(ΦA(ω)) = ρ(ΦF−V (ω)) < 1
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then, r < 0 and Z̃1(t) → 0 as t → ∞. By applying the comparison theorem [11] on
system (9), we get

lim
t→+∞

(E(t), L(t), P (t), Nv(t)) = (0, 0, 0, 0).

Hence, the mosquito-free equilibrium, E is globally attractive. �

3.4. Existence of positive periodic solutions. Let us consider the following sets:

X := R4
+,

X0 := int(R4
+),

∂X0 := X \X0.

Let u(t, ϕ) be the unique solution of (1) with initial condition ϕ, Φ(t) the periodic
semiflow generated by periodic system (1) and S : X −→ X the Poincaré map
associated with system (1), namely:

S(ϕ) = Φ(ω)ϕ = u(ω, ϕ), ∀ϕ ∈ X.
Sn(ϕ) = Φ(nω)ϕ = u(nω, ϕ),∀n ≥ 0.

We notice that ∀ϕ ∈ X0,Φ(t)(ϕ) = u(t, ϕ) ∈ X0. Thus, Φ(t)(X0) ⊂ X0,∀t ≥ 0. So,
X0 and ∂X0 are positively invariant. Therefore, Lemma 3.1 implies that discrete-time
system S : X −→ X is point dissipative.

Lemma 3.7. If Rv > 1, there exists δ > 0 such that when ‖ϕ− E‖ ≤ δ, for any ϕ ∈
X0, one has lim sup

k→∞
d
(
Sk(ϕ), E

)
≥ δ, where ϕ = (E(0), L(0), P (0), Nv(0)).

Proof. Suppose by contradiction that lim sup
k→∞

d
(
Sk(ϕ), E

)
< δ for some ϕ ∈ X0. Then,

there exists an integer k2 such that for all k ≥ k2, d
(
Sk(ϕ), E

)
< δ. By the continuity

of the solution u(t, ϕ), we have

‖u(t, Sk(ϕ))− u(t, E)‖ ≤ α,∀t ≥ 0 and α > 0.

Let t = kω + t1, where t1 ∈ [0, ω] and k = [ tω ]. [ tω ] is the greatest integer less than or

equal to t
ω . If ‖ϕ− E‖ ≤ δ, then we get

‖u(t, ϕ)− u(t, E)‖ = ‖u(t1 + kω, ϕ)− u(t1 + kω, E)‖
=

∥∥u(t1, S
k(ϕ))− u(t1, E)

∥∥ ≤ α, for any t ≥ 0.

It then follows that 0 ≤ E(t) ≤ α, 0 ≤ L(t) ≤ α and 0 ≤ P (t) ≤ α, for all t ≥ 0.

Thus, there exists α∗ = max

{
α

KE
,
α

KL
,
α

KP

}
such that

1− E(t)

KE
≥ 1− α∗, 1− L(t)

KL
≥ 1− α∗ and 1− P (t)

KP
≥ 1− α∗, for all t ≥ 0.

Furthermore, the system (1) can be rewritten as follows:
Ė(t) ≥ b(t)(1− α∗)Nv(t)− (sE + dE(t))E(t),

L̇(t) ≥ sE(1− α∗)E(t)− (sL + µ+ dL(t))L(t),

Ṗ (t) ≥ sL(1− α∗)L(t)− (sP + dP (t))L(t),

Ṅv(t) = sPP (t)− dv(t)Nv(t).

(10)
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Let us consider the following auxiliary linear system

˙̃Z2(t) = Mα∗(t)Z̃2(t), (11)

where
Z̃2 = (Ẽ(t), L̃(t), P̃ (t), Ñv(t))

T

and

Mα∗(t) =


−(sE + dE(t)) 0 0 b(t)(1− α∗)
sE(1− α∗) −(sL + µ+ dL(t)) 0 0

0 sL(1− α∗) −(sP + dP (t)) 0
0 0 sP −dv(t)

 .

We have lim
α∗→0+

ΦMα∗ (ω) = ΦF−V (ω) and by the continuity of the spectral radius,

we have lim
α∗→0+

ρ
(
ΦMα∗ (ω)

)
= ρ(ΦF−V (ω)). From Lemma 3.4, if Rv > 1 then

ρ(ΦF−V (ω)) > 1 and then lim
α∗→0+

ρ
(
ΦMα∗ (ω)

)
> 1. It follows that there exists α1 > 0

such that ρ
(
ΦMα∗ (ω)

)
> 1, for all α ∈ [0, α1[. From Lemma 3.5, there exists a pos-

itive ω-periodic function v(t) such that Z̃2 = ertv(t) with r =
1

ω
ln ρ
(
ΦMα∗ (ω)

)
.

Since ρ
(
ΦMα∗ (ω)

)
> 1 and the function v(t) is bounded, then r > 0 and then

Z̃2 → ∞ as t → ∞. By applying the comparison theorem on system (11), we get
lim
t→∞

|(E(t), L(t), P (t), Nv(t))| =∞, which contradicts the fact that the solutions are

bounded. �

Theorem 3.8. If Rv > 1, there exists η > 0 such that any solution (E(t), L(t), P (t), Nv(t))
with initial condition ϕ ∈ X0 satisfies

lim inf
t→∞

E(t) ≥ η, lim inf
t→∞

L(t) ≥ η, lim inf
t→∞

P (t) ≥ η, lim inf
t→∞

Nv(t) ≥ η

and the system (1) has at least one positive periodic solution.

Proof. Denote
M∂ = {φ ∈ ∂X0 : Sk(φ) ∈ ∂X0, k ≥ 0}.

At first, we prove that M∂ = {(0, 0, 0, 0)}. Indeed, it is obvious that {(0, 0, 0, 0)} ⊂
M∂ . So, we only need to show that M∂ ⊂ {(0, 0, 0, 0)}, that means that for any initial
condition

ϕ ∈ ∂X0, E(kω)L(kω)P (kω)Nv(kω) = 0,∀k ≥ 0.

Let ϕ ∈ ∂X0. Suppose by contradiction that there exists an integer k1 ≥ 0 such that
(E(k1ω), L(k1ω), P (k1ω), Nv(k1ω))T > 0. Using the constant variation, we derive
that

E(t) = exp

(
−
∫ t

0

H1(s)ds

)[
E(0) +

∫ t

0

b(s)Nv(s) exp

(∫ s

0

H1(τ)dτ

)
ds

]
(12)

L(t) = exp

(
−
∫ t

0

H2(s)ds

)[
L(0) +

∫ t

0

sEE(s) exp

(∫ s

0

H2(τ)dτ

)
ds

]
(13)

P (t) = exp

(
−
∫ t

0

H3(s)ds

)[
P (0) +

∫ s

0

sLL(s) exp

(∫ s

0

H3(τ)dτ

)
ds

]
(14)

Nv(t) = exp

(
−
∫ t

0

dv(s)ds

)[
Nv(0) +

∫ t

0

sPP (s) exp

(∫ s

0

dv(τ)dτ

)
ds

]
(15)
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where

H1(t) =
b(t)

KE
Nv(t) + dE(t) + sE , H2(t) =

sE
KL

E(t) + dL(t) + sL,

H3(t) =
sL
KP

L(t) + dP (t) + µ+ sP .

Thus, taking k1ω as the initial time in (12)−(15), we obtain that E(t) > 0, L(t) >
0, P (t) > 0 and Nv(t) > 0, for all t > k1ω, which contradicts the fact that ∂X0 is
positively invariant so M∂ = {(0, 0, 0, 0)}.

The equality M∂ = {(0, 0, 0, 0)} implies that E is a fixed point of S and acyclic
in M∂ , every solution in M∂ approaches to E . Moreover, Lemma 3.7 implies that
E is an isolate invariant set in X and W s(E) ∩ X0 = ∅, where W s(E) =

{
x ∈ X :

lim supk→∞ d
(
Sk(x), E

)
= 0
}

is the stable set of E . By the acyclicity theorem on uni-
form persistence for maps [[22], Theorem 3.1.1], it follows that S is uniformly persis-
tent with respect to (X0, ∂X0). So, the periodic semiflow Φ(t) is also uniformly persis-
tent. It follows that there exists η > 0 such that any solution (E(t), L(t), P (t), Nv(t))
with initial condition (E(0), L(0), P (0), Nv(0)) ∈ X0 satisfies

lim inf
t→∞

E(t) ≥ η, lim inf
t→∞

L(t) ≥ η, lim inf
t→∞

P (t) ≥ η, lim inf
t→∞

Nv(t) ≥ η.

Furthermore, thanks to Theorem 1.3.6 in [22], the system (1) has at least one periodic
solution up(t, ϕ

∗) with φ∗ = (E∗(0), L∗(0), P ∗(0), N∗v (0)) ∈ X0. Since ϕ∗ ∈ X0, then
from equations (12) - (15) we obtain that E∗(t) > 0, L∗(t) > 0, P ∗(t) > 0 and
N∗v (t) > 0 for all t ≥ 0. Thus, the ω-periodic solution up(t, ϕ

∗) is positive. �

4. Numerical simulations

In this section, we make some numerical simulations to support our mathematical
results. Moreover, we perform some sensitivity analysis to determine the influence of
the parameter, b(t) on the threshold dynamics, Rv. Our numerical simulation will be
performed using the MATLAB technical computing software with the fourth-order
Runge Kutta method.

Parameters Values References Dimensions

ω 12 estimated /month
KE 10000 estimated -
KL 8000 estimated -
KP 6000 estimated -
sE - [14] /month
sL - [14] /month
sp - [14] /month
µ - [12] /month

Table 2. Values for constant parameters of the model.
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(a) Density of eggs. (b) Density of larvae.

Figure 2. Extinction of eggs and larvae with sE = 0.6, sL =
0.4, sP = 0.5, µ = 0.1, a1 = 25, a2 = 1.5, a3 = 0.7, a4 = 0.9, a5 =
0.8, b1 = 2, b2 = 1.3, b3 = 0.5, b4 = 0.6, b5 = 0.7 and initial con-
ditions E(0) = 6000, L(0) = 3000, P (0) = 2000, Nv(0) = 5000. We
obtain Rv = 0.8864 < 1.

By using the periodicity of the functions dE(t), dL(t), dP (t), dv(t) and b(t), we
can write them in the following forms:

b(t) = a1 + b1 cos

(
πt

6

)
, dE(t) = a2 + b2 cos

(
πt

6

)
,

dL(t) = a3 + b3 cos

(
πt

6

)
, dv(t) = a4 + b4 cos

(
πt

6

)
,

dP (t) = a5 + b5 cos

(
πt

6

)
,

where the constant numbers ai and bi are positive for all i ∈ {1, 2, 3, 4, 5}.

4.1. Illustration of mathematical results. We give some numerical results in
order to illustrate our theoretical results.

Figures 2 and 3 show the extinction of eggs, larvae, pupae and adult mosquitoes.
Moreover, we observe that the mosquito-free equilibrium E = (0, 0, 0, 0) is globally
stable, which illustrate the result of our Theorem 3.6.

Now, we examine the uniform persistence of mosquito populations and the existence
of periodic solutions.

Figures 4 and 5 show the persistence of eggs density 4(a), larvae density 4(b),
pupae density 5(a) and adult mosquitoes density 5(b). Furthermore, we remark that
the model (1) admits a periodic solution which illustrate our mathematical result of
subsection 3.3.

Next, we analyze numerically the global dynamics of the system for Rv = 1.

Remark 4.1. In our mathematical analysis, we have not established the stability of
the mosquito-free equilibrium for Rv = 1. However, through numerical simulations,
we observe that the mosquito-free equilibrium, E is globally asymptotically stable if
Rv = 1 (see Figures 6 and 7).
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(a) Density of pupae. (b) Density of adult mosquitoes.

Figure 3. Extinction of pupae and adult mosquitoes with sE =
0.6, sL = 0.4, sP = 0.5, µ = 0.1, a1 = 25, a2 = 1.5, a3 = 0.7, a4 =
0.9, a5 = 0.8, b1 = 2, b2 = 1.3, b3 = 0.5, b4 = 0.6, b5 = 0.7 and
initial conditions E(0) = 6000, L(0) = 3000, P (0) = 2000, Nv(0) =
5000. We obtain Rv = 0.8864 < 1.

0 20 40 60 80 100 120 140 160 180 200
time (month)

0

1000

2000

3000

4000

5000

6000

E
g

g
s

0 20 40 60 80 100 120 140 160 180 200
time (month)

0

200

400

600

800

1000

1200

1400

L
ar

va
e

(a) Density of eggs. (b) Density of larvae.

Figure 4. Persistence of eggs and larvae with sE = 0.5, sL =
0.3, sP = 0.4, µ = 0.4, a1 = 25, a2 = 0.55, a3 = 0.4, a4 =
0.85, a5 = 0.65, b1 = 15, b2 = 0.35, b3 = 0.25, b4 = 0.7, b5 = 0.45
and initial conditions E(0) = 60, L(0) = 30, P (0) = 20, Nv(0) = 50.
We obtain Rv = 1.7952 > 1.

4.2. Sensitivity analysis. Now, we perform some sensitivity analysis to determine
the influence of eggs laying rate, b(t) on the dynamics of mosquito population.

If we replace the eggs laying rate, b(t) by b̃(t) = σb(t) in the model (1), we obtain
the following numerical results.
• if σ = 0.9, then b̃(t) = 0.9b(t) and R̃v = 0.9× 1.7952 = 1.6157.

• if σ = 0.8, then b̃(t) = 0.8b(t) and R̃v = 0.8× 1.7952 = 1.4361.

• if σ = 0.7, then b̃(t) = 0.7b(t) and R̃v = 0.7× 1.7952 = 1.2566.

• if σ = 0.6, then b̃(t) = 0.6b(t) and R̃v = 0.6× 1.7952 = 1.0771.

• if σ = 0.5, then b̃(t) = 0.5b(t) and R̃v = 0.5× 1.7952 = 0.8976.
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(a) Density of pupae. (b) Density of adult mosquitoes.

Figure 5. Persistence of pupae and adult mosquitoes with sE =
0.5, sL = 0.3, sP = 0.4, µ = 0.4, a1 = 25, a2 = 0.55, a3 = 0.4, a4 =
0.85, a5 = 0.65, b1 = 15, b2 = 0.35, b3 = 0.25, b4 = 0.7, b5 = 0.45
and initial conditions E(0) = 60, L(0) = 30, P (0) = 20, Nv(0) = 50.
We obtain Rv = 1.7952 > 1.
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(a) Density of pupae/eggs. (b) Density of larvae/eggs.

Figure 6. Extinction of eggs, pupae and larvae with sE = 0.5, sL =
0.3, sP = 0.4, µ = 0.4, a1 = 18.8219216, a2 = 0.7, a3 = 0.4, a4 =
0.85, a5 = 0.65, b1 = 15, b2 = 0.35, b3 = 0.25, b4 = 0.7, b5 = 0.45
and initial conditions E(0) = 60, L(0) = 30, P (0) = 20, Nv(0) = 50.
We obtain Rv = 1.

• if σ = 0.4, then b̃(t) = 0.4b(t) and R̃v = 0.4× 1.7952 = 0.7180.

• if σ = 0.3, then b̃(t) = 0.3b(t) and R̃v = 0.3× 1.7952 = 0.5385.

• if σ = 0.2, then b̃(t) = 0.2b(t) and R̃v = 0.2× 1.7952 = 0.3590.

• if σ = 0.1, then b̃(t) = 0.1b(t) and R̃v = 0.1× 1.7952 = 0.1795.
Our numerical results show that the dynamics of mosquito population depends

considerably on the eggs laying rate of female mosquitoes, b(t). The larger b(t) is,
the larger the vectorial reproduction ratio becomes (see Figure 8), that illustrates our
mathematical result of Theorem 3.3. Therefore, this parameter may be an excellent
means in fighting against the proliferation of mosquitoes.
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(a) Density of adult mosquitoes/eggs. (b) Density of adult mosquitoes/larvae.

Figure 7. Extinction of eggs, larvae and adult mosquitoes with
sE = 0.5, sL = 0.3, sP = 0.4, µ = 0.4, a1 = 18.8219216, a2 =
0.7, a3 = 0.4, a4 = 0.85, a5 = 0.65, b1 = 15, b2 = 0.35, b3 =
0.25, b4 = 0.7, b5 = 0.45 and initial conditions E(0) = 60, L(0) =
30, P (0) = 20, N(0) = 50. We obtain Rv = 1.
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Figure 8. Relationship between Rv and σ
.

5. Conclusion

In this paper, we have formulated a mathematical model based on ordinary differ-
ential equations to describe the dynamics of mosquito population in a periodic envi-
ronment. It emerges from our mathematical analysis that the dynamics of mosquito
population is determined by the threshold dynamics, Rv. Indeed, we have shown that
if Rv < 1, the mosquito-free equilibrium (0, 0, 0, 0) is globally stable and if Rv > 1,
the system admits at least a positive periodic solution. Furthermore, numerical sim-
ulations have indicated that on the one hand the equilibrium (0, 0, 0, 0) is globally
stable if Rv = 1 and on the other hand the periodic solution is globally stable if
Rv > 1. We have also shown that the dynamics of mosquito population depends on
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the eggs laying rate. This parameter may be used to reduce the number of mosquitoes
in endemic regions.

In future works, one can construct a more realistic model of mosquito-borne dis-
eases by coupling the model (1) to the transmission model. In addition, the numerical
result about the stability of the periodic solution will be another further work.
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