A finite difference scheme in Hilbert spaces

NARCISA C. APREUTESEI

ABSTRACT. We study the existence for a class of difference inclusions associated with maximal monotone operators. They are the discrete versions of some second order evolution equations in Hilbert spaces on a finite interval.

2000 Mathematics Subject Classification. 39A12, 47H05.

Key words and phrases. second order difference scheme, maximal monotone operator, strongly monotone operator, Yosida approximation, the resolvent of an operator.

1. Introduction

Let H be a real Hilbert space with the scalar product (.,.) and the corresponding norm ||.||. We study the existence and uniqueness of the solution for the finite difference scheme

$$\begin{cases} u_{i+1} - (1+\theta_i) u_i + \theta_i u_{i-1} \in c_i A u_i + f_i, \ i = \overline{1, N} \\ u_1 - u_0 \in \alpha (u_0 - a), \ u_{N+1} - u_N \in -\beta (u_{N+1} - b), \end{cases}$$
(1)

where α , β and A are maximal monotone operators in H, A is also strongly monotone, $a,b\in H$ and $(f_i)_{i=\overline{1,N}}\in H^N$, $\theta_i\in(0,1)$, $0< c_i$, $i=\overline{1,N}$ are finite sequences. Denote by $H^N_{a_i}$ the space H^N with the weight sequence $(a_i)_{i=\overline{0,N}}$, where $a_0=\overline{0}$

Denote by $H_{a_i}^N$ the space H^N with the weight sequence $(a_i)_{i=\overline{0,N}}$, where $a_0 = 1$, $a_i = 1/\theta_1\theta_2...\theta_i$, for $i = \overline{1,N}$. This sequence is nondecreasing and $a_{i-1} = \theta_i a_i$, $i = \overline{1,N}$. Therefore, the scalar product in $H_{a_i}^N$ is

$$<(u_i)_{i=\overline{1,N}},(v_i)_{i=\overline{1,N}}> = \sum_{i=1}^{N} a_i(u_i,v_i),$$
 (2)

for all $(u_i)_{i=\overline{1,N}}$, $(v_i)_{i=\overline{1,N}} \in H^N$ and the norm is

$$\left| (u_i)_{i=\overline{1,N}} \right| = \left(\sum_{i=1}^N a_i ||u_i||^2 \right)^{1/2}.$$
 (3)

Since $1 = a_0 \le a_1 \le ... \le a_N$, the spaces H^N and $H^N_{a_i}$ contains the same sequences and have equivalent norms. The reason we have introduced the space $H^N_{a_i}$ is that the operator B given by

$$B\left((u_i)_{i=\overline{1,N}}\right) = (-u_{i+1} + (1+\theta_i)u_i - \theta_i u_{i-1})_{i=\overline{1,N}},\tag{4}$$

$$D(B) = \{(u_i)_{i=\overline{1,N}} \in H^N, \ u_1 - u_0 \in \alpha (u_0 - a), u_{N+1} - u_N \in -\beta (u_{N+1} - b)\}$$
 (5)

is maximal monotone in $H_{a_i}^N$ (see Proposition 2.1). This is the main tool in the proof of our existence result.

Received: 11 December 2002.

Problem (1) is the discrete variant of the problem

$$\begin{cases}
pu'' + ru' \in Au + f, \text{ a.e. on } [0, T] \\
u'(0) \in \alpha(u(0) - a), u'(T) \in -\beta(u(T) - b),
\end{cases} (6)$$

which was studied by A. Aftabizadeh & N. Pavel [1]. Different particular cases of (6) were analyzed before by V. Barbu [4], [5], H. Brézis [6], N. Pavel [9], [10], L. Véron [13], N. Apreutesei [2]. Taking

$$j(x) = \begin{cases} 0, & x = 0 \\ +\infty, & \text{otherwise} \end{cases}$$

and $\alpha(x) = \beta(x) = \partial j(x)$, where ∂j is the subdifferential mapping of the convex function j, one obtains the bilocal problem

$$\begin{cases} u_{i+1} - (1+\theta_i) u_i + \theta_i u_{i-1} \in c_i A u_i + f_i, \ i = \overline{1, N} \\ u_0 = a, \ u_{N+1} = b. \end{cases}$$
 (7)

This equation together with the problem

$$\begin{cases} u_{i+1} - (1+\theta_i)u_i + \theta_i u_{i-1} \in c_i A u_i + f_i, & i \ge 1 \\ u_0 = a, & \sup_{i \ge 1} ||u_i|| < \infty, \end{cases}$$
 (8)

was the subject of many papers. G. Morosanu [8] and E. Mitidieri & G. Morosanu [7] proved the existence and the asymptotic behavior of the solution to (7) and (8) for $\theta_i \equiv 1, \ f_i \equiv 0$ in Hilbert spaces, while E. Poffald & S. Reich established similar results in Banach spaces [11], [12]. For arbitrary $\theta_i \geq 1$, equations (7) and (8) were studied by N. Apreutesei [3].

In this paper we suppose $\theta_i \in (0,1)$. This corresponds to the case r > 0 on [0,T] in equation (6). The boundary conditions in (1) are new for difference equations.

In section 2 we give an auxiliary result, namely we show the maximal monotonicity of the operator B defined by (4)-(5). We use the Yosida approximation of A to prove the existence and uniqueness of the solution of problem (1). This is the subject of section 3.

2. The maximal monotonicity of B in $H_{a_i}^N$

The aim of this section is to prove that the operator B defined by (4) - (5) is maximal monotone in $H_{a_i}^N$. We use an idea from A. Aftabizadeh & N. Pavel [1]. Denoting

$$a_0 = 1, \ a_i = \frac{1}{\theta_1 \theta_2 \dots \theta_i}, \ i = \overline{1, N}$$
 (9)

and

$$\varphi_i = a_{i-1} (u_i - u_{i-1}), \ i = \overline{1, N},$$
(10)

we can write B under the form

$$B\left((u_i)_{i=\overline{1,N}}\right) = \left(-u_{i+1} + (1+\theta_i)u_i - \theta_i u_{i-1}\right)_{i=\overline{1,N}} =$$

$$= \left(-\frac{1}{a_i}\left(\varphi_{i+1} - \varphi_i\right)\right)_{i=\overline{1,N}},$$

$$(11)$$

$$D(B) = \{(u_i)_{i=\overline{1,N}} \in H^N, \ u_1 - u_0 \in \alpha (u_0 - a), u_{N+1} - u_N \in -\beta (u_{N+1} - b)\}.$$
(12)

We begin with

Lemma 2.1. Let $(\theta_i)_{i=\overline{1,N}}$ be a given sequence in (0,1) and c>0 a constant. Then, the problem

$$\begin{cases} \xi_{i+1} - (2 + \theta_i) \, \xi_i + \theta_i \xi_{i-1} = 0, \ i = \overline{1, N} \\ \xi_0 = 0, \quad \xi_1 = c \end{cases}$$
 (13)

has a strictly increasing solution $\xi_i > 0$, for all $i = \overline{1, N+1}$ and the problem

$$\begin{cases}
\eta_{i+1} - (2 + \theta_i) \eta_i + \theta_i \eta_{i-1} = 0, & i = \overline{1, N} \\
\eta_{N+1} = 0, & \eta_N = -c
\end{cases}$$
(14)

has a strictly increasing solution $\eta_i < 0, i = \overline{0, N}$.

The proof is obvious.

Now we are able to state the main result of this section.

Proposition 2.1. If $(\theta_i)_{i=\overline{1,N}}$ is a finite sequence of real numbers, $\theta_i \in (0,1)$ for all $i=\overline{1,N},\ a,b\in H$ and $\alpha,\ \beta$ are maximal monotone operators in H, then the operator B given by (11)-(12) is maximal monotone in H_a^N .

Proof. Let $(u_i)_{i=\overline{1,N}}$, $(v_i)_{i=\overline{1,N}}$ be two given sequences in D(B) and $\varphi_i=a_{i-1}\left(u_i-u_{i-1}\right)$, $\psi_i=a_{i-1}\left(v_i-v_{i-1}\right)$, $i=\overline{1,N}$. If < ., . > is the scalar product in $H^N_{a_i}$ defined by (2), we have

$$< B\left((u_i)_{i=\overline{1,N}}\right) - B\left((v_i)_{i=\overline{1,N}}\right), (u_i - v_i)_{i=\overline{1,N}} > =$$

$$= -\sum_{i=1}^{N} \left(\varphi_{i+1} - \varphi_i - \psi_{i+1} + \psi_i, u_i - v_i\right) = \sum_{i=1}^{N} a_i ||u_{i+1} - u_i - v_{i+1} + v_i||^2 +$$

$$+ \sum_{i=1}^{N} \left[\left(\varphi_i - \psi_i, u_i - v_i\right) - \left(\varphi_{i+1} - \psi_{i+1}, u_{i+1} - v_{i+1}\right)\right],$$

so

$$\langle B\left((u_{i})_{i=\overline{1,N}}\right) - B\left((v_{i})_{i=\overline{1,N}}\right), (u_{i} - v_{i})_{i=\overline{1,N}} \rangle =$$

$$= \sum_{i=1}^{N} a_{i} ||u_{i+1} - u_{i} - v_{i+1} + v_{i}||^{2} -$$

$$-a_{N}(u_{N+1} - u_{N} - v_{N+1} + v_{N}, u_{N+1} - v_{N+1}) +$$

$$+ (u_{1} - u_{0} - v_{1} + v_{0}, u_{1} - v_{1}).$$

$$(15)$$

Since $(u_i)_{i=\overline{1,N}}$, $(v_i)_{i=\overline{1,N}}\in D\left(B\right)$, by the monotonicity of α and β , it follows that

$$(u_1 - u_0 - v_1 + v_0, u_1 - v_1) = ||u_1 - u_0 - v_1 + v_0||^2 + + (u_1 - u_0 - v_1 + v_0, u_0 - v_0) \ge 0$$
(16)

and

$$(u_{N+1} - u_N - v_{N+1} + v_N, u_{N+1} - v_{N+1}) \le 0. (17)$$

Using (16) and (17) in (15), one obtains that B is monotone in $H_{a_i}^N$.

Now we show that B is maximal monotone, that is $R(I+B)=H_{a_i}^N$ or, equivalently, $(\forall) \ (g_i)_{i=\overline{1,N}} \in H^N$, there is a sequence $(u_i)_{i=\overline{1,N}} \in H^N$ such that

$$\begin{cases} u_{i+1} - (2 + \theta_i) u_i + \theta_i u_{i-1} = g_i, \ i = \overline{1, N} \\ u_1 - u_0 \in \alpha (u_0 - a), \ u_{N+1} - u_N \in -\beta (u_{N+1} - b). \end{cases}$$
(18)

We are looking for the solution of (18) of the form

$$u_i = w_i + x\xi_i + y\eta_i, \ i = \overline{1, N},\tag{19}$$

where w_i , ξ_i , η_i are the solutions of the problems

$$\begin{cases} w_{i+1} - (2 + \theta_i) w_i + \theta_i w_{i-1} = g_i, \ i = \overline{1, N} \\ w_0 = 0, \quad w_1 = 0 \end{cases}$$
 (20)

and (13), (14) respectively. This u_i verifies the equation from (18) for all $x, y \in H$. We find $x, y \in H$ such that u_i satisfies also the boundary condition in (18). These conditions become

$$\xi_1 x + (\eta_1 - \eta_0) y \in \alpha (\eta_0 y - a), \tag{21}$$

$$(\xi_{N+1} - \xi_N) x + cy \in -\beta (w_{N+1} + \xi_{N+1} x - b) - w_{N+1} + w_N, \tag{22}$$

or equivalently

$$((\xi_{N+1} - \xi_N) x + cy + z_1, \ \xi_1 x + (\eta_1 - \eta_0) y + z_2) \ni \ni (-w_{N+1} + w_N, 0),$$
(23)

where

$$z_1 \in \beta \left(w_{N+1} + \xi_{N+1} x - b \right), \tag{24}$$

$$z_2 \in -\alpha \left(\eta_0 y - a \right). \tag{25}$$

This can be written as

$$F(x,y) + G(x,y) \ni (-w_{N+1} + w_N, 0),$$
 (26)

where

$$F(x,y) = ((\xi_{N+1} - \xi_N) x + cy, \ \xi_1 x + (\eta_1 - \eta_0) y), \tag{27}$$

$$G(x,y) = (z_1, z_2).$$
 (28)

It is easy to check that F is everywhere defined, linear, continuous and strongly monotone. We show that G is maximal monotone in $H \times H$. Denote by ((.,.)) its scalar product. Let $G(x,y) = (z_1,z_2)$, $G(u,v) = (z_3,z_4)$, where

$$z_1 \in \beta (w_{N+1} + \xi_{N+1} x - b), \ z_2 \in -\alpha (\eta_0 y - a),$$
 (29)

$$z_3 \in \beta (w_{N+1} + \xi_{N+1} u - b), \ z_4 \in -\alpha (\eta_0 v - a).$$
 (30)

Then,

$$((G(x,y) - G(u,v), (x,y) - (u,v))) = (z_1 - z_3, x - u) + (z_2 - z_4, y - v) =$$

$$= \frac{1}{\xi_{N+1}} (z_1 - z_3, (w_{N+1} + \xi_{N+1}x - b) - (w_{N+1} + \xi_{N+1}u - b)) +$$

$$+ \frac{1}{\eta_0} (z_2 - z_4, (\eta_0 y - a) - (\eta_0 v - a)) \ge 0,$$

so G is monotone in $H \times H$.

To prove that G is maximal monotone in $H \times H$, consider $(\lambda, \mu) \in H \times H$ and show that there is $(x, y) \in D(\beta) \times D(\alpha)$ such that

$$x + z_1 = \lambda, \quad y + z_2 = \mu,$$
 (31)

where z_1 , z_2 satisfy (29). Denoting by $l = w_{N+1} + \xi_{N+1}x - b$ and $m = \eta_0 y - a$, relations (31) can be written as

$$\lambda + \frac{w_{N+1} - b}{\xi_{N+1}} \in \beta(l) + \frac{1}{\xi_{N+1}}l,$$
 (32)

$$-\mu + \frac{a}{\eta_0} \in \alpha(m) - \frac{1}{\eta_0}m. \tag{33}$$

But α is maximal monotone and $-1/\eta_0 > 0$, so $R\left(\alpha - \frac{1}{\eta_0}I\right) = H$. This implies that (33) has a solution $m \in D\left(\alpha\right)$. Analogously, (32) has a solution $l \in D\left(\beta\right)$. Therefore,

there are $x = (l - w_{N+1} + b)/\xi_{N+1}$ and $y = (m+a)/\eta_0$, such that (31). This means that G is maximal monotone in $H \times H$.

Consequently, F + G is maximal monotone and coercive and thus (26) has a solution, hence B is maximal monotone, as claimed.

3. The main result

In this section we establish the existence and uniqueness of the solution to the finite difference inclusion (1), under the hypothesis that A is strongly monotone in H. Denote by J_{λ} and A_{λ} the resolvent and the Yosida approximation of A, respectively: $J_{\lambda} = (I + \lambda A)^{-1}$ and $A_{\lambda} = (I - J_{\lambda})/\lambda$. Now we state the main result.

Theorem 3.1. Let $A: D(A) \subseteq H \to H$ be a maximal monotone and strongly monotone operator in the real Hilbert space H, with $0 \in D(A)$ and $0 \in A0$. Suppose that α , β are maximal monotone in H, $0 \in D(\alpha)$, $0 \in D(\beta)$, $0 \in \alpha(0) \cap \beta(0)$. Consider the sequences $c_i > 0$, $\theta_i \in (0,1)$ and $f_i \in H$, for all $i = \overline{1,N}$. Then, for all $a, b \in H$, problem (1) admits a unique solution $(u_i)_{i=\overline{1,N}} \in D(A)^N$.

Proof. By hypothesis, there exists $\omega > 0$ such that for all $x, y \in D(A)$ and $x' \in Ax$, $y' \in Ay$, we have

$$(x' - y', x - y) \ge \omega ||x - y||^2.$$
 (34)

Then A_{λ} satisfies the inequality

$$(A_{\lambda}x - A_{\lambda}y, x - y) \ge \frac{\omega}{1 + \lambda\omega} ||x - y||^2 \ge \frac{\omega}{2} ||x - y||^2, \tag{35}$$

for $0 < \lambda < 1/\omega$. Denoting by \mathcal{A} the operator

$$\mathcal{A}\left((u_i)_{i=\overline{1,N}}\right) = (c_1 A u_1, ..., c_N A u_N) \tag{36}$$

and by B the operator defined by (4) - (5), problem (1) can be written as

$$0 \in B\left((u_i)_{i=\overline{1,N}}\right) + \mathcal{A}\left((u_i)_{i=\overline{1,N}}\right) + (f_i)_{i=\overline{1,N}}.$$
(37)

Since B is maximal monotone in $H_{a_i}^N$, $B+\mathcal{A}_\lambda$ is also maximal monotone in $H_{a_i}^N$. By (35), it follows that $B+\mathcal{A}_\lambda$ is coercive, so it is surjective from $D\left(B\right)$ to $H_{a_i}^N$. Thus, for $(f_i)_{i=\overline{1,N}}\in H^N$, there is $\left(u_i^\lambda\right)_{i=\overline{1,N}}\in D\left(B\right)$ such that $B\left((u_i^\lambda)_{i=\overline{1,N}}\right)+\mathcal{A}_\lambda\left((u_i^\lambda)_{i=\overline{1,N}}\right)=-\left(f_i\right)_{i=\overline{1,N}}$, that is

$$\begin{cases}
 u_{i+1}^{\lambda} - (1+\theta_i) u_i^{\lambda} + \theta_i u_{i-1}^{\lambda} = c_i A_{\lambda} u_i^{\lambda} + f_i, \quad i = \overline{1, N} \\
 u_1^{\lambda} - u_0^{\lambda} \in \alpha \left(u_0^{\lambda} - a \right), \quad u_{N+1}^{\lambda} - u_N^{\lambda} \in -\beta \left(u_{N+1}^{\lambda} - b \right).
\end{cases}$$
(38)

We prove the boundedness in $H_{a_i}^N$ of $(u_i^{\lambda})_{i=\overline{1,N}}$ with respect to λ . To do this, one multiplies (38) by $a_i u_i^{\lambda}$ and obtains

$$\sum_{i=1}^{N} a_i \left(u_{i+1}^{\lambda} - u_i^{\lambda}, u_i^{\lambda} \right) - \sum_{i=1}^{N} a_i \theta_i \left(u_i^{\lambda} - u_{i-1}^{\lambda}, u_i^{\lambda} \right) =$$

$$= \sum_{i=1}^{N} c_i a_i \left(A_{\lambda} u_i^{\lambda}, u_i^{\lambda} \right) + \sum_{i=1}^{N} a_i \left(f_i, u_i^{\lambda} \right).$$

Since $a_i\theta_i = a_{i-1}$ and $0 \in A0$, using (35) we deduce

$$\frac{\omega}{2} \sum_{i=1}^{N} c_{i} a_{i} ||u_{i}^{\lambda}||^{2} \leq \sum_{i=1}^{N} \left[a_{i} \left(u_{i+1}^{\lambda} - u_{i}^{\lambda}, u_{i}^{\lambda} \right) - a_{i-1} \left(u_{i}^{\lambda} - u_{i-1}^{\lambda}, u_{i-1}^{\lambda} \right) \right] - \sum_{i=1}^{N} a_{i-1} ||u_{i}^{\lambda} - u_{i-1}^{\lambda}||^{2} - \sum_{i=1}^{N} a_{i} \left(f_{i}, u_{i}^{\lambda} \right), \tag{39}$$

so

$$\frac{\omega}{2} \sum_{i=1}^{N} c_i a_i ||u_i^{\lambda}||^2 \le a_N \left(u_{N+1}^{\lambda} - u_N^{\lambda}, u_N^{\lambda} \right) - \left(u_1^{\lambda} - u_0^{\lambda}, u_0^{\lambda} \right) -$$

$$-\sum_{i=1}^{N} a_{i-1} ||u_i^{\lambda} - u_{i-1}^{\lambda}||^2 - \sum_{i=1}^{N} a_i \left(f_i, u_i^{\lambda}\right). \tag{40}$$

Since α and β are monotone and $0 \in \alpha 0$, $0 \in \beta 0$, from (38) we have

$$-(u_1^{\lambda} - u_0^{\lambda}, u_0^{\lambda}) \le ||u_1^{\lambda} - u_0^{\lambda}||.||a||, \tag{41}$$

$$(u_{N+1}^{\lambda} - u_N^{\lambda}, u_N^{\lambda}) \le ||u_{N+1}^{\lambda} - u_N^{\lambda}||.||b||. \tag{42}$$

Hence (40) implies

$$\frac{\omega}{2} \sum_{i=1}^N c_i a_i ||u_i^{\lambda}||^2 + \sum_{i=1}^N a_{i-1} ||u_i^{\lambda} - u_{i-1}^{\lambda}||^2 \leq a_N ||u_{N+1}^{\lambda} - u_N^{\lambda}||.||b|| + \frac{\omega}{2} \sum_{i=1}^N c_i a_i ||u_i^{\lambda}||^2 + \sum_{i=1}^N a_{i-1} ||u_i^{\lambda} - u_{i-1}^{\lambda}||^2 \leq a_N ||u_{N+1}^{\lambda} - u_N^{\lambda}||.||b|| + \frac{\omega}{2} \sum_{i=1}^N c_i a_i ||u_i^{\lambda}||^2 + \sum_{i=1}^N a_{i-1} ||u_i^{\lambda} - u_{i-1}^{\lambda}||^2 \leq a_N ||u_{N+1}^{\lambda} - u_N^{\lambda}||.||b|| + \frac{\omega}{2} \sum_{i=1}^N c_i a_i ||u_i^{\lambda}||^2 + \sum_{i=1}^N a_{i-1} ||u_i^{\lambda} - u_{i-1}^{\lambda}||^2 \leq a_N ||u_{N+1}^{\lambda} - u_N^{\lambda}||.||b|| + \frac{\omega}{2} \sum_{i=1}^N c_i a_i ||u_i^{\lambda}||^2 + \sum_{i=1}^N a_{i-1} ||u_i^{\lambda} - u_{i-1}^{\lambda}||^2 \leq a_N ||u_{N+1}^{\lambda} - u_N^{\lambda}||.||b|| + \frac{\omega}{2} \sum_{i=1}^N a_{i-1} ||u_i^{\lambda} - u_{i-1}^{\lambda}||^2 \leq a_N ||u_N^{\lambda} - u_N^{\lambda}||.||b|| + \frac{\omega}{2} \sum_{i=1}^N a_{i-1} ||u_i^{\lambda} - u_N^{\lambda}||^2 + \frac{\omega}{2} \sum_{i=1$$

$$+||u_1^{\lambda} - u_0^{\lambda}||.||a|| + \left(\sum_{i=1}^{N} a_i||f_i||^2\right)^{1/2} \left(\sum_{i=1}^{N} a_i||u_i^{\lambda}||^2\right)^{1/2}$$
(43)

and thus

$$\sum_{i=1}^{N} a_i ||u_i^{\lambda}||^2 \leq \frac{8}{\omega^2 c^2} \sum_{i=1}^{N} a_i ||f_i||^2 +$$

$$+\frac{4a_N}{\omega c}||u_{N+1}^{\lambda} - u_N^{\lambda}||.||b|| + \frac{4}{\omega c}||u_1^{\lambda} - u_0^{\lambda}||.||a||. \tag{44}$$

By $u_{N+1}^{\lambda} - u_N^{\lambda} \in -\beta (u_{N+1} - b)$ and $0 \in \beta 0$, we find

$$||u_{N+1}^{\lambda}||^2 \leq \left(||u_N^{\lambda}|| + ||b||\right)||u_{N+1}^{\lambda}|| + ||u_N^{\lambda}||.||b||.$$

which leads to

$$||u_{N+1}^{\lambda}|| \le \frac{1}{\sqrt{a_N}} \left(\sum_{i=1}^N a_i ||u_i^{\lambda}||^2 \right)^{1/2} + ||b|| + \frac{||b||}{\sqrt[4]{a_N}} \left(\sum_{i=1}^N a_i ||u_i^{\lambda}||^2 \right)^{1/4}. \tag{45}$$

Similarly, we have

$$||u_0^{\lambda}|| \le \frac{1}{\sqrt{a_1}} \left(\sum_{i=1}^N a_i ||u_i^{\lambda}||^2 \right)^{1/2} + ||a|| + \frac{||a||}{\sqrt[4]{a_1}} \left(\sum_{i=1}^N a_i ||u_i^{\lambda}||^2 \right)^{1/4}. \tag{46}$$

Next,

$$||u_N^{\lambda}|| \le \frac{1}{\sqrt{a_N}} \left(\sum_{i=1}^N a_i ||u_i^{\lambda}||^2 \right)^{1/2}$$
 (47)

and

$$||u_1^{\lambda}|| \le \frac{1}{\sqrt{a_1}} \left(\sum_{i=1}^N a_i ||u_i^{\lambda}||^2 \right)^{1/2}.$$
 (48)

Using (45), (46), (47) and (48) in (44), we find that $\sum_{i=1}^{N} a_i ||u_i^{\lambda}||^2$ is bounded with respect to λ . Inequalities (45) – (48), lead us to the boundedness of $||u_{N+1}^{\lambda}||$, $||u_0^{\lambda}||$, $||u_N^{\lambda}||$ and $||u_1^{\lambda}||$ and by (43), $\sum_{i=1}^{N} a_{i-1}||u_i^{\lambda} - u_{i-1}^{\lambda}||^2$ is also bounded. Now we use (38) to get the boundedness with respect to λ of $A_{\lambda}u_i^{\lambda}$.

We are going to pass to the limit in (38). To this end, let λ , $\mu > 0$ be fixed. One subtracts the equation (38) for for λ and for μ , one multiplies the difference by $a_i \left(u_i^{\lambda} - u_i^{\mu} \right)$ and one sums from i = 1 to i = N:

$$\sum_{i=1}^{N} a_{i}(u_{i+1}^{\lambda} - u_{i+1}^{\mu} - u_{i}^{\lambda} + u_{i}^{\mu}, u_{i}^{\lambda} - u_{i}^{\mu}) -$$

$$-\sum_{i=1}^{N} a_{i-1}(u_{i}^{\lambda} - u_{i}^{\mu} - u_{i-1}^{\lambda} + u_{i-1}^{\mu}, u_{i}^{\lambda} - u_{i}^{\mu}) =$$

$$= \sum_{i=1}^{N} a_{i}c_{i}(A_{\lambda}u_{i}^{\lambda} - A_{\mu}u_{i}^{\mu}, u_{i}^{\lambda} - u_{i}^{\mu}).$$

$$(49)$$

Denote by M_1 and M_2 the left hand side and the right hand side in (49). Since $a_i\theta_i=a_{i-1}$, we have

$$M_{1} = a_{N}(u_{N+1}^{\lambda} - u_{N+1}^{\mu} - u_{N}^{\lambda} + u_{N}^{\mu}, u_{N+1}^{\lambda} - u_{N+1}^{\mu}) - a_{N}||u_{N+1}^{\lambda} - u_{N+1}^{\mu} - u_{N}^{\lambda} + u_{N}^{\mu}||^{2} - (u_{1}^{\lambda} - u_{1}^{\mu} - u_{0}^{\lambda} + u_{0}^{\mu}, u_{0}^{\lambda} - u_{0}^{\mu}) - \sum_{i=1}^{N} a_{i-1}||u_{i}^{\lambda} - u_{i}^{\mu} - u_{i-1}^{\lambda} + u_{i-1}^{\mu}||^{2},$$
 (50)

so

$$M_1 \le -\sum_{i=1}^{N} a_{i-1} ||u_i^{\lambda} - u_i^{\mu} - u_{i-1}^{\lambda} + u_{i-1}^{\mu}||^2.$$
 (51)

On the other hand, since

$$J_{\lambda}u_{i}^{\lambda} + \lambda A_{\lambda}u_{\lambda}^{i} = u_{i}^{\lambda}, \tag{52}$$

we get

$$M_{2} = \sum_{i=1}^{N} a_{i} c_{i} (A_{\lambda} u_{i}^{\lambda} - A_{\mu} u_{i}^{\mu}, J_{\lambda} u_{i}^{\lambda} - J_{\mu} u_{i}^{\mu}) +$$

$$+ \sum_{i=1}^{N} a_{i} c_{i} (A_{\lambda} u_{i}^{\lambda} - A_{\mu} u_{i}^{\mu}, \lambda A_{\lambda} u_{i}^{\lambda} - \mu A_{\mu} u_{i}^{\mu}) \geq \frac{\omega c}{2} \sum_{i=1}^{N} a_{i} ||J_{\lambda} u_{i}^{\lambda} - J_{\mu} u_{i}^{\mu}||^{2} +$$

$$+ \sum_{i=1}^{N} a_{i} c_{i} (\lambda ||A_{\lambda} u_{i}^{\lambda}||^{2} + \mu ||A_{\mu} u_{i}^{\mu}||^{2}) - (\lambda + \mu) \sum_{i=1}^{N} a_{i} c_{i} (A_{\lambda} u_{i}^{\lambda}, A_{\mu} u_{i}^{\mu}).$$
 (53)

Using (51), (53) and the boundedness of $\sum_{i=1}^{N} a_i ||A_{\lambda} u_i^{\lambda}||^2$ in (49), one obtains

$$\frac{\omega c}{2} \sum_{i=1}^{N} a_i ||J_{\lambda} u_i^{\lambda} - J_{\mu} u_i^{\mu}||^2 \le k_1 (\lambda + \mu),$$
 (54)

where k_1 is a positive constant. So $J_{\lambda}u_{\lambda}^i$ is strongly convergent in H as $\lambda \searrow 0$, say $J_{\lambda}u_{\lambda}^i \to u_i$. This, together with (52), gives us that $u_i^{\lambda} \to u_i$ as $\lambda \searrow 0$ in H. Let $A_{\lambda}u_{\lambda}^i \to w_i$ as $\lambda \searrow 0$ (weakly) in H. Since A is maximal monotone, we may pass to the limit in the inclusion $A_{\lambda}u_{\lambda}^{\lambda} \in A(J_{\lambda}u_{\lambda}^{\lambda})$ and find $u_i \in D(A)$ and $w_i \in Au_i$, $i = \overline{1, N}$.

Passing to the limit in (38), it follows that u_i verifies the problem (1) and thus the existence is proved.

If $(u_i)_{i=\overline{1,N}}$, $(v_i)_{i=\overline{1,N}}$ are two solutions of (1) and $x_i=u_i-v_i$, then, subtracting the equations for u_i and for v_i , multiplying by a_ix_i and summing from i=1 to i=N, by (34) we get

$$\sum_{i=1}^{N} [a_i(x_{i+1} - x_i, x_i) - a_{i-1}(x_i - x_{i-1}, x_{i-1})] - \sum_{i=1}^{N} a_{i-1} ||x_i - x_{i-1}||^2 \ge c\omega \sum_{i=1}^{N} a_i ||x_i||^2.$$
(55)

This implies

$$c\omega \sum_{i=1}^{N} a_i ||x_i||^2 \le -a_N ||x_{N+1} - x_N||^2 +$$

$$+a_N(x_{N+1}-x_N,x_{N+1})-(x_1-x_0,x_0) \le 0,$$

because u_i and v_i verify the boundary conditions of problem (1). Therefore $x_i = 0$, i.e. we proved the uniqueness.

References

- A.R. Aftabizadeh, N.H. Pavel, Boundary value problems for second order differential equations and a convex problem of Bolza, *Diff. Integral Eqns.*, 2, 495-509 (1989).
- [2] N.C.Apreutesei, A boundary value problem for second order differential equations in Hilbert spaces, *Nonlinear Analysis*, *TMA*, **24**, 1235-1246 (1995).
- [3] N.C. Apreutesei, Existence and asymptotic behavior for a class of second order difference equations, to appear in *J. Difference Eq. Appl.*
- [4] V. Barbu, Sur un probleme aux limites pour une classe d'equations differentielles nonlineaires abstraites du deuxieme ordre en t, C. R. Acad. Sci. Paris, 274, 459-462 (1972).
- [5] V. Barbu, A class of boundary problems for second order abstract differential equations, J. Fac. Sci. Univ. Tokyo, Sect. 1, 19(1972), 295-319.
- [6] H. Brezis, Equations d'evolution du second ordre associees a des operateurs monotones, Israel J. Math., 12, 51-60 (1972).
- [7] E. Mitidieri, G. Moroşanu, Asymptotic behaviour of the solutions of second order difference equations associated to monotone operators, *Numerical Funct. Anal. Optim.*, 8, 419-434 (1986-1987).
- [8] G. Moroşanu, Second order difference equations of monotone type, Numerical Funct. Anal. Optim., 1, 441-450 (1979).
- [9] N. Pavel, Nonlinear boundary value problems for second order differential equations, J. Math. Anal. Appl., 50, 373-383 (1975).
- [10] N. Pavel, Mixed boundary value problems for second order differential equations with monotone operators, Bull. Math. Sci. Math. Roum., 190, 127-145 (1975).
- [11] E. Poffald, S. Reich, An incomplete Cauchy problem, J. Math. Anal. Appl., 113, 514-543 (1986).
- [12] E. Poffald, S. Reich, A difference inclusion, in "Nonlinear Semigroups, Partial Differential Equations and Attractors", Lecture Notes in Mathematics, 1394, Berlin, Springer, 122-130, 1989.
- [13] L. Veron, Equations non-lineaires avec conditions aux limites du type Sturm-Liouville, Anal. Stiint. Univ. Iasi, Sect. 1 Math., 24, 277-287 (1978).

(Narcisa C. Apreutesei) DEPARTMENT OF MATHEMATICS
TECHNICAL UNIVERSITY "GH. ASACHI" IAŞI
11, BD. COPOU, 6600, IAŞI, ROMANIA
E-mail address: ndumitri@tuiasi.ro, napreut@net89mail.dntis.ro