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A finite difference scheme in Hilbert spaces

NARcISA C. APREUTESEI

ABSTRACT. We study the existence for a class of difference inclusions associated with maximal
monotone operators. They are the discrete versions of some second order evolution equations
in Hilbert spaces on a finite interval.
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1. Introduction

Let H be a real Hilbert space with the scalar product (.,.) and the correspond-
ing norm ||.||. We study the existence and uniqueness of the solution for the finite
difference scheme

i1 — (1 +05) u; + 0wy € c;Au; + fi, i=1,N (1)
up —uo € a(ug—a), uny1 —uny € =0 (uns1 —b),
where a, § and A are maximal monotone operators in H, A is also strongly monotone,
a,b€ H and (fi),_7v € HY, 6, € (0,1), 0 <¢;, i =1, N are finite sequences.
Denote by Hév the space HY with the weight sequence (a;);,_g » where ag =

1, a; = 1/6165...0;, for i =1, N. This sequence is nondecreasing and a;_1 = 0;a;, i =
1, N. Therefore, the scalar product in Hév is

N
< (ui)i:LN ) (Ui)izl,N >= Zai (ui,vi), (2)
=1

for all (u;),_1 » (vi);_7x € HY and the norm is

1/2

N
(@] = (| Xadbal”) (3)

Since 1 = ag < a1 < ... < ay, the spaces HY and Hév contains the same sequences
and have equivalent norms. The reason we have introduced the space H, CIX is that the
operator B given by

B ((ul)lzﬁ) = (—ui+1 + (1 + 91) U; — eiui_l)i:LN , (4)
D (B) = {(ui);—7x € HY, uy —up € a(ug —a),
un+1 —un € =3 (uny1 —b)} (5)

is maximal monotone in HY (see Proposition 2.1). This is the main tool in the proof
of our existence result.
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Problem (1) is the discrete variant of the problem
pu” +ru’ € Au+ f, a.e. on [0,T] (6)
u'(0) € a(u(0) —a), v (T) € =B (u(T) =),

which was studied by A. Aftabizadeh & N. Pavel [1]. Different particular cases of (6)
were analyzed before by V. Barbu [4], [5], H. Brézis [6], N. Pavel [9], [10], L. Véron
[13], N. Apreutesei [2] . Taking

() = 0, z=0
J "] +oo, otherwise

and «a(z) = [ (z) = 9j (z), where 95 is the subdifferential mapping of the convex
function j, one obtains the bilocal problem

wipr — (1 +0;) wi + Ojui—y € ciAu; + fi, i =1,N
ug =a, uyy+1 =Db.

(7)
This equation together with the problem

Uip1 — (1 4+0;) u; +0uiq € GGAu + fi, 1> 1
up =a, sup|lull < oo, (8)
i>1

was the subject of many papers. G. Morosanu [8] and E. Mitidieri & G. Morosanu
[7] proved the existence and the asymptotic behavior of the solution to (7) and (8)
for 8; = 1, f; = 0 in Hilbert spaces, while E. Poffald & S. Reich established similar
results in Banach spaces [11], [12]. For arbitrary 6; > 1, equations (7) and (8) were
studied by N. Apreutesei [3].

In this paper we suppose ; € (0,1). This corresponds to the case r > 0 on [0, 7]
in equation (6) . The boundary conditions in (1) are new for difference equations.

In section 2 we give an auxiliary result, namely we show the maximal monotonicity
of the operator B defined by (4) — (5) . We use the Yosida approximation of A to prove
the existence and uniqueness of the solution of problem (1). This is the subject of
section 3.

2. The maximal monotonicity of B in Hév

The aim of this section is to prove that the operator B defined by (4) — (5) is
maximal monotone in HY. We use an idea from A. Aftabizadeh & N. Pavel [1].
Denoting

1
=1,a=-——,i=1,N 9
=5 4=y e ©)
and
Wi = Aj—1 (Uz *Ui—l), t=1,N, (10)
we can write B under the form
B ((ui)i:m) = (w1 + A+ 0)u; — bui), 7 = (11)

1
<— (%‘H - %)) )
a; i=T,N

D(B) = {(ui)i:m S I‘IN7 U1 —Ug € OZ(U() —a),

unt+1 —un € —f (un+1 — b)}. (12)
We begin with
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Lemma 2.1. Let (6;),_1x be a given sequence in (0,1) and ¢ > 0 a constant.
Then, the problem

{ Cir1—(2+0;)6+0:61=0,i=1,N (13)
'50 = Oa 51 =cC
has a strictly increasing solution & > 0, for all i =1, N +1 and the problem
Niv1 — (2+0)ni +0imi1 =0, i=1,N
(14)
nN+1 =0, nn=—c

has a strictly increasing solution n; < 0, i =0, N.

The proof is obvious.

Now we are able to state the main result of this section.

Proposition 2.1. If (0;),_1 is a finite sequence of real numbers, 0; € (0,1)
forall i=1,N, a,b € H and o, B are mazimal monotone operators in H, then the
operator B given by (11) — (12) is mazimal monotone in HY .

Proof. Let (wi),_ix » (vi);—t% be two given sequences in D (B) and ¢; =
ai—1 (ug —ui—1), ¥y = aj—1 (v; —vi_1), i = 1, N. If < .,. > is the scalar product in
HY defined by (2), we have

< B <(ul>zzm> - B ((Ul)z:ﬁ> ,(ui — Ui)i:m >=
N N
== (ir1 — i = Yir1 + i — i) = > ailluigs — i — vigr + o+
i=1 i=1
N
+ 3 [(r = i ws — v) = (g1 — i1, wipr — vign)]
i=1

<B ((Ui)i:ﬁv) -B ((W)#ﬁ) (i —vi)_1n >=

SO

N
= ailluirs — i — vig1 +vil|*—
=1

—aN(UN+1 — UN — UN41 + UN, UN+1 — UN$1)+
+(u1 — ug — v1 + v, u1 — v1). (15)
Since (u3),_7% » (vi);_1 € D (B), by the monotonicity of o and £, it follows that

(w1 — ug — vy + v, ur —v1) = |Jur — ug — v1 + vol|*+
+(u1 — ug — v1 + o, up — vg) > 0 (16)
and
(uny+1 — Uy — ON+1 FON, uN+1 — Ont1) < O. (17)

Using (16) and (17) in (15), one obtains that B is monotone in HJ.
Now we show that B is maximal monotone, that is R (I + B) = H)' or, equiva-
lently, (V) (9i);i—7 % € HY | there is a sequence (ui);—7w € HY such that

{ Uipr — (2+0;)u; +O0ui—1 =g, i=1,N

18
up —uo € a(ug—a), uny1 —uny € =0 (uns1 —b) . (18)

We are looking for the solution of (18) of the form
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where w;, &;, 1; are the solutions of the problems

wigr — (24 0;) wi +0w; 1 =gi, i =1, N
wog =0, w; =0

(20)

and (13), (14) respectively. This u, verifies the equation from (18) for all z,y € H.
We find z,y € H such that u; satisfies also the boundary condition in (18). These
conditions become
&z + (m —m)y € a(my —a), (21)
(Envt1 — &)z +cy € =B (wnt1 + vz — D) —wny1 +wn, (22)
or equivalently

(Envy1—én)ztey+z21, o+ (m —no)y + 22)

5 (~wnt1 +wn,0), (23)

where
z1 €0 (’LUN+1 + §N+11' — b) s (24)
z9 € —a(noy — a) . (25)

This can be written as

F(z,y) + G (z,y) 3 (~wy1 +wn,0), (26)

where
F(z,y) = (Envy1 — &)@+ ey, Gz + (m —m0)y) (27)
G (z,y) = (21, 22) . (28)

It is easy to check that F' is everywhere defined, linear, continuous and strongly
monotone. We show that G is maximal monotone in H x H. Denote by ((.,.)) its
scalar product. Let G(z,y) = (21, 22), G (u,v) = (z3,24), where

21 € B(wns1 +Ens1z —b), 20 € —a(noy — a), (29)

z3 € B(wnt1 +ENnt1u—b), 24 € —a(nov —a) . (30)
Then,
((G (x,y) - G(uvv) ) (w,y) - (u7 v))) =
) (21 — 23, —u) + (22 — 24,y — v) =

v

(21 — 23, (Wn 41 +ENnp17 — b) — (WNy1 +Eny1u — b)) +

1
+% (22 — 24, (Noy — a) — (nov — a)) > 0,

so GG is monotone in H x H.
To prove that G is maximal monotone in H x H, consider (A, u) € H x H and
show that there is (z,y) € D (8) x D (a) such that
TH+z1=A y+z2=pn, (31)

where 21, 2o satisfy (29). Denoting by | = wyt1 + Envy1x — b and m = noy — a,
relations (31) can be written as

—b 1
A LT e B (1) + ——1, (32)
ENt1 ENt1
i+ Lcam—Lm (33)
: Mo n

But « is maximal monotone and —1/ny > 0, so R (a — n%I) = H. This implies that
(33) has a solution m € D («) . Analogously, (32) has a solution I € D (). Therefore,
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there are = (I — wn41 +b) /En+1 and y = (m + a) /no, such that (31). This means
that G is maximal monotone in H x H.

Consequently, F' + G is maximal monotone and coercive and thus (26) has a solu-
tion, hence B is maximal monotone, as claimed.

3. The main result

In this section we establish the existence and uniqueness of the solution to the
finite difference inclusion (1), under the hypothesis that A is strongly monotone in H.
Denote by Jy and A the resolvent and the Yosida approximation of A, respectively:
Jy=(I+MA)""and Ay = (I — J)) /A\. Now we state the main result.

Theorem 3.1. Let A: D(A) C H — H be a mazimal monotone and strongly
monotone operator in the real Hilbert space H, with 0 € D (A) and 0 € AO. Suppose
that o, B are maximal monotone in H, 0 € D(a), 0 € D(5), 0 € a(0) N G(0).
Consider the sequences ¢; > 0, 0; € (0,1) and f; € H, for all i =1, N. Then, for all
a,b € H, problem (1) admits a unique solution (u;),_y € D AN,

Proof. By hypothesis, there exists w > 0 such that for all z,y € D(A) and
z' € Ax, y' € Ay, we have

(@ =y, z —y) > wllz —yl]*. (34)
Then A, satisfies the inequality
w w
Ayz— A —y) > —yl? > 2z —y|[?
(Anz = Az =) 2 T2 le = ol 2 2l — P, (35)
for 0 < A < 1/w. Denoting by A the operator
A((ui)i) = (1A, - ex Au) (36)
and by B the operator defined by (4) — (5), problem (1) can be written as
0eB ((Ul)z:ﬁ) +A ((%)sz) + (fi)izl,N- (37)

Since B is maximal monotone in Hév , B+ A, is also maximal monotone in Hév .

By (35), it follows that B + Ay is coercive, so it is surjective from D (B) to H[Y.
Thus, for (fi),_7x € HY, there is (u) € D (B) such that B ((U{\)zzﬁ) +

i )1:ﬁ
Ay ((u{\)lzm) = - (fi)i:ﬁ, that is

{ udy — (1+6;)u} + 0w} | =c;Ayu} + f;, i=1,N
b).

38
u{‘fué‘eoz(uéfa),u?‘VH*U?‘VG*ﬂ(U?\ZH* (38)

) —— with respect to A. To do this, one

We prove the boundedness in H)' of (u; )izl ~

multiplies (38) by a;u} and obtains

N

N
> (s )~ D} ) =
=1

i=1

N N
= Zcz’ai (Anud,u)) + Zai (fisu?).
=1 =1
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Since a;0; = a;—1 and 0 € A0, using (35) we deduce

chaZHu |2 < Z a; (uppy —ud up) —aic (u) —up g, uly)]—

N N
—Zai,lHu;—\ —u} )P - Zai (fz,U{\> )
i=1 =1

SO
N

w
5 2 ciaillulll® < ay (uhyr —uiuy) = () = ug,up) -
i=1

N N
=Y aiallu} —ud P =D ai (fiw))
i=1 i=1

Since o and 3 are monotone and 0 € a0, 0 € 80, from (38) we have
— (u} —ug,up) < [lug — wql-lall,
(uirsr — u, i) < |luivss — ul]-|[B]]-

Hence (40) implies

N N
w
3 D aallu} P+ asallu} — [P < anlluny —unl] b1+
i=1 i=1
N /2 , n 1/2
A A A
+lur = wgll-llall + (Zailﬁll2> (Zaillui I2>
i=1 i=1

and thus
N g XN
Sailladl < = S allfilP+
i=1 i=1

4aN A 4
16l + — -
+ =l = kLBl + — [l = wd |l

By u¥., —uy € =3 (un41 —b) and 0 € 30, we find

111 < (Hunl |+ 11611 Hwn I+ [ul]- o],
which leads to

N 1/2 1/4
1 3 ol Z
A < - a2 b a2 )
||UN+1||— m<i_laz||uz|| > +|| ||+ ﬁ l”qu

i=1

Similarly, we have

/2 || ! N 1/4
a
upl] € — g a; u>‘ 2 + + — g a; uf‘ 2 .
| < I ||> llall aL [[ui ]

i=1
Next,

1/2
un | < <Zazllukll2>

(39)

(43)



A FINITE DIFFERENCE SCHEME IN HILBERT SPACES 27

and

1/2
[Jug | r(ZazlluAW) : (48)

N
Using (45), (46), (47) and (48) in (44), we find that > a;||u}||? is bounded with
i=1
respect to A. Inequalities (45) (48), lead us to the boundedness of [|un ||, [[ug]l,
|[un|| and [|u}|| and by (43), Z a;—1||u} —u} |2 is also bounded. Now we use (38)

to get the boundedness with respect to A of Ayu?.

We are going to pass to the limit in (38). To this end, let A, u > 0 be fixed.
One subtracts the equation (38) for for A and for y, one multiplies the difference by
a; (u;\—uf) and one sums fromi=1to¢= N :

Z (1,+1 ui'yy — o+ u} — ) -

N
Zaz Y =t =} e} -l = (49)

N
Z ci(Ayu} — Apul ud —ulh).
Denote by M; and M, the left hand side and the right hand side in (49). Since

a;0; = a;_1, we have
— A Iz A [P n
M, = an(uny, — Uy —uN T U, UN L — “N+1)_

aN||uf‘V+1 - ul1<f+1 - u?\f + uN||2_

N
A A A A
—(u — i —uy + ufy, up — g)_ZaFIHUi —uf —uiy ]2 (50)
i=1
S0
N
My <= i a|u) =l — w4+l |2 (51)
i=1
On the other hand, since
Ju + Myuh = u, (52)

we get
N
M, = Zaici(AAuf‘ — Ayl Jyu) — Jyut')+

N N
+ D aici(Axu} — Ayuf, AAxud — pAuf) > % > aillnud = TP+
i=1 i=1
N N
+ Y aic AN 1P + pl| Al [P) = A+ 1) Y- aies(Anud, Agul)). (53)
1=1 =1

N
Using (51), (53) and the boundedness of 3" a;||Axu||? in (49), one obtains

i=1

N
wc 7

i=1
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where kj is a positive constant. So JAuﬁ\ is strongly convergent in H as A Y\, 0,
say Jyu — u;. This, together with (52), gives us that u} — u; as A \, 0 in H. Let
Ayu} — w; as A\, 0 (weakly) in H. Since A is maximal monotone, we may pass to the
limit in the inclusion AAuf‘ cA (J,\ug\) and find u; € D (A) and w; € Au; , 1 =1, N.

Passing to the limit in (38), it follows that w; verifies the problem (1) and thus the
existence is proved.

If (u;);—77» (vi);—7v are two solutions of (1) and x; = u; — v;, then, subtracting
the equations for u; and for v;, multiplying by a;2; and summing from i = 1 to i = N,
by (34) we get

N

Z[ai(xiﬂ - xi,xi) - az‘71($i - xi—laxiq)]—
i=1

N N
=Y aiallei =zl > ) ailla] (55)
i=1 i=1

This implies

N
w Y aillail? < —anllon i — o+
=1

+an (Tn+1 — TN, TN41) — (X1 — X0, T0) <0,

because u; and v; verify the boundary conditions of problem (1). Therefore z; = 0,
i.e. we proved the uniqueness.
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