
Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 46(1), 2019, Pages 164–177
ISSN: 1223-6934

A mathematical model with a trophic chain predation based
on the ODEs to describe fish and plankton dynamics
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Abstract. The aim of this paper is the formulation and the study of a prey-predator model

to describe fish and plankton population dynamics, with three developmental stages of the
fish population (larva, juvenile and adult). First, we develop a mathematical model based on

the ODEs, describing the dynamics of the various classes for the fish population depending

on the plankton in a general framework. Then, we are interested in the model in the case
of a trophic chain predation for the fish population. Finally, we continue our study through

numerical simulations of the model in different fishing areas. The obtained numerical results

confirm the mathematical analysis and allow us to have an idea on the development of the
fish population in a fishing area.
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1. Introduction

A situation of overexploitation of fishery resources has taken place because of the
high demand for fish products and the lack of adequate and coherent policies for a
sustainable management of exploitable resources, [2, 13, 7]. At the present stage of
knowledge, research on fish raises a set of problems in terms of biology and populations
dynamics, [6, 11, 13, 8, 10, 15]. The biology and ecology related issues of the fish
population require a comprehensive study and reliable use of existing knowledge at
the applied level (management and planning).

It is in this line of thoughts that we are interested here in the study of fish popu-
lation dynamics with a single food resource, i.e plankton. Our goal is to understand
how the dynamics behaves in a fishing area with a trophic chain predation on the
population of fish, in order to predict the state of fish stock, [6, 11, 15].

The paper is organized as follows. In section 2, we present the general mathematical
model of our problem. Section 3 provides the mathematical analysis of the model at
the general form. Also, we look at a particular case of our model in the section 4.
Computational simulations are performed in section 5 and finally, in the last section,
the paper concludes with a discussion of the work and a number of suggestions as to
how it may be extended.

2. General mathematical model of fish-plankton system

In this section, we proceed to the construction of a fish-plankton model by taking
into account three weight classes in the fish population: larva, juvenile and adult.
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Figure 1. Interaction model of the larva-juvenile-fish-plankton system

Each of these weight classes can be perceived as a developmental stage of the fish
population, [5, 11, 14, 15]. The dynamics of the larva-juvenile-adult-plankton system
is represented by Figure 1.

The state variables are: the plankton density P , the adult density A, the juvenile
density J and the larva density L. LetmL, mJ andmA (mL < mJ < mA) respectively
larva, juvenile and fish adult weight. Let H = (HL, HJ , HA) = (L, J,A) the vector of
the fish class. Similarly, we define the energy ra used to grow up and to reproduce.
We also define ε, the fraction of hatched eggs. Thus, according to Figure 1, we obtain
the following system of four differential equations

dP

dt
= ϕ(P )− fL,P (P,H)L− fJ,P (P,H)J − fA,P (P,H)A, P (0) = P0 > 0

dL

dt
= bfA(P,H)A− τ1fL(P,H)L− µLL− µL(P,H), L(0) = L0 > 0

dJ

dt
= τ1fL(P,H)L− τ2fJ(P,H)J − µJJ − βJJ − µJ(P,H), J(0) = J0 > 0

dA

dt
= τ2fJ(P,H)J − µAA− βAA− µA(P,H), A(0) = A0 > 0

(1)

where
• fi is the given function in biomass per time unit for i ∈ {L, J,A},
• fL,P is the energy acquired per time unit for the larva on the plankton population,
• fJ,P is the energy acquired per time unit for the juvenile on the plankton popu-

lation,
• fA,P is the energy acquired per time unit for the fish adult on the plankton

population,
• µL(P,H) is the larva mortality rate due to cannibalism,
• µJ(P,H) is the juvenile mortality rate due to cannibalism,
• µA(P,H) is the adult mortality rate due to cannibalism,

• τ1 =
ra

mJ −mL
is the transfer-rate of the larva in juvenile population,

• τ2 =
ra

mA −mJ
is the transfer-rate of the juvenile in adult population,

• b =
εra
mL

is the fertility-rate of the adult population,
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• ϕ(P ) is the natural growth-rate of the plankton quantity,
• qi is the coefficient of catchability for the class i, i ∈ {J,A},
• Ei is the fishing effort for the class i, i ∈ {J,A},
• βJ = qJEJ is the mortality rate due to fishing of the juvenile population,
• βA = qAEA is the mortality rate due to fishing of the adult population,
• µL is the natural mortality rate of the larva population,
• µJ is the natural mortality rate of the juvenile population,
• µA is the natural mortality rate of the adult population.

The model presented here is general and it is necessary to make choices, particularly
for the functions: fA, fJ , fL, fL,P , fA,P , and fJ,P .

In the remainder of the paper, we will study a particular case where we will assign
a precise expression to these functions. We will, for example, deal with the situation
where each class has a unique source of food and therefore one can easily assume
that these functions become functions of one variable, which will bring us to the
classic choice of linear functions or Holling type II, [13, 16, 17, 15]. In the situation
where there are several sources of food, one possibility is to assume that the functions
fL,P , fJ,P and fA,P depend only on P and H, [2, 4, 13, 18].

3. Mathematical results of the general model

Here, we will give some general results on the model defined in (1). The goal of
this section is to answer the questions on the existence of local and global solutions
[1, 2, 3, 15, 18].

The functions fi in biomass per unit of time and cannibalism mortalities µi in
number of individuals per unit of time are in the following form for all i ∈ {L, J,A}:

fi(P,H) = fi,P (P,H) +
∑

j∈{L,J,A}

fi,j(P,H) (2)

µi(P,H) =
1

mi

∑
j∈{L,J,A}

fj,i(P,H)Hj (3)

The functions fi,j , j ∈ {L, J,A} correspond to the acquired biomass per unit of time
by individual of the size class i by predation on the size class j. Additionally, we
rewrite the system (1) in the following form:

dP

dt
= g1(P,L, J,A)

dL

dt
= g2(P,L, J,A),

dJ

dt
= g3(P,L, J,A)

dA

dt
= g4(P,L, J,A),

(4)

N(0) = N0 > 0 for N = P,L, J,A.

3.1. Hypothesis. We will formulate the following assumptions, for the remainder
of the work.

(H1) : mL < mJ < mA,
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(H2) : µi > 0 for any i ∈ {L, J,A} and βj ≥ 0 for any j ∈ {J,A}, where µi is the
natural mortality,

(H3) : ra, ε ∈]0, 1],
(H4) : ϕ is continuously differentiable on [0,Kp] and verify:

(a) ϕ(0) = ϕ(Kp) = 0, where Kp is the maximal carrying capacity of the
plankton.

(b) ∀P ∈]0,Kp[, ϕ(P ) > 0.
(c) ϕ′(0) > 0 and ϕ′(Kp) < 0.

(H5) : The functions fi,j and fi,P for i ∈ {L, J,A}, are positive and continuously
differentiable. In addition:

(a) Hj = 0 ⇒ fi,j(P,H) = 0 and P = 0 ⇒ fi,P (P,H) = 0 for any i, j ∈
{L, J,A}.

(b) At least one of the following functions (by fixing the other variables) is

strictly positive for i ∈ {L, J,A} : Hj 7−→
∂fi,j
∂Hj

(P,H) for j ∈ {L, J,A}

and P 7−→ ∂fi,P
∂P

(P,H) for i ∈ {L, J,A}.

Remark 3.1. From the biological point of view, the assumption (H5)-(a) means
that if there is no fish in a size class (or if there is no plankton), the energy obtained
by predation on this class (resp. the plankton) will be zero. The hypothesis (H5)-
(b) requires that each fish feeds by predation on at least one size class or on the
plankton. The more there are fish in the predated size class (resp. the plankton
is more abundant), the more the energy obtained is important in a known external
environment, i.e for known amounts of fish in the other size classes.

3.2. Some preliminary results. The initial condition is taken in the domain Ω :=]
0,Kp

[
× R∗3+ . Let µ̂J = µJ + βJ and µ̂A = µA + βA.

Proposition 3.1. The domain Ω is positively invariant by the positive semi-wave
generated by (1).

Proof. By seeing that the system (4) can be rewritten as follows:

d

dt


P
L
J
A

 =


g1(P,L, J,A)
g2(P,L, J,A)
g3(P,L, J,A)
g4(P,L, J,A)

 = G(P,L, J,A)

and using the previous hypotheses, we have:

g1(P = 0, L, J,A) = 0 for L, J,A ≥ 0,

g1(P = Kp, L, J,A) = −fL,P (Kp, H)L+ fJ,P (Kp, H)J − fA,P (Kp, H)A ≤ 0,

for L, J,A ≥ 0,

g2(P,L = 0, J, A) = bfA(P,H)A ≥ 0 for P, J,A ≥ 0,

g3(P,L, J = 0, A) = τ1fL(P,H)L ≥ 0 for P,L,A ≥ 0,

g4(P,L, J,A = 0) = τ2fJ(P,H)A ≥ 0 for P,L, J,≥ 0,

So, the field is not outgoing on Fr(Ω). �
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Proposition 3.2. For all initial condition in Ω, the trajectory resulting from this
initial condition remains in a bounded domain included in Ω.

Proof. We consider the total biomass of the system at a time t i.e the following
function:

Q(t) = P (t) +mLL(t) +mJJ(t) +mAA(t)

The derivative of Q with respect to time is:

Q̇ = ϕ(P )− (1− ra)(fL(P,H)L+ fJ(P,H)J)− (1− εra)fA(P,H)A

−mLµLL−mJ µ̂JJ −mAµ̂AA

As we have ra, ε ∈]0, 1], we get

Q̇ ≤ ϕ(P )−mLµLL−mJ µ̂JJ −mAµ̂AA ≤ ϕmax − µminQ+ µminP

where µmin = mini∈{L,J,A}{µi} and ϕmax = sup[0,Kp]ϕ.
Finally, knowing that µminP ≤ µminKp we deduce:

Q(t) ≤ Q(0)e−µmint +

(
ϕmax
µmin

+Kp

)(
1− e−µmint

)
.

Then
lim
t→∞

Sup Q(t) ≤ ϕmax
µmin

+Kp

and so

lim
t→∞

Sup Hi(t) ≤
1

mi

(
ϕmax
µmin

+Kp

)
.

�

Corollary 3.3. The compact domain

Ωp :=
{

(P,H) ∈ Ω : O ≤ P +mLL+mJJ +mAA ≤
ϕmax
µmin

+Kp

}
is positively invariant and attracts all trajectories from Ω.

Proposition 3.4. The model (1) admits two trivial equilibria E0i := (P = 0, H = 0)
and E0 := (P = Kp, H = 0). Additionally E0i is locally unstable.

Proof. The resolution of the following system
ϕ(P )− fL,P (P,H)L− fJ,P (P,H)J − fA,P (P,H)A = 0
bfA(P,H)A− τ1fL(P,H)L− µLL− µL(P,H) = 0
τ1fL(P,H)L− τ2fJ(P,H)J − µJJ − βJJ − µJ(P,H) = 0
τ2fJ(P,H)J − µAA− βAA− µA(P,H) = 0

(5)

shows that trivial states are E0i and E0. To establish the local instability of the state
E0i, we consider the Jacobian matrix at E0i. The Jacobian matrix at E0i is

J(E0i) =


−ϕ′(0) 0 0 0

0 −µL 0 0
0 0 −µ̂J 0
0 0 0 −µ̂A


Spect(E0i) = {ϕ′(0),−µL,−µ̂J ,−µ̂A}. The eigenvalues are strictly negative except
ϕ′(0) which is positive according to the previous hypotheses. So, this equilibrium
state is locally unstable. �
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Proposition 3.5. There is existence and uniqueness of a solution of the system (1)
on an horizon of infinite time.

Proof. The existence and uniqueness of solution are obtained thanks to the theorem
of Cauchy-Lipschitz [4, 5, 6, 19, 20] given the regularity of the functions involved in
the model. Furthermore, this solution is defined for any positive t, given the fact that
the trajectories remain in a bounded compact according to proposition 3.1. �

4. The model with a trophic chain predation for the fish population

In this section we are interested on the particular case of model (1) regarding the
choice of functions involved in the model and also the type of predation for the fish
population. The predation will be assumed linear and will be done in trophic cascade
: the larvae will feed on the plankton, the juvenile will feed on the larvae and the
adult will feed on the juvenile, [9, 13, 14, 15, 7, 15].

4.1. Equations of the model. The choice of predation functions is the following:

fL(P,H) = v1P, fJ(P,H) = v2mLL, fA(P,H) = v3mJJ and ϕ(P ) = e

(
1− P

Kp

)
P

where
• e is the natural growth-rate of the plankton,
• v1 is the annual individual intake of plankton per individual larva,
• v2 is the annual individual intake of larvae per individual juvenile,
• v3 is the annual individual intake of juvenile per individual fish adult.

Thus, the model (1) can be rewritten:

dP

dt
= e

(
1− P

Kp

)
P − v1PL, P (0) = P0 > 0

dL

dt
= bv3mJJA− τ1v1PL− µLL− v2LJ, L(0) = L0 > 0

dJ

dt
= τ1v1PL− τ2v2mLJL− µJJ − βJJ − v3JA, J(0) = J0 > 0

dA

dt
= τ2v2mLJL− µAA− βAA, A(0) = A0 > 0

(6)

4.2. The equilibria of the model.

Proposition 4.1. The model (6) admits two trivial equilibria Eoi = (0, 0) and E0 =
(Kp, 0). The first one is always locally asymptotically unstable and the second is locally
asymptotically stable.

Proof. As we are in a particular case of model (1), the proposition 3.4 ensures that
there are two trivial equilibria: E0i = (0, 0) locally unstable and E0 = (Kp, 0). To
obtain the local stability results of the latter, we write the Jacobian matrix:

Jp(E0) =


−e −v1Kp 0 0
0 −µL − τv1Kp 0 0
0 τv1Kp −µJ − βJ 0
0 0 0 −µA − βA


The characteristic polynomial of this matrix is:



170 H. OUEDRAOGO, W. OUEDRAOGO, AND B. SANGARÉ

P(Kp,0)(X) = (X + e)(X + µL + τ1v1Kp)(X + µJ + βJ)(X + µA + βA).

All its eigenvalues are clearly strictly negative, which ensures the local stability of
equilibrium E0. �

Proposition 4.2. The equilibrium E0 is globally stable under the following sufficient
condition : bmJ ≤ 1.

Proof. Let us consider the Lyapunov function (7) defined by

Q(t) = L(t) + J(t) +A(t). (7)

The derivative of Q with respect to time is:

Q̇ =
(
bmJv3 − v3

)
JA− µLL− µ̂JJ − µ̂AA− v2LJ (8)

Q is positive on Ω, which is invariant and under bmJ − 1 ≤ 0, Q̇ is strictly negative
on

Ω \ {(P, 0) : P ≥ 0}
So H tends to 0.
Moreover, as the system is bounded and (0, 0) is unstable, it follows from the equation
on plankton that for any initial condition in Ω, P converges to Kp. �

Now, we consider the case of the positive components equilibria.
Let’s consider the function π defined for all φ ∈ R+ by:

π(φ) = a4φ
4 + a3φ

3 + a2φ
2 + a1φ+ a0

where

a4 = ebαv3mJτ2v2mL(bv3mJ − v3),

a3 = ebαv3mJ µ̂A(τ2v2mL + v2) + ev2
2mL(bv3mJ − v3),

a2 = ebαv3mJ µ̂AµL − ev2µ̂A(τ2v2mL + v2) + (ev1τ1 + eµL)(bτ2v2mJv3mL − τ2v2mLv3),

a1 = −ev2µ̂AµL − (eτ1v1 + eµL)(µ̂Aτ2v2mL + v2)− µ̂Aµ̂Jτ1Kpv
2
1 ,

a0 = −µ̂AµL, and α =
τ2v2mL

µ̂A
,

and the functions h and l defined from R+ to R by:

l(J) :=
e

τ1Kpv2
1

[
−bτ2v2v3mJmL

µ̂A
J2 + v2J + (τ1v1 + µL)

]
(9)

h(J) :=
µ̂Aµ̂JJ

τ2v2mL(bv3mJ − v3)J2 − µ̂A(τ2v2mL + v2)J − µLµ̂A
(10)

We have the following proposition which gives the necessary and sufficient condi-
tions of the existence of positive equilibrium.

Proposition 4.3. The positive component equilibrium
(
P > 0, L > 0, J > 0, A > 0

)
of system (6) exists if and only if there exists the solution of the equation π(J) = 0.

Proof. In order to obtain the positive equilibria of this model, we must cancel the
dynamics of (6). Indeed, equivalently, we cancel the dynamics of (P,L, L + J,A).
Then, on Ω we have:

g1(P,L, J,A) = 0⇐⇒ P = Kp

(
1− v1

e
L

)
(11)
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g4(P,L, J,A) = 0⇐⇒ A =
τ2v2mL

µ̂A
LJ (12)

We cancel the dynamics of L by using those two last relations:

g2(P,L, J,A) = 0⇐⇒ L = l(J) :=
e

τ1Kpv2
1

[
−bτ2v2v3mJmL

µ̂A
J2 + v2J + (τ1v1 + µL)

]
(13)

Finally, we have:

(g2 + g3)(P,L, J,A) = 0⇐⇒

L = h(J) :=
µ̂Aµ̂JJ

τ2v2mL(bv3mJ − v3)J2 − µ̂A(τ2v2mL + v2)J − µLµ̂A
(14)

So, we get the functions l and h defined in (9) and (10).
Let us note S = {J ∈ R∗+; l(J) = h(J)}

We notice that π(J) = 0⇔ J ∈ S. Indeed, let J ∈ S, then

l(J) =h(J)⇔ µ̂Aµ̂JJ

τ2v2mL(bv3mJ − v3)J2 − µ̂A(τ2v2mL + v2)J − µLµ̂A
=

e

τ1Kpv2
1

(−bαv3mJJ
2 + v2J + (τ1v1 + µL))

⇔ τ1Kpv
2
1µ̂Aµ̂JJ =

[
τ2v2mL(bv3mJ − v3)J2 − µ̂A(τ2v2mL + v2)J − µLµ̂A

]
×
[
− ebαv3mJJ

2 + ev2J + e(τ1v1 + µL)
]

⇔ τ1Kpv
2
1µ̂Aµ̂JJ −

[
τ2v2mL(bv3mJ − v3)J2 − µ̂A(τ2v2mL + v2)J − µLµ̂A

]
×
[
− ebαv3mJJ

2 + ev2J + e(τ1v1 + µL)
]

= 0

Let

θ(J) =τ1Kpv
2
1µ̂Aµ̂JJ −

[
τ2v2mL(bv3mJ − v3)J2 − µ̂A(τ2v2mL + v2)J − µLµ̂A

]
×
[
− ebαv3mJJ

2 + ev2J + e(τ1v1 + µL)
]

and by developing θ(J), we recognize the polynomial function π.
Now, we are interested in the points belonging to S. Let us suppose that bmJ > 1.

The signs of the coefficients involved in h and l allow to infer the existence of Jmax > 0
and Jmin > 0 such that:

l(J) > 0, ∀ J ∈]0, Jmax[ and l(J) < 0, ∀ J > Jmax

and

h(J) < 0, ∀J ∈]0, Jmin[ and h(J) > 0, ∀J > Jmin

A necessary condition for S to be non empty is Jmin < Jmax. The possible solutions
verify Jmin < J < Jmax.
Additionally, function l is concave and h is convex for J > Jmin. S contains at most
two elements. For each element of S, we can cancel the dynamics.

It remains to be proven that the equilibria obtained are in Ω.
Let J∗ > 0 such that h(J∗) = l(J∗) > 0, then L∗ = l(J∗) is positive. The same goes
for

A∗ =
τ2v2mL

µ̂A
L∗J∗
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According to (11), P ∗ < Kp. Finally P ∗ > 0 because it is impossible to cancel the
dynamics of J if H∗ > 0 and P ∗ ≤ 0.

To finish, we show that it is possible to have positive equilibria. Indeed, it can
be noted that function h does not depend on parameters e and Kp. Obviously when
Kp tends to infinity, Jmax also tends to infinity. So for Kp sufficiently high, we have
Jmin < Jmax. Those two last quantities do not depend on e. Given the fact that l
is proportional to e, we get that S contains two elements for e sufficiently high. So
there exists a solution to the equation π(J) = 0, [9, 11, 13, 14, 15]. �

5. Numerical experiments

In this section we examine the synthesis of the results arrived at throughout the
numerical simulations of the system. The purpose of this part is to show that, through
the numerical simulations we can obtain the positive component equilibria even if
there is the trophic chain predation. We aim at showing that despite predation, the
only parameter that can disrupt the dynamics of the fish population is the mortality
due to fishing, [20, 7, 10]. To illustrate the different behaviors of the model, we use
the parameters given in Table 1.

Param. Description Value
e the natural growth-rate of the plankton 1
Kp the maximal carrying capacity of the plankton 50
ν1 the annual individual intake of plankton per individual larva 1
b the fertility-rate of the adult population 0.56
mJ the weight for the juvenile class. 5
ν3 the annual individual intake of juvenile per individual fish adult 11.1803
τ1 the transfer-rate of the larva in juvenile population 0.175
τ2 the transfer-rate of the juvenile in adult population 0.035
ν2 the annual individual intake of larvae per individual juvenile 3.3437
mL the weight for the larva class. 1
µA the weight for the adult class 25
ε the fraction of hatched eggs. 0.8
ra the energy ra used to grow up and to reproduce 0.7
µL external mortality for larva 0.5
µJ external mortality for juvenile 0.05
µA external mortality for adult 0.05

Table 1. Values used for the simulation.

Concerning the other parameters such as βJ , βA, which designate mortality of the
fish population due to the fishing, we bring out the numerical experiments by making
them vary. Firstly, we confirm the existence of positive component equilibria. We
examine the behavior of the system by varying the mortality values due to fishing.
We consider qJ = qA = q and EJ = EA = E. But as the mortality due to fishing
depends on q and E, we will consider the catchability coefficient q = 1 and making
vary the value of the fishing effort. Our aim of this experiment is to understand
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Larva trajectories. Juvenile trajectories.

Adult trajectories. Plankton trajectories.

Larva-Juvenile-Adult model trajectories. Phase portrait of Larva-Juvenile-Adult system.

Figure 2. Global asymptotic stability of the coexisting equilibrium
of the system with βJ = 0.205 and βA = 0.205.

how the plankton-larva-juvenile-adult dynamics system behaves. Figures 2 shows
the stability of these populations. The existence of centers confirms the existence of
various classes of fish despite predation. Those results bring us to say that even if
there is the trophic chain predation, we can still have an equilibrium. Thus, we talk
about the phenomenon of subsistence.
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Now the question that arises is: what can unbalanced the system? To answer this
question, we continue our simulation by considering areas in which we allocate values
related to the fishing effort.

Here, we consider that the plankton-larva-juvenile-adult system lives in an ex-
ploited area i.e E = 0.245. The numerical simulations show that, after a transitional
phase, the equilibrium settles in with coexistence of the three populations.

Figure 3 shows the behavior of the dynamics. These figures show the existence of
the centers between the different fish populations. Those results allow us to say that
even if the area is exploited with such a value for the fishing effort, despite predation,
we can see that the observed dynamics is very close to the one encountered in the
case of a fish population living in an pristine area. It allows us to say that if the zone
is exploited with such a value of fishing effort, the fish populations are not at risk.

The persistence of the convergence towards a center of those dynamics, despite
fishing shows that the area is normally exploited.

Remark 5.1. Even if there is trophic chain predation and if the area is exploited
with a value of fishing effort less than or equal to E ≤ 0.5, there is no risk for the fish
population. We are talking about a normally exploited area.

We end our numerical analysis by observing the behavior of the dynamics beyond
the previously assigned values to fishing effort. The numerical study considers here
a population of fish living in an area exploited with E = 0.96. Figure 4 shows
the behavior of the dynamics of adult-larva system. We notice from this figure the
extinction at long time for fish population. This is explained by the fact that adult
females reach with difficulty their mature phase because of the excessive levies by
fishing. This situation explains the non regeneration of the system. For those types
of area, we talk of a severely-exploited-area.

Remark 5.2. In such cases of the area, exploited with E > 0.5 (figure 4), an efficient
management policy of fishing must be urgently adopted, otherwise there is a real risk
for the fish population.

6. Conclusion

In this paper we dealt with the fish population dynamics under a diet on a plankton
base. The mathematical model associated with this dynamics is based on ODEs
systems. The mathematical study allowed us to show that despite predation on fish
population, positive component equilibria exist. We can say that predation does not
negatively influence the aquatic ecosystem. Additionally, the simulations allowed us
to have an idea about the behavior of the dynamics based on different values of the
fishing effort. We could observe through those numerical results that when the area
is exploited with some fishing effort values, an efficient management policy must be
adopted otherwise it is likely to be catastrophic for the fish population.

In our future works, we will continue our study, focusing on the impact of toxin
produced by the phytoplankton on the fish population.
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Larva trajectories. Juvenile trajectories.

Adult trajectories. Plankton trajectories.

Larva-Juvenile-Adult model trajectories. Phase portrait of Larva-Juvenile-Adult system.

Figure 3. Dynamics of the trajectories of the system with periodic
solutions (stable limit cycle) and βJ = βA = 0.205.
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[8] O. Koutou, B. Traoré, B. Sangaré, Mathematical modeling of malaria transmission global

dynamics: taking into account the immature stages of the vectors, Advance in Difference

Equations 2018 (2018), Article 220, 34 pages.
[9] G. Kreisselmeir, R. Engel, Nonlinear observer autonomous Lipschitz continuous systems,

IEEE Trans. on Automatic control. 48 (2003), no. 3, 451–464.
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