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Strong convergence result for Meir-Keeler contractions and a
countable family of accretive operators in Banach spaces with
applications

C.C. Okeke, F.U. Ogbuisi, and O.T. Mewomo

Abstract. In this paper we introduce an iterative algorithm with Meir-Keeler contractions for

finding zeros of the sum of finite families of m-accretive operators and finite family of α-inverse
strongly accretive operators in a real smooth and uniformly convex Banach spaces. We also dis-

cuss application of this method to the approximation of solution to certain integro-differential

equation with generalized p-Laplacian operators. Our results improves and compliments many
recent and important results in the literature.
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1. Introduction

Let E be a real Banach space and C nonempty, closed and convex subset of E. The
modulus of convexity δE : [0, 2]→ [0, 1] is defined as

δE(ε) = inf

{
1− ‖x+ y‖

2
: ‖x‖ = 1 = ‖y‖, ‖x− y‖ ≥ ε

}
.

E is called uniformly convex if δE(ε) > 0 for any ε ∈ (0, 2]; p-uniformly convex if
there is cp > 0 so that δE(ε) > cpε

p for any ε ∈ (0, 2]. The modulus of smoothness
ρE : [0,∞)→ [0,∞) is defined by

ρE(τ) =

{
‖x+ τy‖+ ‖x− τy‖

2
− 1 : ‖x‖ = ‖y‖ = 1

}
.

E is called uniformly smooth if limτ→∞
ρE(τ)
τ = 0; q-uniformly smooth if there is cq >

0 so that ρE(τ) ≤ cqτ q for any τ > 0. Hilbert spaces, Lp (or lp) spaces (1 < p <∞),
and the sobolev spaces (W p

m, 1 < p <∞), are q-uniformly smooth Banach spaces [4].
It is shown in [23] that there is no Banach space which is q-uniformly smooth with
q > 2. It is obvious that every q-uniformly smooth Banach space is uniformly smooth.

The normalized duality mapping J : E → 2E
∗

is defined by

Jx = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}, x ∈ E.
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It is well known that J is single-valued and norm-to-norm uniformly continuous on
each bounded subsets of E if E is a real smooth and uniformly convex Banach space
(see [19]). In the sequel, we shall denote by j the single-valued normalized duality
mapping. If E is a Hilbert space H, then j becomes the identity mapping on H.

Let T : C → E be a mapping. Then T is said to be
(i) k-Lipschitz if there exists k > 0 such that

‖Tx− Ty‖ ≤ k‖x− y‖, ∀x, y ∈ C.
In particular, if 0 < k < 1, then T is called a contraction and if k = 1, then T is
said to be a nonexpansive mapping;

(ii) accretive if for all x, y ∈ C, there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≥ 0,

where J is the normalized duality mapping;
(iii) α- inverse strongly accretive if for all x, y ∈ C, there exists j(x − y) ∈ J(x − y)

such that

〈Tx− Ty, j(x− y)〉 ≥ α‖Tx− Ty‖2,
for some α > 0;

(iv) m-accretive if T is accretive and R(I + λT ) = E, ∀ λ > 0;
(v) strongly positive if E is a real Banach space and there exists γ̄ > 0 such that

〈Tx, jx〉 ≥ γ̄‖x‖2,∀ x ∈ C.
We denote by JAr (for r > 0) the resolvent of an accretive operator A; that is

JAr := (I + rA)−1. It is well known that JAr is nonexpansive and F (JAr ) = A−10 (see,
for example, [9]).

Let C be a convex subset of E, let K be a nonempty subset of C and let p be
a retraction from C onto K, i.e, Px = x for each x ∈ K. P is said to be sunny if
P (Px + t(x − Px)) = Px for each x ∈ C. and t ≥ 0 with Px + t(x − Px) ∈ C. If
there is a sunny nonexpansive retraction from C onto K, K is said to be a sunny
nonexpansive retract of C.

Let A : E → E be a single-valued nonlinear mapping and B : E → 2E be a
set-valued mapping. We consider the following inclusion problem: find u ∈ E such
that

0 ∈ (A+B)x. (1)

Many practical problems can be reduced to the Problem (1) and it is well known
that this problem provides a convenient framework for the unified study of optimal
solution in many optimization related areas including variational inequalities, com-
plementarity, mathematical programming, mathematical economics, optimal control,
equilibria, game theory, etc (see [11, 12] and reference therein).

The classical method for solving Problem (1) is the forward-backward splitting
algorithm, which were proposed by Lions and Mercier [8], Passty [13] and in a dual
form for convex programming, Han and Lou [6]. The classical forward-backward
splitting algorithm is given by: x1 ∈ E and

xn+1 = (I + rnB)−1(I − rnA)xn, n ≥ 1. (2)

We see that for each step of iterate involves only with A as the forward step and B as
the Backward step, but not the sum of A+B and the based on the iterative algorithm
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(2) much work has been done for finding x ∈ H such that x ∈ (A + B)−10, where
A and B are α-inversely strong monotone mapping and maximal monotone operator
defined on the Hilbert space H, respectively.

In 2014, Qin et al., [14] introduced the iterative algorithm in q-uniformly smooth
Banach spaces x0 ∈ C and

xn+1 = αnf(xn) + βn(I + rnB)−1[(I − rnA)xn + en] + γnfn, n ≥ 0, (3)

where C is a closed convex subset of E, {en} is the error sequence, f is a contrac-
tion, A and B are α-inversely strongly accretive operator and m-accretive opera-
tor respectively. If (A + B)−10 6= ∅, they proved that {xn} converges strongly to
x = Q(A+B)−10f(x), where Q(A+B)−10 is the unique sunny nonexpansive retraction

of E onto (A+B)−10 under some conditions.
Recently, Wei and Duan [21] presented the following iterative algorithm with errors

in a real smooth and uniformly convex Banach space:
x0 ∈ C,
yn = QC [(1− αn)(xn + en)],

zn = (1− βn)xn + βn[a0yn +
∑N
i=1 aiJ

Ai
rn,i

(yn − rn,iBiyn)],

xn+1 = γnηf(xn) + (I − γnT )zn, n ≥ 0,

(4)

where C is a nonempty, closed and convex sunny nonexpansive retract of E, QC is
the sunny nonexpansive retraction of E onto C, {en} ⊂ E is the error sequence,
{Ai}Ni=1 is finite family of m-accretive operators and {Bi}Ni=1 is a finite family of α-
inverse strongly accretive operators. T : E → E is a strongly positive bounded linear
operator with coefficient γ̄ and f : E → E is a contraction with coefficient k ∈ (0, 1).

JAi
rn,i

= (I+ rn,iAi)
−1, for i = 1, 2, ..., N,

∑N
i=0 ai = 1, 0 < ai < 1, for i = 0, 1, 2, ..., N.

Then {xn} converges strongly to p0 ∈ ∩Ni=1(Ai + Bi)
−10, which is also a solution of

some variational inequality problem.
Motivated by the works of Song et al. [16], Wei and Duan [21] and Shehu and

Cai [18], we study and prove strong convergence results, under some mild conditions,
using generalized forward-backward method which involve viscosity approximation
method with Meir-Keeler contractions for solving the inclusion problem (1) for a finite
family of m-accretive and α- inverse strongly accretive operators in the framework
of uniformly convex and uniformly smooth Banach spaces. Finally we provide some
applications of our result to certain integro-differential equation with generalized p-
Laplacian operator. Our results is interesting and it also improves and compliments
the result of Song et al. [16] and Wei and Duan [21] (see Remark 3.1 for details).

2. Preliminaries

Theorem 2.1. (Banach contraction mapping principle [1]). Let (X, d) be a complete
metric space and let f be a contraction on X. Then f has a unique fixed point.

Theorem 2.2. (Meir and Keeler [10]). Let (X, d) be a complete metric space and let
f be a Meir-Keeler contraction (MKC, for short) on X, that is, for every ε > 0, the
exists δ > 0 such that d(x, y) < ε+ δ implies d(f(x), f(y)) < ε for all x, y ∈ X. Then
f has a unique fixed point.
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Remark 2.1. It is well known that Theorem 2.2 is a generalization of Theorem 2.1
since contractions are proper subclass of Meir-Keeler contractions.

We now state some important lemmas that will be needed in our main results.

Lemma 2.3. (see [3]) Assume A is a strongly positive bounded operator with co-

efficient γ̄ > 0 on a real smooth Banach space E and 0 < ρ ≤ ‖A‖−1
. Then

‖I − ρA‖ ≤ I − ργ̄.
Lemma 2.4. (see [15] Lemma 2.3) Let f be an MKC on a convex subset of a Banach
space E. Then for each ε > 0, there exists rε ∈ (0, 1) such that

‖x− y‖ ≥ ε =⇒ ‖f(x)− f(y)‖ ≤ rε‖x− y‖ ∀x, y ∈ C. (5)

Lemma 2.5. (see [2]) Let E be a Banach space and let A be an m-accretive operator.
For λ > 0, µ > 0 and x ∈ E, we have

Jλx = Jµ

(µ
λ
x+

(
1− µ

λ

)
Jλx

)
,

where JAλ = (I + λA)−1 and JAµ = (I + µA)−1.

Lemma 2.6. (see [17]) Let {xn}, {zn} be bounded sequences in E and {βn} be
a sequence in [0, 1] which satisfied the following condition: 0 < lim infn→∞ βn ≤
lim supn→∞ βn < 1. Suppose that xn+1 = (1 − βn)xn + βnzn for all n ≥ 0 and
lim supn→∞(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn→∞ ‖zn − xn‖ = 0.

Lemma 2.7. (see [7]) Let C be a nonempty closed and convex subset of a reflexive
Banach space E which satisfies the Opial condition, and suppose T : C → E is
nonexpansive. Then the mapping I − T is demiclosed at zero, that is, xn ⇀ x,
xn − Txn → 0 implies x = Tx.

Lemma 2.8. (see [22]) Assume {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1− γn)an + γnδn, n ≥ 1,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that
(i)
∑∞
n=0γn =∞,

(ii) lim sup
n→∞

δn ≤ 0 or
∑∞
n=0|δnγn| <∞.

Then lim
n→∞

an = 0.

Lemma 2.9. (see [5] Let E be a real Banach space with Fréchet differentiable norm.
For x ∈ E, let β∗(t) be defined for 0 < t <∞ by

β∗(t) = sup

{∣∣∣∣∣‖x+ ty‖2 − ‖x‖2

t
− 2〈y, j(x)〉

∣∣∣∣∣ : ‖y‖ = 1

}
. (6)

Then, limt→0+ β∗(t) = 0 and

‖x+ h‖2 ≤ ‖x‖2 + 2〈h, j(x)〉+ ‖h‖β∗(‖h‖)
for all h ∈ E \ {0}.

In the result of Cholamjik and Suantai [5], the authors assumed that β∗(t) ≤ 2t
for t > 0. In our more general setting, throughout this paper, we will assume that

β∗(t) ≤ ct, t > 0 and for some c > 1,

where β∗ is the function appearing in (6).
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3. Main result

Lemma 3.1. Let E be a real smooth and uniformly convex Banach space and C be a
nonempty, closed and convex subset of E. Let T : C → C be a nonexpansive mapping
and f : C → C be MKC, M : E → E be a strongly positive bounded linear operator
with coefficient γ̄ > 0. Suppose that the duality mapping J : E → E∗ is weakly
sequentially continuous at zero, 0 ≤ η < γ̄

2 and F (T ) 6= ∅. If for each t ∈ (0, 1), define
St : E → E by

Stx := tηf(x) + (I − tM)Tx, (7)

then St has a fixed point xt, for each 0 < t ≤ ‖M‖−1
, which converges strongly to

the fixed point of T, as t→ 0. That is lim
t→0

xt = x0 ∈ F (T ). Moreover, x0 satisfies the

following variational inequality

〈(M − ηf)x0, j(x0 − z)〉 ≤ 0, ∀z ∈ F (T ). (8)

Proof. From the definition of MKC, we can see that MKC is also a nonexpansive
mapping. Hence we obtain

‖Stx− Sty‖ ≤ tη‖f(x)− f(y)‖+ ‖(1− tM)(Tx− Ty)‖
≤ tη‖f(x)− f(y)‖+ (1− tγ̄)‖x− y‖
≤ tη‖x− y‖+ (1− tγ̄)‖x− y‖
≤ [1− t(γ̄ − kη)] ‖x− y‖,

which implies that St is a contraction since 0 < η < γ̄
2 . Then Theorem 2.1 implies

that St has a unique fixed point, denoted by xt, which uniquely solves the fixed point
equation

xt = tηf(xt) + (I − tM)Txt. (9)

Next we show that the solution to the variational inequality (8) is unique. Suppose
both x0 ∈ F (T ) and x̂ are solutions of (8), without lost of generalities, we may assume
that there is a number ε such that ‖x0 − x̂‖ ≥ ε. Then by Lemma 2.4, there exists a
number k > 0 such that ‖f(x0)− f(x̂)‖ ≤ kε‖x0 − x̂‖. From (8) we obtain{

〈(M − ηf)x0, j(x0 − x̂)〉 ≤ 0,

〈(M − ηf)x̂, j(x̂− x0)〉 ≤ 0.
(10)

Adding up (10), we obtain

〈(M − ηf)x̂− (M − ηf)x0,j(x̂− x0)〉 =

= 〈M(x̂− x0), j(x̂− x0)〉 − η〈f(x̂)− f(x0), j(x̂− x0)〉

≥ γ̂‖x̂− x0‖2 − kη‖x̂− x0‖2 = (γ̂ − kη)‖x̂− x0‖2

≥ (γ̂ − kη)ε2 > 0.

Therefore x0 = x̄ and the uniqueness is proved. Hence x0 is a unique solution of (8).
Now we show that {xt} is bounded. Indeed, we may assume with no loss of

generality, t < ‖M‖−1
, for all p ∈ F (T ), fixed ε1, for each t ∈ (0, 1).

Case 1 (‖xt − p‖ < ε1): In this case, {xt} is bounded.
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Case 2 (‖xt − p‖ ≥ ε1): In this case, we obtain by Lemma 2.3 and 2.4 that there is
a number r1 such that

‖f(xt)− f(p)‖ < r1‖xt − p‖. (11)

Hence we obtain

‖xt − p‖ = ‖tηf(xt) + (I − tM)Txt − p‖
= ‖t(ηf(xt)−Mp) + (I − tM)(Txt − p)‖
≤ t‖ηf(xt)−Mp)‖+ (1− tγ̄)‖xt − p‖
≤ t‖ηf(xt)− ηf(p)‖+ t‖ηf(p)−Mp‖+ (1− tγ̄)‖xt − p‖
≤ tηr1‖xt − p‖+ t‖ηf(p)−Mp‖+ (1− tγ̄)‖xt − p‖.

Therefore

‖xt − p‖ ≤
‖ηf(p)−Mp‖

γ̄ − γr1
. (12)

This implies that {xt} is bounded. Consequently {f(xt)} and {Txt} are bounded.
Since {f(xt)} and {Txt} are bounded, we obtain from (9) that

‖xt − Txt‖ = t‖ηf(xt)−MTxt‖ → 0, as t→ 0. (13)

To prove that xt → x0 (x0 ∈ F (T )) as t→ 0.
Since {xt} is bounded and E uniformly convex by Milman Pettis Theorem we have

E is reflexive. Hence there exists a subsequence {xtn} of {xt} such that xtn ⇀ x∗.
By (12) we have that xtn − Txtn → 0, as tn → 0. Since E satisfies Opial’s condition,
it follows from Lemma 2.6 that x∗ ∈ F (T ). Claim

‖xtn − x∗‖ → 0. (14)

Suppose by contradiction, there is a number ε0 and a subsequence {xtm} of {xtn}
such that ‖xtm − x∗‖ ≥ ε0. From Lemma 2.4, there is a number rε0 > 0 such that
‖f(xtm)− f(x∗)‖ ≤ rε0‖xtm − x∗‖, we have

‖xtm − x∗‖
2

= tm〈ηf(xtm)−Mx∗, j(xtm − x∗)〉+ 〈(1− tm)(Txtm − x∗), j(xtm − x∗)〉

≤ tm〈ηf(xtm)−Ax∗, j(xtm − x∗)〉+ (1− tmγ̄)‖xtm − x∗‖
2
.

Hence, we obtain

‖xtm − x∗‖
2 ≤ 1

γ̄
〈ηf(xtm)−Mx∗, j(xtm − x∗)〉

≤ 1

γ̄
[〈ηf(xtm)− ηf(x∗), j(xtm − x∗)〉+ 〈ηf(x∗)−Mx∗, j(xtm − x∗)〉]

≤ 1

γ̄
[ηrε0‖xtm − x∗‖

2
+ 〈ηf(x∗)−Mx∗, j(xtm − x∗)〉].

Therefore

‖xtm − x∗‖
2 ≤ 〈ηf(x∗)−Mx∗, j(xtm − x∗)〉

γ̄ − ηrε0
. (15)

Using the fact the duality map j is single valued and weakly sequentially continuous
at zero by (15), we get that xtm → x∗. It is a contradiction. Hence, we have xtn → x∗.
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Finally, we show that x∗ solves the variational inequality (8). Since

xt = tηf(xt) + (I − tM)Txt,

we obtain

(M − ηf)xt = −1

t
(I − tM)(1− T )xt. (16)

Notice

〈(I − T )xt − (I − T )z, j(xt − z)〉 ≥ ‖xt − z‖2 − ‖Txt − Tz‖‖xt − z‖
≥ ‖xt − z‖2 − ‖xt − z‖2

= 0.

It follows that, for z ∈ F (T ),

〈(M − ηf)xt, j(xt − z)〉 = −1

t
〈(I − tM)(I − T )xt, j(xt − z)〉

= −1

t
〈(I − T )xt − (I − T )z, j(xt − z)〉+ 〈M(I − T )xt, j(xt − z)〉

≤ 〈M(I − T )xt, j(xt − z)〉. (17)

Now, replacing t in (17) with tn and letting n → ∞, noticing that (I − T )xtn →
(I − T )x∗ = 0 for x∗ ∈ F (T ), we obtain 〈(M − ηf)xt, j(xt − z)〉 ≤ 0. That is
x∗ ∈ F (T ) is a solution of (8). Hence x0 = x∗ by uniqueness. Hence, we have show
that each cluster point of {xt} as t→ 0 equals x̂, therefore, xt → x̂ as t→ 0. �

Lemma 3.2. Let E be a real smooth and uniformly convex Banach space. Let C
be a nonempty convex and closed subset of E. Let Ai : E → 2E (i = 1, 2, ..., N)

be m-accretive operators such that D(Ai) ⊆ C and let Bi : C → E be αi-inverse
strongly accretive operators such that ∩Ni=1(Ai +Bi)

−10 6= ∅. Let a0, a1, ..., aN be real

numbers in (0, 1) such that
∑N
i=0 ai = 1 and Pn = a0I +

∑N
i=1 aiJ

Ai
rn,i

(I − rn,iBi),
where JAi

rn,i
= (I + rn,iAi)

−1 and 0 < rn,i ≤ 2αi

c ∀ i = 1, 2, ..., N and n ≥ 1. Then

Pn : C → C is nonexpansive and F (Pn) = ∩Ni=1(Ai +Bi)
−10, for all n ≥ 1.

Proof. First, we show that Pn is nonexpansive for all n ≥ 1. Let x, y ∈ C. Then for
i = 1, 2, ..., N, it follows that

‖(I − rn,iBi)x− (I − rn,iBi)y‖2 = ‖x− y − rn,i(Bix−Biy)‖2

≤ ‖x− y‖2 − 2rn,i〈Bix−Biy, j(x− y)〉+ cr2
n,i‖Bix−Biy‖

2

≤ ‖x− y‖2 − 2rn,iα‖Bix−Biy‖2 + cr2
n,i‖Bix−Biy‖

2

= ‖x− y‖2 − (2α− crn,i)rn,i‖Bix−Biy‖2

≤ ‖x− y‖2.

Thus (I − rn,iBi) is nonexpansive for all i = 1, 2, ..., N.



STRONG CONVERGENCE RESULT 243

Since JAi
rn,i

and (1− rn,iBi) are nonexpansive for all i = 1, 2, ..., N, we get that

‖Pnx− Pny‖ ≤ a0‖x− y‖+

N∑
i=1

ai

∥∥∥JAi
rn,i

(1− rn,iBi)x− JAi
rn,i

(1− rn,iBi)y
∥∥∥

≤ a0‖x− y‖+

N∑
i=1

ai ‖(1− rn,iBi)x− (1− rn,iBi)y‖

≤ a0‖x− y‖+

N∑
i=1

ai‖x− y‖

= ‖x− y‖.
Thus Pn is nonexpansive for all n ≥ 1.

Next we show that F (Pn) = ∩Ni=1(Ai + Bi)
−10, for all n ≥ 1. It is obvious that

∩Ni=1(Ai +Bi)
−10 ⊆ F (Pn). So, we are left to show that F (Pn) ⊆ ∩Ni=1(Ai +Bi)

−10.
Let u ∈ F (Pn). Then Pnu = u and for all v ∈ ∩Ni=1(Ai +Bi)

−10 ⊆ F (Pn), we have

‖u− v‖ ≤ a0‖u− v‖+ a1

∥∥∥JA1
rn,1

(I − rn,1B1)u− v
∥∥∥+ ...

+aN

∥∥∥JAN
rn,N

(I − rn,NBN )u− v
∥∥∥

≤ (a0 + a1 + ...+ aN−1)‖u− v‖+ aN‖JAN
rn,N

(I − rn,NBN )u− v‖

≤ (1− aN )‖u− v‖+ aN

∥∥∥JAN
rn,N

(I − rn,NBN )u− v
∥∥∥ .

Therefore

‖u− v‖ = (1− aN )‖u− v‖+ aN

∥∥∥JAN
rn,N

(I − rn,NBN )u− v
∥∥∥ ,

which implies that

‖u− v‖ =
∥∥∥JAN

rn,N
(I − rn,NBN )u− v

∥∥∥ .
Similarly,

‖u− v‖ =
∥∥∥JA1

rn,1
(I − rn,1B1)u− v

∥∥∥ = ... =
∥∥∥JAN−1

rn,N−1
(I − rn,N−1BN−1)u− v

∥∥∥ .
Then

‖u− v‖ =
a1∑N
i=1 ai

‖
(
Jrn,1(I − rn,1B1)u− v

)
‖+

a2∑N
i=1 ai

‖
(
Jrn,2(I − rn,2B2)u− v

)
‖

+ ...+
aN∑N
i=1 ai

‖
(
Jrn,N

(I − rn,NBN )u− v
)
‖.

By strict convexity of E, we have that

u−v = Jrn,1
(I−rn,1B1)u−v = Jrn,2

(I−rn,2B2)u−v = ... = Jrn,N
(I−rn,NBN )u−v.

Therefore, Jrn,i
(I − rn,iBi)u = u, for i = 1, 2, ..., N. Then u ∈ ∩Ni=1(Ai +Bi)

−10.

Thus F (Pn) ⊆ ∩Ni=1(Ai +Bi)
−10. �

Theorem 3.3. Let E be a real smooth and uniformly convex Banach space and C
be a nonempty, closed and convex subset of E, and let f : C → C be a MKC. Let
M : C → C be a strong positive bounded linear operator, γ̄ > 0 such that 0 ≤ η < γ̄

2 .
Suppose that the duality mapping j : E → E∗ is weakly sequentially continuous at
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zero. Let Ai : C → 2E be m-accretive operators and Bi : C → E be αi-inverse
strongly accretive operators, for i = 1, 2, ..., N such that ∩Ni=1(Ai + Bi)

−10 6= ∅. Let
{xn} be generated by x1 ∈ E,{

yn = βnxn + (1− βn)
[
a0xn +

∑N
i=1 aiJ

Ai
rn,i

(I − rn,iBi)xn
]
,

xn+1 = αnηf(xn) + γnxn + ((1− γn)I − αnM)yn, n ≥ 1,
(18)

for all n ≥ 1, where JAi
rn,i

= (I + rn,iAi)
−1 for i = 1, 2, ..., N, and 0 < ai < 1,

for i = 0, 1, 2, ..., N, {αn}, {βn} and {γn} are real number sequence in (0, 1) and
{rn,i} ⊂ (0,∞). Suppose that the above sequence satisfy the following conditions:
(i) limn→∞ αn = 0,

∑∞
n=1 αn =∞;

(ii) 0 < rn,i <
2α
c and

∑∞
n=1 |rn+1,i − rn,i| <∞ for n ≥ 1 and i = 1, 2, ...N, where c

is a constant;
(iii) limn→∞(βn+1 − βn) = 0;
(iv) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1.
Then {xn} converges strongly to a point x0 ∈ ∩Ni=1(Ai +Bi)

−10, which is the unique
solution of the variational inequality: ∀z ∈ ∩Ni=1(Ai +Bi)

−10.

〈(M − ηf)x0, J(x0 − z)〉 ≤ 0, (19)

where x0 = Q∩N
i=1(Ai+Bi)−10f(x0), and Q∩N

i=1(Ai+Bi)−10 is the unique sunny nonex-

pansive retraction of E onto ∩Ni=1(Ai +Bi)
−10.

Proof. Put Pn = a0I +
∑N
i=1 aiJ

Ai
rn,i

(I − rn,iBi) and unn,i
= (I − rn,iBi)xn for i =

1, 2, 3, ..., N and n ≥ 1. Then we obtain from (18) and Lemma 3.2 that

‖yn − p‖ = ‖βnxn + (1− βn)Pnxn − p‖
≤ ‖βn(xn − p) + (1− βn)(Pnxn − p)‖
≤ βn‖xn − p‖+ (1− βn)‖xn − p‖
≤ ‖xn − p‖. (20)

From the definition of MKC and Lemma 2.4, for each ε > 0 there is a number
rε ∈ (0, 1), if ‖xn− z‖ < ε then ‖f(xn)− f(z)‖ ≤ rε‖xn− z‖. it follows from (18) and
(20) that

‖xn+1 − p‖ =‖αnηf(xn) + γnxn + (1− γn)I − αnM)yn − p‖
=‖αn(ηf(xn)−Mp) + γn(xn − p) + ((1− γn)I − αnM)(yn − p)‖
≤αn‖ηf(xn)−Mp‖+ γn‖xn − p‖+ (1− γn − αnγ̄)‖xn − p‖
≤αnηmax{rε‖xn − p‖, ε}+ αn‖ηf(p)−Mp‖+ (1− αnγ̄)‖xn − p‖
= max{(1− αnγ̄)‖xn − p‖+ αnηrε‖xn − p‖+ αn‖ηf(p)−Mp‖,

(1− αnγ̄)‖xn − p‖+ αnηε+ αn‖ηf(p)−Mp‖}
= max{(1− αnγ̄ + αnηrε)‖xn − p‖+ αn‖ηf(p)−Mp‖, (1− αnγ̄)‖xn − p‖

+ αnηε+ αn‖ηf(p)−Mp‖}
= max{[1− (αnγ̄ − αnηrε)]‖xn − p‖+ αn‖ηf(p)−Mp‖, (1− αnγ̄)‖xn − p‖

+ αnηε+ αn‖ηf(p)−Mp‖}.
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Inductively, we obtain

‖xn − p‖ ≤ max

{
‖x0 − p‖,

‖ηf(p)−Mp‖
γ̄ − ηrε

,
γε+ ‖ηf(p)−Mp‖

γ̄
,

}
n ≥ 1, (21)

which implies that the sequence {xn} is bounded.
Next we show that ‖xn+1 − xn‖ → 0, as n→∞.
First we consider ‖JAi

rn+1,i
un+1,i − JAi

rn,i
un,i‖, if rn,i ≤ rn+1,i then it follows from

Lemma 2.5 that∥∥∥JAi
rn+1,i

un+1,i − JAi
rn,i

un,i

∥∥∥ =

=

∥∥∥∥JAi
rn,i

(
rn,i
rn+1,i

un+1,i +

(
1− rn,i

rn+1,i

)
JAi
rn+1,i

un+1,i

)
− JAi

rn,i
un,i

∥∥∥∥
≤
∥∥∥∥ rn,i
rn+1,i

un+1,i +

(
1− rn,i

rn+1,i

)
JAi
rn+1,i

un+1,i − un,i
∥∥∥∥

≤ rn,i
rn+1,i

‖un+1,i − un,i‖+

(
1− rn,i

rn+1,i

)∥∥∥JAi
n+1,iun+1,i − un,i

∥∥∥
≤ ‖un+1,i − un,i‖+

rn+1,i − rn,i
b

2M1. (22)

If rn+1,i ≤ rn,i, using similar proof as in (22), we obtain∥∥∥JAi
rn+1,i

un+1,i − JAi
rn,i

un,i

∥∥∥ ≤ ‖un+1,i − un,i‖+
rn,i − rn+,i

b
2M1. (23)

Combining (22) and (23), we have, for n ≥ 1,∥∥∥JAi
rn+1,i

un+1,i − JAi
rn,i

un,i

∥∥∥ ≤ ‖un+1,i − un,i‖+
2|rn,i − rn+,i|

b
M1

≤ ‖(I − rn+1,iBi)(xn+1 − xn)‖+ |rn+1,i − rn,i|‖Bixn‖+
2|rn+1,i − rn,i|

b
M1

≤ ‖xn+1 − xn‖+ |rn+1,i − rn,i|‖Bixn‖+
2|rn+1,i − rn,i|

b
M1. (24)

Set M2 =
(

2
b +M1

)
and using (24), we obtain

‖Pn+1xn+1 − Pnxn‖ ≤ a0‖xn+1 − xn‖

+

N∑
i=1

∥∥∥ai (JAi
rn+1,i

(I − rn+1,iBi)xn − JAi
rn,i

(I − rn,iBi)xn
)∥∥∥

≤ ‖xn+1 − xn‖+M2

N∑
i=1

|rn,i − rn+1,i|. (25)

Next, from (18), we get that

xn+1 = αnηf(xn) + γnxn + [(1− γ)I − αnM ]Qnxn. (26)

Now, define

zn =
xn+1 − γnxn

1− γn
. (27)
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Hence, we obtain

zn+1 − zn =

=
αn+1ηf(xn+1) + γn+1xn+1 + [(1− γn+1)I − αn+1M ]Qn+1xn+1 − γn+1xn+1

1− γn+1

− αnf(xn) + γnxn + [(1− γn)I − αnM ]Qnxn − γnxn
1− γn

=
αn+1 [ηf(xn+1)−MQn+1xn+1]

1− γn+1
− αn [ηf(xn)−MQnxn]

1− γn
+Qn+1xn+1 −Qnxn,

(28)

which implies that

‖zn+1 − zn‖ ≤
αn+1‖ηf(xn+1)−MQn+1xn+1‖

1− γn+1
+
αn‖ηf(xn)−MQnxn‖

1− γn
+‖Qn+1xn+1 −Qnxn‖. (29)

Now, we estimate ‖Qn+1xn+1 −Qnxn‖.

‖Qn+1xn+1 −Qnxn‖ = ‖ [βn+1xn+1 + (1− βn+1)Pn+1xn+1]− [βnxn + (1− βn)Pnxn] ‖
≤ (1− βn+1)‖Pn+1xn+1 − Pn+1xn‖+ |βn+1 − βn|‖Pnxn‖

+ βn+1‖xn+1 − xn‖+ |βn+1 − βn|‖xn‖

≤ (1− βn+1)‖xn+1 − xn‖+M2(1− βn+1)

N∑
i=1

|rn,i − rn+1,i|+ |βn+1 − βn|‖Pnxn‖

+ βn+1‖xn+1 − xn‖+ |βn+1 − βn|‖xn‖

≤ ‖xn+1 − xn‖+M2(1− βn+1)

N∑
i=1

|rn,i − rn+1,i|+ |βn+1 − βn|‖Pnxn‖

+ |βn+1 − βn|‖xn‖. (30)

From (29) and (30), we obtain

‖zn+1 − zn‖ ≤
αn+1‖ηf(xn+1)−MQn+1xn+1‖

1− γn+1
+
αn‖ηf(xn)−MQnxn‖

1− γn

+ ‖xn+1 − xn‖+M2(1− βn+1)

N∑
i=1

|rn,i − rn+1,i|+ |βn+1 − βn|‖Pnxn‖

+ |βn+1 − βn|‖xn‖.

Hence, we have

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤
αn+1‖ηf(xn+1)−MQn+1xn+1‖

1− γn+1

+
αn‖ηf(xn)−MQnxn‖

1− γn
+M2(1− βn+1)

N∑
i=1

|rn,i − rn+1,i|

+ |βn+1 − βn|‖Pnxn‖+ |βn+1 − βn|‖xn‖. (31)
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Since {xn}, {f(xn)} and {Pnxn} and {Qnxn} are bounded by conditions (i), (ii) and
(iii), we have that

lim sup
n→∞

{‖zn+1 − zn‖ − ‖xn+1 − xn‖} ≤ 0. (32)

Thus by Lemma 2.6, we obtain

lim
n→∞

‖zn − xn‖ = 0. (33)

Hence we obtain from (28) and (33) that

lim
n→∞

‖xn+1 − xn‖ = 0. (34)

Also from (18), we obtain

‖Qnxn − xn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 −Qnxn‖
= ‖xn − xn+1‖+ ‖αnηf(xn) + γn(xn −Qnxn)− αnMQnxn‖
≤ ‖xn − xn+1‖+ αn(‖ηf(xn)‖+ ‖MQnxn‖) + γn‖xn −Qnxn‖,

which implies that

‖Qnxn − xn‖ ≤
1

1− γn
(‖xn − xn+1‖+ αn(‖ηf(xn)‖+ ‖MQnxn‖)). (35)

Hence from condition (i), (34) and (35), we get that

lim
n→∞

‖Qnxn − xn‖ = 0. (36)

Next, we estimate ‖Pnxn − xn‖

‖Pnxn − xn‖ ≤ ‖xn −Qnxn‖+ ‖Qnxn − Pnxn‖
≤ ‖xn −Qnxn‖+ ‖βnxn + (1− βn)Pnxn − Pnxn‖
≤ ‖xn −Qnxn‖+ βn‖xn − Pnxn‖,

which implies that

‖Pnxn − xn‖ ≤
1

1− βn
‖xn −Qnxn‖ → 0, n→ ∞. (37)

Also we have

‖yn − xn‖ = ‖βnxn + (1− βn)Pnxn − xn‖
= βn‖xn − Pnxn‖+ ‖Pnxn − xn‖ → 0, n→∞. (38)

Also we can obtain that

‖yn − Pnxn‖ ≤ ‖yn − xn‖+ ‖xn − Pnxn‖ → 0, n→∞.

In similar way, we obtain

‖xn+1 − yn‖ ≤ ‖xn+1 − xn‖+ ‖xn − yn‖ → 0, n→∞.

From (13) and Lemma 7, we know that there exists zt such that zt = tηf(xt)+(1−
tM)PnTxt for t ∈ (0, 1). Moreover, zt → x0 ∈ F (Pn) = ∩Nn=1(Ai +Bi)

−10, as t→ 0,
and x0 is the unique solution of the variational inequality (3.2).

Next we show that

lim sup
n→∞

〈ηf(η)−Mx̂, j(xn − x̂)〉 ≤ 0, (39)
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where x̂ = limt→0 xt with xt being the fixed point of the contraction

x 7−→ tηf(x) + (1− tM)PnTx. (40)

Now, we take a subsequence {xnk
} of {xn} such that

lim sup
n→∞

〈ηf(x̂)−Mx̂, j(xn − x̂)〉 = lim
k→∞

〈ηf(x̂)−Mx̂, j(xnk
− x̂)〉. (41)

We may also assume that xnk
⇀ q. Note that q ∈ F (Pn) by Lemma 2.7 and (39).

Since j is weakly sequentially continuous duality mapping, we obtain from Lemma 7
that

lim sup
n→∞

〈ηf(x̂)−Mx̂, j(xn − x̂)〉 = lim
k→∞

〈ηf(x̂)−Mx̂, j(xnk
− x̂)〉

= 〈ηf(x̂)−Mx̂, j(xnk
− x̂)〉 ≤ 0. (42)

Hence, we obtain

lim sup
n→∞

〈ηf(x̂)−Mx̂, j(xn − x̂)〉 ≤ 0.

Finally, we show that ‖xn − x̂‖ → 0, n → ∞. To do this, we divide the rest of the
proof into two cases.
By contradiction, there is number ε0 such that

lim sup
n→∞

‖xn − x̂‖ ≥ ε0. (43)

Case 1. Fixed ε1 (ε1 < ε0), if for some n ≥ N ∈ N such that ‖xn− x̂‖ ≥ ε0− ε1, and
for the other n ≥ N ∈ N such that ‖xn − x̂‖ < ε0 − ε1. Let

Mn =
2〈ηf(x̂)−Mx̂, j(xn+1 − x̂)〉

(ε0 − ε1)2
. (44)

From (39), we know that lim supn→∞Mn ≤ 0. Hence, there is a number N, when
n > N, we have Mn ≤ γ̄− η. There exists n0 ≥ N such that ‖xn0 − x̂‖ < ε0− ε1, then
we have

‖xn0+1 − x̂‖2 =

= ‖αn0
f(xn0

) + γn0
xn0

+ [(1− γn0
)I − αn0

M ]yn0
− x̂‖2

= ‖[(1− γn0
)I − αn0

M ](yn0
− x̂) + αn0

(ηf(xn0
)−Mx̂) + γn0

(xn0
− x̂)‖2

= 〈[(1− γn0
)I − αn0

M ]yn0
− x̂) + αn0

(ηf(xn0
)−Mx̂) + γn0

(xn0
− x̂), j(xn0+1 − x̂)〉

= 〈[(1− γn0)I − αn0M ](yn0 − x̂), j(xn0+1 − x̂)〉+ 〈αn0(ηf(xn0)−Mx̂), j(xn0+1 − x̂)〉
+ 〈γn0

(xn0
− x̂), j(xn0+1 − x̂)〉

= 〈[(1− γn0
)I − αn0

M ](yn0
− x̂), j(xn0+1 − x̂)〉+ αn0

η〈f(xn0
)− f(x̂), j(xn0+1 − x̂)〉

+ αn0
〈ηf(x̂)−Mx̂, j(xn0+1 − x̂)〉+ 〈γn0

(xn0
− x̂), j(xn0+1 − x̂)〉

≤ (1− γn0 − αn0 γ̄)‖xn0 − x̂‖‖xn0+1 − x̂‖+ αn0η‖f(xn0)− f(x̂)‖‖xn0+1 − x̂‖
+ αn0〈ηf(x̂)−Mx̂, j(xn0+1 − x̂)〉+ γn0‖xn0 − x̂‖‖xn0+1 − x̂‖
< [1− αn0

(γ̄ − η)](ε0 − ε1)‖xn0+1 − x̄‖+ αn0
〈ηf(x̂)−Mx̂, j(xn0+1 − x̂)〉

≤ 1

2
[1− αn0

(γ̄ − η)]2(ε0 − ε1)2 +
1

2
‖xn0+1 − x̂‖2 + αn0

〈ηf(x̂)−Mx̂, j(xn0+1 − x̂)〉,
(45)
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which implies from (45) that

‖xn0+1 − x̂‖2 ≤ [1− αn0
(γ̄ − η)]2(ε0 − ε1)2 + 2αn0

〈ηf(x̂)−Mx̂, j(xn0+1 − x̂)〉
≤ [1− αn0

(γ̄ − η)](ε0 − ε1)2 + 2αn0
〈ηf(x̂)−Mx̂, j(xn0+1 − x̂)〉

= [1− αn0
(γ̄ − η −Mn)](ε0 − ε1)2

≤ (ε0 − ε1)2. (46)

Hence, we have

‖xn0+1 − x̂‖ < ε0 − ε1, for ε0 > ε1.

In similar manner, we obtain

‖xn − x̂‖ < ε0 − ε1, ∀ n ≥ n0,

which contradicts the fact that lim supn→∞ ‖xn − x̂‖ ≥ ε0.
Case 2. Fixed ε1 (ε1 < ε0), if ‖xn − x̂‖ ≥ ε0 − ε1 for all n ≥ N ∈ N, from Lemma
2.4, there is a number rε, (0 < rε < 1) such that

‖f(xn)− f(x̂)‖ ≤ r‖xn − x̂‖, n ≥ N. (47)

From (18) and (47), we obtain

‖xn0+1 − x̂‖2 =

=‖αnηf(xn) + γnxn + [(1− γn)I − αnM ]yn − x̂‖2

=‖[(1− γn)I − αnM ](yn − x̂) + αn(ηf(xn)−Mx̂) + γn(xn − x̂)‖2

=〈[(1− γn)I − αnM ](yn − x̂) + αn(ηf(xn)−Mx̂) + γn(xn − x̂), j(xn0+1 − x̂)〉
=〈[(1− γn)I − αnM ](yn − x̂), j(xn+1 − x̂)〉+ 〈αn(ηf(xn)−Mx̂), j(xn+1 − x̂)〉

+ 〈γn(xn − x̂), j(xn+1 − x̂)〉
≤〈[(1− γn)I − αnM ](yn − x̂), j(xn+1 − x̂)〉+ 〈αn(ηf(xn)− f(x̂)), j(xn+1 − x̂)〉

+ 〈αnηf(x̂−Mx̂), j(xn+1 − x̂)〉+ 〈γn(xn − x̂), j(xn+1 − x̂)〉
≤(1− γn − αnγ̂)‖xn − x̂‖‖xn+1 − x̂‖+ αnηr‖xn − x̂‖‖xn+1 − x̂‖

+ 〈αnηf(x̂−Mx̂), j(xn+1 − x̂)〉+ γn‖xn − x̂‖‖xn+1 − x̂‖
≤[1− αn(γ̂ − ηr)]‖xn − xn+1‖‖xn+1 − x̂‖+ 〈αnηf(x̂−Mx̂), j(xn+1 − x̂)〉

≤[1− αn(γ̂ − ηr)]1
2
‖xn − x̂‖2 +

1

2
‖xn+1 − x̂‖2 + 〈αnηf(x̂−Mx̂), j(xn+1 − x̂)〉,

which implies that

‖xn+1 − x̂‖2 ≤ [1− αn(γ̄ − ηr)]‖xn − x̂‖+ 2αn〈ηf(x̂−Mx̂), j(xn+1 − x̂)〉. (48)

Hence from Lemma 2.8 and (48), we conclude that xn → x̂ as n→∞, which contra-
dict the fact that ‖xn − x̂‖ ≥ ε0 − ε1. This complete the proof. �

Remark 3.1. We make the following comments which highlight our contribution in
this paper.
(i) We know that the Meir-Keeler contraction is a generalization of the contraction

mapping and also the condition

〈Bx−By, j((I − rB)x− (I − rB)y〉 ≥ 0
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for all x, y ∈ E and for all r > 0 assumed in the result of Wei and Duan [21] is
dispensed in our result. Hence, our results improves the results of Wei and Duan
[21].

(ii) It is well known that real smooth and uniformly convex Banach space are more
general than Hilbert space or q-uniformly smooth Banach space and also our
normalized duality mapping j is weakly sequentially continuous in most of the
existing related work is weaken to j weakly sequentially continuous at zero.
Hence our result extends the results of Song et al. [16].

If i = 1 and f is a contraction, then from Theorem 3.3 we obtain the following:

Corollary 3.4. Let E be a real smooth and uniformly convex Banach space and C
be a nonempty, closed and convex subset of E, and let f : C → C be a contraction
mapping with k ∈ (0, 1). Let M : C → C be a strong positive bounded linear operator
γ̄ > 0 such that 0 ≤ η < 2γ̄

k . Suppose that the duality mapping j : E → E∗ is

weakly sequentially continuous at zero. Let A : C → 2E be m-accretive operator and
B : C → E be α-inversely strongly accretive operator, such that (A+B)−10 6= ∅. Let
{xn} be generated by the following algorithm:{

yn = βnxn + (1− βn)JArn(I − rnB)xn,

xn+1 = αnηf(xn) + γnxn + ((1− γn)I − αnM)yn, n ≥ 1,
(49)

for all n ≥ 1, where JArn = (I + rnA)−1 , {αn}, {βn} and {γn} are real number
sequence in (0, 1) and {rn} ⊂ (0,∞). Suppose that the above sequence satisfy the
following conditions:
(i) limn→∞ αn = 0,

∑∞
n=1 αn =∞;

(ii) 0 < rn <
2α
c and

∑∞
n=1 |rn+1 − rn| <∞ for n ≥ 1 and c is a constant;

(iii) limn→∞(βn+1 − βn) = 0;
(iv) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1.
Then {xn} converges strongly to a point x0 ∈ (A+B)−10, which is the unique solution
of the variational inequality: ∀z ∈ (A+B)−10.

〈(M − ηf)x0, J(x0 − z)〉 ≤ 0. (50)

where x0 = Q(A+B)−1(0)f(x0), and Q(A+B)−1(0) is the unique sunny nonexpansive

retraction of E onto (A+B)−1(0).

4. Applications

In this section, we give an application of our Corollary 3.4 to approximation of
solution of certain nonlinear integro-differential equation involving the generalized p-
Laplacian. Throughout this section, we shall assume N ≥ 1, 2N

N+1 < r ≤ min{p, p′} <
+∞, 1

p + 1
p′ = 1, 1

q + 1
q′ = 1, and 1

r + 1
r′ = 1.

Let V = Lp(0, T ;W 1,p(Ω)) and V ∗ be the dual space of V. The norm in V will be
denoted by ‖.‖v, which is defined by

‖u(x, t)‖v :=

(∫ T

0

‖u(x, t)‖p
W 1,p(Ω)dt

) 1
p

, u(x, t) ∈ V.

Also, let W = Lmax{p,p′}(0, T ;Lmax{p,p′}(Ω)).
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Now, using the result obtained in Corollary 3.4, we shall study the existence and
uniqueness of the solution and iterative approximation of the unique solution of the
following nonlinear integro-differential equation.

∂u
∂t − div

[
a(x)

(
1 + |∇u|p√

1+|∇u|2p

)
|∇u|p−2∇u

]
+ b(x)|u|q−2u+ c(x)|u|r−2u

+g(x, u,∇u) + a1
∂
∂t

∫
Ω
udx = f(x, t) a.e. in Ω× (0, T )

−
〈
ϑ, a(x)

(
1 + |∇u|p√

1+|∇u|2p

)
|∇u|p−2∇u

〉
∈ βx(u(x)) a.e on Γ× (0, T )

u(x, 0) = u(x, T ),

(51)

where Ω is a bounded conical domain of the Euclidean space RN , Γ is the boundary
Ω with Γ ∈ C1 and ϑ denotes the exterior normal derivatives to Γ. Also f(x, t) ∈ W,
a, b and c are strictly positive bounded and continuous functions on Ω such that

0 < a− = inf
x∈Ω

a(x) ≤ a+ = sup
x∈Ω

a(x) <∞

0 < b− = inf
x∈Ω

b(x) ≤ b+ = sup
x∈Ω

b(x) <∞

0 < c− = inf
x∈Ω

c(x) ≤ c+ = sup
x∈Ω

c(x) <∞.

Moreover, a1 is a positive constant and βx is the subdifferential of ϑx, where ϑx =
ϑ(x, .) : R→ R for x ∈ Γ and ϑ : Γ× R→ R is the given function.

Lemma 4.1. [20] The mapping A : W → 2W is m-accretive.

Lemma 4.2. [20] Define B : D(B) = Lmax{p,p′}(0, T ;W 1,max{p,p′}(Ω)) ⊂ W → W
by

(Bu)(x, t) = g(x, u,∇u)− f(x, t),

for u(x, t) ∈ D(B). Then B is inversely strongly accretive.

Recently, Y. Shehu and G. Cai [18] proved the following theorem

Theorem 4.3. [18] u(x, t) ∈ W is the unique solution of the nonlinear boundary
value problem (51) if and only if u(x, t) ∈ (A+B)−1(0).

Now, using Theorem 4.3, Lemma 4.1 and 4.2 we obtain the following result.

Theorem 4.4. Let 2 ≤ p < ∞. Suppose A and B are the same as those in Lemma
4.1 and 4.2 respectively. Let

f : W = Lmax{p,p′}(0, T ;Lmax{p,p′}(Ω))→ Lmax{p,p′}(0, T ;Lmax{p,p′}(Ω))

be a fixed contraction with coefficient k ∈ (0, 1). Let M : Lmax{p,p′}(0, T ;Lmax{p,p′}(Ω))→
Lmax{p,p′}(0, T ;Lmax{p,p′}(Ω)) be a strong positive bounded linear operator γ̄ > 0 such
that 0 ≤ η < 2γ̄

k . Suppose that the duality mapping jmax{p,p′} : E → E∗ is weakly
sequentially continuous at zero such that the following conditions are satisfied:
(i) limn→∞ αn = 0,

∑∞
n=1 αn =∞;

(ii) 0 < rn <
2α
c and

∑∞
n=1 |rn+1 − rn| <∞ for n ≥ 1 and c is a constant;

(iii) limn→∞(βn+1 − βn) = 0;
(iv) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1.
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Let the sequence {un(x, t)}∞n=1 be generated by u1(x, t) ∈W,{
yn = βnun(x, t) + (1− βn)JArn(I − rnB)un(x, t),

un+1(x, t) = αnηf(un(x, t)) + γnun(x, t) + ((1− γn)I − αnM)yn, n ≥ 1.
(52)

Then {un(x, t)}∞n=1 converges strongly to u(x, t) ∈ (A+B)−1(0), which is the unique
solution of the variational inequality: ∀z(x, t) ∈ (A+B)−10.

〈(M − ηf)u(x, t), jmax{p,p′}(u(x, t)− z(x, t))〉 ≤ 0. (53)

where u(x, t) = Q(A+B)−1(0)f(u(x, t)), and Q(A+B)−1(0) is the unique sunny nonex-

pansive retraction of E onto (A+B)−1(0).
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