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On the minimal solution of bi-Laplacian equation

Mohsen Alizadeh, Mohsen Alimohammady, Carlo Cattani,
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Abstract. We study the existence of positive solution to the problem

∆2u− q∆u− µα(x)u = h(u) + λβ(x) in Ω,

u > 0 in Ω,

u = 0 = ∆u on ∂Ω,

where Ω is a smooth bounded domain in RN . We verify the existence of a value λ0 > 0 such

that when 0 < λ < λ0, then one can find a positive solution in W 2,2(Ω)∩W 1,2
0 (Ω). As λ ↑ λ0,

then uλ of minimal positive solutions converge to a solution of the main problem but for λ0.
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1. Introduction

This note deals with the semilinear elliptic PDE’s with biharmonic operator,

∆2u− q∆u− µα(x)u = h(u) + λβ(x) in Ω,

u > 0 in Ω,

u = 0 = ∆u on ∂Ω,

(1)

where ∆2u = ∆(∆u), Ω is an arbitrary bounded domain in RN , N ≥ 5. α, β and
h are non-negative functions. α ∈ L1

loc(Ω), β ∈ L2(Ω) and β 6≡ 0. q, µ, and λ are
positive constants. We suppose that

h : [0,∞)→ [0,∞) is a convex C1−function with h(0) = 0 = h′(0); h(t) 6= 0(∀t > 0)
(2)

and satisfying the growth known property:

lim
t→∞

h(t)

t
=∞, (3)

(as an example h(t) = t2 satisfies). Morevere, assume that∫ ∞
1

g(s)ds <∞ and sg(s) < 1 for s > 1, (4)

where for s ≥ 1,

g(s) := sup
t>0

h(t)

h(ts)
. (5)
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Direct computation shows that g is a non-increasing and non-negative function. It is

clearly that t→ h(t)
t is increasing since h is convex and so s→ sg(s) is non-increasing.

The convenience is endowed with the W k,p(Ω) norm
( ∫

Ω

∑
0≤|a|≤k |Dau|pdx

)1/p
.

Then from

‖u‖Wk,p(Ω) =
(∫

Ω

|u|pdx+

∫
Ω

|Dku|pdx
)1/p

, (6)

defines a norm which is equivalent to the usual norm in W k,p(Ω) (see [1]). Since it is
clear that

‖u‖Wk,p
0 (Ω) =

(∫
Ω

|Dku|pdx
)1/p

, (7)

Ω is a smooth bounded domain and W k,p
0 (Ω) is the closure of C∞0 (Ω) with respect to

the norm in W k,p(Ω), invoking [11, Theorem 2.2].

It is an equivalent norm to (6). From now on we consider W k,p
0 (Ω) endowed with

the norm defined in (7). (see [11, 12]).
For α ∈ L1

loc(Ω), there exists a positive constant κ > 0 such that∫
Ω

(|∆u|2 + q|∇u|2 − α(x)2u2)dx ≥ κ
∫

Ω

u2 ∀u ∈ C∞0 (Ω). (8)

The a same arguments in [5] implies that∫
Ω

(|∆u|2 + q|∇u|2 − α(x)2u2)dx ≥ κ
∫

Ω

u2 ∀u ∈W 2,2 ∩W 1,2
0 (Ω). (9)

Morevere assume that

0 < µ <
√
κ. (10)

Both (8) and (10) implies that

µ

∫
Ω

α(x)u2dx ≤ µ
(∫

Ω

α(x)2u2dx
)1/2(∫

Ω

u2dx
)1/2

≤ µ√
κ

∫
Ω

(|∆u|2 + q|∇u|2dx)

(11)
for all u ∈ C∞0 (Ω). Then

‖u‖2H :=

∫
Ω

[|∆u|2 + q|∇u|2 − µα(x)u2]dx,

introduce a new norm in C∞0 (Ω) and completion of C∞0 (Ω) with respect to this norm
yields the Hilbert space H. This norm ‖u‖H is equivalent to ‖u‖W 2,2

0 (Ω) by (11), (10)

and (7). Morevere, from (11), the equivalence of this norm and Poincare inequality
implies the existence κ̃ > 0 in which∫

Ω

(|∆u|2 + q|∇u|2 − µα(x)u2)dx ≥ κ̃
∫

Ω

u2dx ∀ (u ∈ )C∞0 (Ω).

The standard density argument and Fatou’s lemma implies that∫
Ω

(|∆u|2 + q|∇u|2 − µα(x)u2)dx ≥ κ̃
∫

Ω

u2dx ∀(u ∈W 2,2 ∩W 1,2
0 (Ω)). (12)

This inequality shows that the first eigenvalue of ∆2−q∆−µα(x) is strictly positive.
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Definition 1.1. u ∈ W 2,2(Ω) ∩W 1,2
0 (Ω) is called a positive solution of (1) if u > 0

a.e., h(u) ∈ L2(Ω) and u satisfies∫
Ω

(∆u∆ψ+q∇u∇ψ−µα(x)uψ)dx =

∫
Ω

(h(u)+λβ(x))ψ dx ∀ψ ∈W 2,2(Ω)∩W 1,2
0 (Ω).

Similarly u ∈ W 2,2(Ω) ∩W 1,2
0 (Ω) is called a supersolution (subsolution) if h(u) ∈

L2(Ω) and for all positive ψ ∈W 2,2(Ω) ∩W 1,2
0 (Ω),∫

Ω

(∆u∆ψ + q∇u∇ψ − µα(x)uψ)dx ≥ (≤)

∫
Ω

(h(u) + λβ(x))ψ dx.

Definition 1.2. u ∈ L1(Ω) is called positive distributional solution or very weak
solution of (1) if u > 0 a.e., µα(x)u + h(u) ∈ L1

loc(Ω) and u satisfies (1) in the
distributional sense, i.e.,∫

Ω

u(∆2ψ + q∇2ψ − µα(x)ψ)dx =

∫
Ω

(h(u) + λβ(x))ψ dx ∀ψ ∈ C∞0 (Ω). (13)

Definition 1.3. u ∈ L1(Ω) is called weak supersolution (subsolution) for

∆2u− q∆u = g(x, u) in Ω,

in the sense of distribution if g(x, u) ∈ L1(Ω) and for all positive ψ ∈ C∞0 (Ω), we have∫
Ω

u(∆2ψ + q∇2ψ)dx ≥ (≤)

∫
Ω

g(x, u)ψdx.

u is called a distributional solution if weak supersolution and as well a weak subsolu-
tion in the sense of distribution.

Similar type of this problem was studied by Bhakta in [5] with lack of second
sentence i.e. −q∆u. Problems like this have been studied by many researchers while
in its general form it has widely been studied by Dupaigne and Nedev in [9]. In [9],
the authors have proved a mandatory and adequate condition for the existence of L1

solution and they have also established an estimate from above and below for the
solution. We also refer [?, 6, 8] (and the references therein) for the related problems
in the second order case.

Problems of higher order are relatively different from those of second order case.
In this case several technical difficulties occurred due to lack of the maximum prin-
ciple. So, till date the knowledge on higher order nonlinear problems is incomplete,
in contrast with the second-order case. In the case of fourth-order problem Navier
boundary conditions have the key role to prove existence results as under this bound-
ary condition, equation with biLaplacian operator can be rewritten as a second order
system with Dirichlet boundary value problems. Then the Maximum Principle can
be easily proved by using classical elliptic theory. As a result, a Comparison Principle
which plays as one of the most important parameters in proving existence results can
be deduced.

Literature survey revealed that many research groups in recent years have deal
with W 2,2(Ω) ∩W 1,2

0 (Ω) solution of semilinear elliptic and parabolic problem with
biLaplacian operator and some specific nonlinearities. In this text we have referred to
some of them [2, 4, 7, 10] (also see the references therein). Semilinear elliptic equations
with biharmonic operator can be applied in continuum mechanics, bio- physics and
differential geometry. Particularly, in the modeling of thin elastic plates, clamped
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plates and in the study of the Paneitz-Branson equation and the Willmore equation
(see[11]).

2. Preliminary lemmas

Lemma 2.1 (Strong Maximum Principle). Suppose that u is a nontrivial supersolu-
tion of

∆2u− q∆u = 0 in Ω,

u = 0 = ∆u on ∂Ω.
(14)

Then −∆u > 0 and u > 0 in Ω.

Considering the change of variables −∆u = v, if u is a supersolution to above
problem(14), then v is a supersolution to

−∆v + qv = 0 in Ω,

u = 0 on ∂Ω.
(15)

[see [3] Theorem 1.7.9 ]. Applying the known Strong Maximum Principle to the
Laplacian operator, it immediately follows that v > 0 in Ω and then u > 0 inΩ.

Lemma 2.2 (Comparison Principle). Assume that u and v satisfy the following:

∆2u− q∆u ≥ ∆2v − q∆v in Ω,

u ≥ v on ∂Ω,

−∆u ≥ −∆v on ∂Ω.

(16)

Then, −∆u ≥ −∆v and u ≥ v in Ω.

It is sufficient to apply to w = u− v, a supersolution to (15), the previous Strong
Maximum Principle. see [12, Lemma 3.3].

Lemma 2.3 (Weak Harnack Principle [12, Lemma 3.4]). Suppose that u a positive
distributional supersolution to (15). Then for any BR(x0) b Ω, there exists a positive
constant C = C(θ, ρ,m,R),

‖u‖Lm(BρR(x0)) ≤ C ess infBθR(x0) u,

where 0 < m < N
N−2 , 0 < θ < ρ < 1.

Lemma 2.4. The problem

∆2u− q∆u− µα(x)u = β in Ω,

u = 0 = ∆u on ∂Ω,
(17)

has a positive solution u ∈W 2,2(Ω)∩W 1,2
0 (Ω) where α ∈ L1

loc(Ω), β ∈ L2(Ω), α, β ≥ 0
a.e., β 6≡ 0, q, µ are positive constant satisfying (10) and α satisfy (9).

Proof. For β ∈ L2(Ω), there exists a unique weak solution u1 ∈ W 2,2 ∩W 1,2
0 (Ω) in

which:

∆2u1 − q∆u1 = β in Ω,

u1 = 0 = ∆u1 on ∂Ω.
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[see [3] Theorem 1.6.1 ]. Strong maximum principle (Lemma 2.1) implies that u1 > 0.
Define un (n ≥ 2) in which satisfy

∆2un − q∆un = µα(x)un−1 + β in Ω,

un = 0 = ∆un on ∂Ω.
(18)

By (9), µα(x)un−1 ∈ L2(Ω). Comparison principle implies that 0 < u1 ≤ · · · ≤
un−1 ≤ un ≤ . . . .

We claim that {un} is a Cauchy sequence in W 2,2 ∩W 1,2
0 (Ω).

In fact ∆2(un+1−un)−q∆(un+1−un) = µα(x)(un−un−1). Considering (un+1−un)
as a test function and using (9)∫

Ω

(|∆(un+1 − un)|2 + q|∇(un+1 − un)|2)dx = µ

∫
Ω

α(x)(un − un−1)(un+1 − un)dx

≤ µ(

∫
Ω

α(x)2(un − un−1)2dx)1/2(

∫
Ω

(un+1 − un)2dx)1/2

≤ µ√
κ

(

∫
Ω

(|∆(un+1 − un)|2 + q|∇(un+1 − un)|2)dx)
1
2

× (

∫
Ω

(|∆(un − un−1)|2 + q|∇(un − un−1)|2)dx)
1
2 .

Hence, ∫
Ω

(|∆(un+1 − un)|2 + q|∇(un+1 − un)|2)dx

≤ µ√
κ

∫
Ω

(|∆(un − un−1)|2 + q|∇(un − un−1)|2)dx

≤ · · · ≤ (
µ√
κ

)n−1

∫
Ω

(|∆(u2 − u1)|2 + q|∇(u2 − u1)|2)dx.

Then {un} is a Cauchy sequence in W 2,2(Ω) ∩W 1,2
0 (Ω) since µ <

√
κ.

Completeness of spacies implies existence u ∈W 2,2(Ω)∩W 1,2
0 (Ω) such that un → u

in W 2,2(Ω) ∩W 1,2
0 (Ω). u > 0 because un > u1 > 0 for all n ≥ 1. As un ∈ W 2,2(Ω) ∩

W 1,2
0 (Ω) solves (18), we have∫

Ω

(∆un∆ψ+q∇u∇ψ)dx = µ

∫
Ω

α(x)un−1ψdx+

∫
Ω

βψdx ∀ψ ∈W 2,2(Ω)∩W 1,2
0 (Ω).

Taking the limit as n→∞, we obtain u is a solution to (17). �

Lemma 2.5. The equation (1) has a unique solution u ∈ W 2,2(Ω) ∩ W 1,2
0 (Ω) to

(1) which satisfies 0 ≤ u ≤ w̃ for any supersolution w̃ ≥ 0 of (1) (respectively
for (17)), where α ∈ L1

loc(Ω), β ∈ L2(Ω), h : [0,∞) → [0,∞) (h convex) be non-
negative functions. Let q, µ, λ > 0, µ <

√
κ. Suppose that there exists a non-negative

supersolution

This u is called the minimal nonnegative solution of (1) (respectively for (17)).
Strong maximum principle implies that u > 0 in Ω.

Remark 2.1. We denote the minimal positive solution of (17) by η1 this allows us to

define G(β) = η1. The function 0 < u ∈W 2,2(Ω) ∩W 1,2
0 (Ω) solving (1) (respectively

(17)) is also the distributional sense solutions (see definition (1.2)).



ON THE MINIMAL SOLUTION OF BI-LAPLACIAN EQUATION 183

Proof of Lemma 2.5. Proof of (1) and (17) are similar, so we do for (1). First, we
show uniqueness. Let u1 and u2 are two solutions which satisfy 0 ≤ ui ≤ w̃, (i = 1, 2)
for every non-negative supersolution w̃. Then u1 ≤ u2 and u2 ≤ u1. So u1 = u2.

Now we show the existence of solution. Suppose that ũ ≥ 0 is a supersolution to
(1) and u0 ∈W 2,2(Ω) ∩W 1,2

0 (Ω) is a positive solution of

∆2u0 − q∆u0 = λβ in Ω,

u0 = 0 = ∆u0 on ∂Ω.

By comparison principle 0 < u0 ≤ ũ in Ω. Using iteration method, there exists
un ∈W 2,2(Ω) ∩W 1,2

0 (Ω) for n = 1, 2, . . . in which un solves the problem

∆2un − q∆un = µα(x)un−1 + h(un−1) + λβ(x) in Ω,

un = 0 = ∆un on ∂Ω.
(19)

Since ũ is a weak supersolution to (1), we have h(ũ) ∈ L2(Ω). h(u0) ≤ h(ũ) since
0 < u0 ≤ ũ and h is convex (thus h is nondecreasing), we obtain . Moreover,
h(u0) + λβ(x) ∈ L2(Ω) And by (9) so µα(x)u0 ∈ L2(Ω). Choosing u0 in the right
hand then there is a solution u1 . Comparison principle implies that 0 < u0 ≤ u1 ≤ ũ.
Using the induction method, un is well defined and 0 < u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ ũ.

We claim that {un} is uniformly bounded in W 2,2(Ω) ∩W 1,2
0 (Ω).

From (19)∫
Ω

(|∆un|2 + q|∇un|2)dx =

∫
Ω

(µα(x)un−1 + h(un−1) + λβ(x))undx

≤
∫

Ω

(µα(x)ũ2 + h(ũ)ũ+ λβũ)dx

≤
[
µ|α(x)ũ|L2(Ω) + |h(ũ)|L2(Ω) + λ|β|L2(Ω)

]
|ũ|L2(Ω) ≤ C.

There is u ∈W 2,2(Ω)∩W 1,2
0 (Ω) such that up to a subsequence un ⇀ u in W 2,2(Ω)∩

W 1,2
0 (Ω) and un → u in L2(Ω). From (19)∫

Ω

(∆un∆ψ+q∇u∇ψ)dx =

∫
Ω

[µα(x)un−1+h(un−1)+λβ]ψdx, ∀ψ ∈W 2,2(Ω)∩W 1,2
0 (Ω).

Using Vitaly’s convergence theorem and passing limit n→∞, u is a solution to (1).
u > 0 since un > u0 > 0 for all n ≥ 1.

If w̃ is another supersolution, then by comparison principle u0 ≤ w̃ and un ≤ w̃
for every n ≥ 1. Taking the limit n→∞, u ≤ w̃. �

3. Existence results

Theorem 3.1. Let α ∈ L1
loc(Ω), 0 6≡ β ∈ L2(Ω), α, β, h be non-negative functions,

q is a positive constant, (9), (10), (2), (3), (4) and (5) are satisfied. Suppose that
G = (∆2− q∆− µα(x))−1 and η1 = G(β), as proved in Lemma 2.4 (also see Remark
2.1). and there exists constants ε > 0 and C > 0 in which

h(εη1) ∈ L2(Ω) and G(h(εη1)) ≤ Cη1 a.e. (20)

Then there is 0 < λ0 = λ0(N,α(x), β(x), h, µ) in which for λ < λ0, (1) has a minimal

positive solution uλ ∈W 2,2(Ω) ∩W 1,2
0 (Ω) and uλ ≥ λη1.

If λ > λ0 (1) has no positive solution in W 2,2(Ω) ∩W 1,2
0 (Ω).
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For any small λ > 0

λη1 ≤ uλ ≤ 2λη1.

For the first time (20) is motivated from a results of Dupaigne and Nedev (see [9,
Theorem 1]).

Lemma 3.2. Suppose that α, β and µ satisfy the assumptions in Theorem 3.1, η1 =
G(β) as in theorem 3.1 and (2) is satisfied. If

h(2η1) ∈ L2(Ω) and G(h(2η1)) ≤ η1,

then (1) admits solution u ∈W 2,2(Ω) ∩W 1,2
0 (Ω) for λ = 1.

Proof. For h(2η1) ∈ L2(Ω) and G(h(2η1)) ≤ η1. Set v := G(h(2η1)) + η1. Clearly

v > 0 and v ∈ W 2,2(Ω) ∩W 1,2
0 (Ω) since η1 and G(h(2η1)) are in W 2,2(Ω) ∩W 1,2

0 (Ω)
(by Lemma 2.4). morevere,

v − η1 = G(h(2η1)), v ≤ 2η1, h(v) ∈ L2(Ω).

Then

∆2(v − η1)− q∆(v − η1)− µα(x)(v − η1) = h(2η1) in Ω.

Therefore,

∆2v − q∆v − µα(x)v = h(2η1) + β ≥ h(v) + β in Ω

and v = 0 = ∆v on ∂Ω. This shows that v is a positive supersolution of (1) but fir
λ = 1. Applying Lemma 2.5 we conclude the existence of minimal positive solution
u ∈W 2,2(Ω) ∩W 1,2

0 (Ω) of (1) with λ = 1. �

Proposition 3.3. Let (Pλ̃) has a positive solution uλ̃ ∈W 2,2(Ω)∩W 1,2
0 (Ω) for λ̃ > 0.

Then for any 0 < λ < λ̃, (1) has a solution in W 2,2(Ω) ∩W 1,2
0 (Ω).

Proof. Suppose that uλ̃ ∈ W 2,2(Ω) ∩W 1,2
0 (Ω) is a positive solution for (1) with λ̃

instead of λ. From definition (see Definition 1.1) h(uλ̃) ∈ L2(Ω). Set v := λ̃η1,

∆2(
uλ̃
λ̃

)− q∆(
uλ̃
λ̃

)− µα(x)(
uλ̃
λ̃

) =
1

λ̃
(h(uλ̃) + λ̃β) =

h(uλ̃)

λ̃
+ β ≥ β in Ω.

Then
uλ̃
λ̃

is a positive supersolution to (17). Minimality of η1 implies that η1 ≤
uλ̃
λ̃

and so that v ≤ uλ̃. For 0 < λ < λ̃ define w := uλ̃ − v + λη1. Clearly w > 0 and v

w ≤ uλ̃. Convexity of h, implies that h(t)
t is increasing and h is non-decreasing. Then

h(w) ≤ h(uλ̃) and so h(w) ∈ L2(Ω). Also,

∆2w − q∆w − µα(x)w = h(uλ̃) + λ̃β − (λ̃− λ)β = h(uλ̃) + λβ ≥ h(w) + λβ.

Where w ∈ W 2,2(Ω) ∩W 1,2
0 (Ω) is a positive supersolution to (1). From Lemma 2.5,

there is minimal positive solution for (1). �

Proof of Theorem 3.1. We assume (20) holds.

Step I: If λ > 0 is small then (1) has a positive a solution uλ ∈W 2,2(Ω) ∩W 1,2
0 (Ω).

We show in the spirit of [9]. Lemma 3.2, follows that (1) has a solution if

h(2λη1) ∈ L2(Ω) and G(h(2λη1)) ≤ λη1. (21)
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g( ε
2λ ) ≥ h(t)

h(t ε2λ ) for all t > 0. Set t := 2λη1, h(2λη1) ≤ h(εη1)g( ε
2λ ). Applying

(20), h(2λη1) ∈ L2(Ω) and G(h(2λη1)), minimality of G(h(2λη1)) and assumption
(20) implies that

G(h(2λη1)) ≤ g(
ε

2λ
)G(h(εη1)) ≤ Cg(

ε

2λ
)η1.

To verify (21) for small λ > 0, it is enough to check that

lim
λ→0

1

λ
g(

ε

2λ
) = 0 or equivalently lim

K→∞
Kg(K) = 0.

s→ sg(s) is non-increasing so this limit valied, there is C ′ ≥ 0 such that limK→∞Kg(K) =
C ′. If C ′ > 0, then g(K) ∼ C

K near ∞ and this contradicts (4). Hence, C ′ = 0 and
(21) holds for λ > 0 small.
Step II: Define,

Λ = {λ > 0 : (Pλ) has a minimal positive solution uλ},

From Step I and Proposition 3.3, Λ is a non-empty interval. define,

λ0 = sup Λ.

It is direct that, if λ < λ0, (1) has a minimal positive solution and for λ > λ0, (1)

does not have any positive solution in W 2,2(Ω) ∩W 1,2
0 (Ω).

Step III: From G(β) = η1, G(λβ) = λη1. If λ < λ0 and uλ denotes the corresponding
minimal positive solution of (1), then uλ is a supersolution to the equation satisfied
and by minimality of λη1,

uλ ≥ λη1. (22)

Step IV: We claim that if λ > 0 is small, then

λη1 ≤ uλ ≤ 2λη1.

Since λ > 0 is small so (21) holds . For, w := G(h(2λη1)) + λη1.

w ≤ 2λη1 and w − λη1 = G(h(2λη1)).

Similar to proof of Lemma 3.2, w ∈W 2,2(Ω) ∩W 1,2
0 (Ω) is a positive supersolution of

(1) and uλ ≤ w ≤ 2λη1. This inequality and (22) implies that λη1 ≤ uλ ≤ 2λη1. �

For the next result we set

u∗(x) := lim
λ↑λ0

uλ(x), x ∈ Ω. (23)

Theorem 3.4. Let assumptions in Theorem 3.1 satisfied, uλ denotes the minimal
positive solution of (1) for 0 < λ < λ0 and u∗ be as (23). Morevere,

lim
s→∞

sh′(s)

h(s)
> 1. (24)

Then u∗ ∈ W 2,2(Ω) ∩ W 1,2
0 (Ω) a solution to (1) for λ0 instead of λ. Moreover,

uλ → u∗ in W 2,2(Ω) ∩W 1,2
0 (Ω).

Remark 3.1. (24) is a mild assumption, since h is convex and C1. It is direct that
if h ∈ C2 and strictly convex, then (24) is obvious.
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Proof of Theorem 3.4. Since uλ is a solution of (1)∫
Ω

(∆uλ∆v+q∇uλ∇v) = µ

∫
Ω

α(x)uλv+

∫
Ω

h(uλ)v+λ

∫
Ω

β(x)v ∀v ∈W 2,2(Ω)∩W 1,2
0 (Ω).

(25)
On the other hand

∫
Ω

(|∆uλ|2 + q|∇uλ|2 − µα(x)u2
λ − h′(uλ)u2

λ)dx ≥ 0 (see[5,
Theorem 5.2]. Taking v = uλ in (25)∫

Ω

h′(uλ)u2
λdx ≤

∫
Ω

(|∆uλ|2 + q|∇uλ|2 − µα(x)u2
λ)dx =

∫
Ω

(h(uλ)uλ + λβ(x)uλ)dx.

(26)
Using (24), for ε > 0 there exists C > 0 such that

(1 + ε)h(s)s ≤ h′(s)s2 + C ∀s ≥ 0. (27)

From (26) and (27)

(1 + ε)

∫
Ω

(h′(uλ)u2
λ − λβ(x)uλ)dx ≤ (1 + ε)

∫
Ω

h(uλ)uλdx ≤
∫

Ω

(h′(uλ)u2
λ + C)dx.

Then

ε

∫
Ω

h′(uλ)u2
λdx ≤ C|Ω|+ (1 + ε)λ

∫
Ω

βuλdx,

so ∫
Ω

h(uλ)uλdx ≤ C1 + C2λ

∫
Ω

βuλdx, (28)

for some constants C1, C2 > 0. From λ < λ0, applying Holder inequality and (28)∫
Ω

(|∆uλ|2 + q|∇uλ|2)dx = µ

∫
Ω

α(x)u2
λ +

∫
Ω

h(uλ)uλ + λ

∫
Ω

buλ

≤ µ|α(x)uλ|L2(Ω)|uλ|L2(Ω) + λ0(1 + C2)

∫
Ω

buλdx+ C1.

(9) and Cauchy-Schwartz inequality with δ > 0 on the above estimate implies that∫
Ω

(|∆uλ|2 + q|∇uλ|2)dx ≤ µ√
κ

∫
Ω

(|∆uλ|2 + q|∇uλ|2)dx+ C3|β|L2(Ω)|uλ|L2(Ω) + C1

≤ µ√
κ

∫
Ω

(|∆uλ|2 + q|∇uλ|2)dx+
C3√
κ
|β|L2(Ω)|∆uλ|L2(Ω) + C1

≤ µ√
κ

∫
Ω

(|∆uλ|2 + q|∇uλ|2)dx+ δ|∆uλ|2L2(Ω) + c(δ)|β|2L2(Ω) + C1

≤ µ√
κ

∫
Ω

(|∆uλ|2 + q|∇uλ|2)dx+ δ

∫
Ω

(|∆uλ|2 + q|∇uλ|2)dx

+ c(δ)|β|2L2(Ω) + C1.

Since µ <
√
κ (by (10)), there is δ > 0 in which µ√

κ
+ δ < 1. From this estimate∫

Ω

(|∆uλ|2 + q|∇uλ|2)dx ≤ C4|β|2L2(Ω) + C1 ≤ C ′,

for some constant C ′ > 0. Therefore, {uλ} is uniformly bounded in W 2,2(Ω)∩W 1,2
0 (Ω)

for λ < λ0. From (23), uλ ⇀ u∗ in W 2,2(Ω) ∩W 1,2
0 (Ω). Passing to the limit λ→ λ0

in (25), via Lebesgue monotone convergence theorem, it is easy to check that u∗ is a
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solution to (1) with λ0 instead of λ. Limiting λ → λ0, using monotone convergence
theorem

‖uλ‖2W 2,2(Ω)∩W 1,2
0 (Ω)

=

∫
Ω

(|∆uλ|2 + q|∇uλ|2)dx

= µ

∫
Ω

α(x)u2
λ +

∫
Ω

h(uλ)uλ + λ

∫
Ω

buλ

→ µ

∫
Ω

α(x)u∗2 +

∫
Ω

h(u∗)u∗ + λ0

∫
Ω

bu∗

=

∫
Ω

(|∆u∗|2 + q|∇u∗|2)dx = ‖u∗‖2
W 2,2(Ω)∩W 1,2

0 (Ω)
.

Thus ‖uλ‖W 2,2(Ω)∩W 1,2
0 (Ω) → ‖u∗‖W 2,2(Ω)∩W 1,2

0 (Ω). Combining this along with the

weak convergence, uλ → u∗ in W 2,2(Ω) ∩W 1,2
0 (Ω). �
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[12] M. Pérez-Llanos, A. Primo, Semilinear biharmonic problems with a singular term, J. Differential

Equations 257 (2014), no. 9, 3200–3225.

(Mohsen Alizadeh) University of Mazandaran, Faculty of Mathematic Sciences, Babolsar,

Iran
E-mail address: az.mohsen@gmail.com

(Mohsen Alimohammady) University of Mazandaran, Faculty of Mathematic Sciences,
Babolsar, Iran

E-mail address: amohsen@umz.ac.ir



188 M. ALIZADEH, M. ALIMOHAMMADY, C. CATTANI, AND C. CESARANO

(Carlo Cattani) Engineering School, DEIM, University of Tuscia, Largo dell Universita,

01100 Viterbo, Italy

E-mail address: cattani@unitus.it

(Clemente Cesarano) Section of Mathematics, International Telematic University

UNINETTUNO (UTIU), C.so Vittorio Emanuele II, 39, 00186 Roma, Italy
E-mail address: c.cesarano@uninettunouniversity.net


