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The Chebyshev wavelet of the second kind for solving
fractional delay differential equations

Hamid Safdari, Hamid Mesgarani, Mohamad Javidi, and Yones
Esmaeelzade

Abstract. This article extends a numerical method for solving the fractional delay differential

equations specified in terms of Caputo derivatives. The approach is based on the second kind
Chebyshev wavelet. Our investigation is concentrated on convergence analysis and we prove a

theorem for the error bound of the Chebyshev wavelets of the fractional differential in Caputo

sense. Also, we discuss convergence analysis of the collocation method. In the end, some
examples are presented to indicate the credibility and applicability of the numerical technique.

The obtained results are compared with other numerical methods which our results are much

more accurate than others.
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1. Introduction

The differential equations of the Fractional order are derived of the mathematical
models in most disciplines such as mathematics, engineering, and science in applied
branches as electrochemistry, biology, biophysics, control theory, signal and image
processing of experimental data [1, 2, 3]. In the development of many applications,
the researchers arrived the fractional delay differential equations (FDDE’s) in some
of the fields that these equations usually can only be solved by numerical methods
because do not have analytic solutions. These numerical methods have been attracted
by many researchers in recent years. For this reason, we refer the readers to the
numerous works for solving these equations by with different ways as:

In 2011, Bhalekar and Daftardar approximated FDDE’s by reaching the Adams-
Bashforth-Moulton predictor-corrector methods (EABMPC method) [4]. Lately in
[5], Wang solved the differential equation in delayed fractional order by the Adams-
Bashforth-Moulton method with the linear interpolation method. Wang et al. ex-
tended a numerical scheme for nonlinear FDDE’s on Grunwald-Letnikov definition in
[6]. Also, in [7] by applying an adaptation of a fractional backward difference method,
Morgado et al. solved a linear fractional differential equation with finite delay. In
2013, Moghadam and Miostaghim have established an innovative approach based on
the finite difference for solving the fractional differential equations with delay in [8].
Also, Heris obtained the fractional backward differential formulas of the fifth-order
and the fourth-order for FDDE’s with periodic and anti-Periodic conditions in [9, 10].
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About the existence of the solution of FDDE’s, we refer [11]. In [12], sufficient
conditions are defined for the uniqueness of the solution. In [13], Eva presented some
analytical and numerical methods for the stability investigation of linear fractional-
order delay differential equations. Also, Morgado et al. investigated the analysis of
numerical schemes for FDDE’s in [7].

The main intention of this article is to introduce approximate of the second kind
Chebyshev wavelet for solving the fractional differential equations (FDDE’s) of the
general form

c
0Dαt y(t) = F(t, y(t), y(t− ζ)) t ∈ [0, ζ],

y(t) = φ(t), t ∈ [−ζ, 0], 0 < α < 1,
(1.1)

with y(0) = −φ(ζ) anti-periodic condition or y(0) = φ(ζ) periodic condition where
c
0Dαt is the Caputo derivative, ζ is a the delay constant and F is a linear function as
F(t, y(t), y(t− ζ)) = a(t)y(t) + b(t)y(t− ζ) + c(t). The numerical methods for solving
equation (1.1) headed to a system of algebraic equations which may be a large system
and lead to numerous computational complexity and great storage needs. Hence, we
use the spectral method based on the Chebyshev wavelet basis of the second kind
because this wavelet is structurally sparse, this reduces the computational complexity
of the resulting linear algebraic system. This property of the sparse of the coefficient
matrix increases the convergence rate of the numerical approach.

The residue of this article is arranged as: Section 2 recommends preliminaries and
notations of fractional derivatives. In Section 3, we describe the Chebyshev wavelet
of the second kind and their properties. In Section 4, we summarize the collocation
methods of the second kind Chebyshev wavelet for the numerical scheme of FDDE’s.
Convergence analysis and upper bound of the collocation methods based on the basis
of the second kind Chebyshev wavelet is presented in Section 5. Finally, we are shown
the accuracy of the approach by solving five numerical examples.

2. Preliminaries And Notations of Fractional Derivatives

In mathematics, the first appearance of the concept of a fractional derivative is
instituted in a letter to Guillaume de I’Hopital by the famous mathematician Leibniz
in 1965 [14]. Basically, the fractional computation was the field of mathematical
analysis proposing at the study of integrals and derivatives of arbitrary orders. In
this section, We recollect definitions and properties of fractional derivatives which will
be used later [15, 16].

The Riemann-Liouville derivative of fractional order β > 0 has disutility for de-
scribing some natural phenomena. Thus, we recommend Caputo’s derivative of frac-
tional order β > 0 is determined as

C
0 D

β
t g(t) =

{
1

Γ(n−β)

∫ t
0

(t− τ)n−β−1g(n)(τ)dτ, n− 1 < β < n ∈ N,
dn

dtn g(t), β = n,
(2.1)

This derivative is defined by the Italian mathematician Caputo in 1967 [17]. Now,
the most used definition is due to the Riemann-Liouville fractional integral of order
β, which is described as

Iβg(x) =
1

Γ(β)

∫ x

a

(x− τ)β−1g(τ)dτ,
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that x > a and a, x ∈ R. The important properties of integral operator are the
identity operator i.e. I0g(x) = g(x) and the linearity i.e. Iβ(γf(x) + ηg(x)) =
γIβf(x) + ηIβg(x), β ∈ R+, γ, δ ∈ C.

Some properties of the Caputo fractional derivative C
0 D

β
t , which are need here, we

mention the following:

1. Dβ(f(x)g(x)) =

∞∑
i=0

(
β

i

)
(Dβ−if(x))g(i)(x)−

n−1∑
i=0

xi−β

Γ(i+ 1− β)
((f(x)g(x))(i)(0)),

2. lim
β→n

Dβg(t) = g(n)(x), lim
β→n−1

Dβg(t) = g(n−1)(x)− g(n−1)(0),

3. DβDng(x) = Dβ+ng(x) 6= DnDβg(x),

4. Dβ(c) = 0, is constant.

3. The second kind Chebyshev wavelets

We can create a class of bases for L2(R) that each basis is spaned of dilates and
translates of a finite set of functions. We specify a space Vkz of piecewise polynomial

functions. Vkz is set of f in the interval [2−mn, 2−m(n+1)], f is a polynomial of degree

less than z, n = 0, 1, ....2m− 1 and vanishes elsewhere. The dimension of the space Vkz
is 2mz and we have

Vk0 ⊂ Vk1 ⊂ ... ⊂ Vkm ⊂ ... . (3.1)

The space Wz
m is orthogonal complement of Vz

m in Vz
m+1, as

Vz
m ⊕Wz

m = Vz
m+1, Wz

m ⊥ Vz
m. (3.2)

So we obtain the decomposition Vz
m = Vz

0 ⊕W
z
0 ⊕W

z
1 ⊕ ...⊕W

z
m−1.

Space Vz
m is spanned by the orthogonal functions of the Chebyshev polynomials

of the second kind where space dimension Vz
m is 2mz. Wavelets constitute a class

formulated from dilation and transformation of an individual function denominated
the mother wavelet ψ. If a, b be the dilation and translation parameter respectively,
we can introduce the following set of continuous wavelets as

ψa,b(t) = |a|−
1
2ψ

(
t− b

a

)
, a, b ∈ R, a 6= 0, (3.3)

Now we confined the parameters a and b to discrete values as a = a0
−z, b =

nb0a0
−z, a0 > 1, b0 > 0, we could introduce the following family of discrete wavelets

ψz,n(t) = |a0|
z
2ψ (a0

zt− nb0) , z, n ∈ Z, (3.4)

where ψz,n design a wavelet basis for L2(R). When a0 = 2 and b0 = 1, then ψz,n(t)
forms an orthonormal basis [18, 19, 20]. The second kind Chebyshev wavelet ψn,m =

ψ(z, n,m, t) entail four arguments, n = 1, 2, ..., 2z−1, z is presumed any nonnegative
integer, m is the degree of Chebyshev polynomial of second kind and t is the normalized
time. They are described on the interval [0, 1) as

ψn,m(t) =

{
2

z
2Um(2zt− 2n + 1), n−1

2z−1 ≤ t < n
2z−1 ,

0, otherwise,
(3.5)
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where

Um(t) =

√
2

π
Um(t), m = 0, 1, 2, ...,M − 1. (3.6)

Here Um(t) are the second kind Chebyshev polynomials of degree m which are

orthonormal with respect to the weight function W(t) =
√

1− t2 on the interval
[−1, 1]. These bases are orthonormal respect to the weight function Wn,z(t) = W(2zt−
2n + 1) on the interval [0, 1] as∫ 1

0

ψn,m(t)ψn,m′ (t)Wn,z(t)dt = δm,m′ .

We can be expanded any function f(t) ∈ L2(R) determined on [0, 1] into Chebyshev
wavelet basis as

f(t) =

∞∑
n=1

∞∑
m=0

cnmψn,m(t) = fnm(t), (3.7)

The series (3.7) is denominated a wavelet series portrayal of f(t) and the wavelet

coefficients cnm are given by cnm =
〈
f(t),ψn,m(t)

〉
Wn,z(t)

=
∫ 1

0
f(t)ψn,m(t)Wn,z(t)dt.

If the infinite series (3.7) is truncated, then we can be written as

f(t) ≈ PJ(f(t)) =

2z−1∑
n=1

M−1∑
m=0

cnmψn,m(t) = f̃nm(t) = CTΨ(t), (3.8)

where C and Ψ are two vectors given by

C =[c10, c11, ..., c1M−1, c20, c21, ..., c2M−1, ..., c2z−10, ..., c2z−1M−1]T ,

Ψ =[ψ10, ψ11, ..., ψ1M−1, ψ20, ψ21, ..., ψ2M−1, ..., ψ2z−10, ..., ψ2z−1M−1]T .

4. Chebyshev Wavelet Collocation Scheme for Linear FDDE’s

In this section, we describe the collocation method for solving equation (1.1) with
based on the Chebyshev wavelet of the second kind. So we use the Caputo fractional
derivative definition of arbitrary order 0 < β < 1 for mentioned equation as

1

Γ(1− β)

∫ t

0

(t− τ)−βy
′
(τ)dτ = F(t, y(t), y(t− ζ)), t ∈ [0, ζ],

y(t) = φ(t), t ∈ [−ζ, 0],

y(0) = −φ(ζ), or y(0) = φ(ζ),

(4.1)

where F is a linear function. The approximation of the function y
′
(τ) may be written

as a linear combination of Chebyshev wavelet basis as (3.8) for the vector space L2(R).
So, the first sentence of (4.1) takes the following form:

1

Γ(1− β)

∫ t

0

(t− τ)−β
2z−1∑
n=1

M−1∑
m=0

cnmψn,m(τ)

 dτ − a(t)y(t) = F(t, y(t− ζ)), (4.2)

Now, we employ the integral of the series expand (4.2) to approximate the unknown

function y
′
(t) and then we apply the delay condition y(t − ζ) = φ(t). The equation
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(4.2) can be written as

2z−1∑
n=1

M−1∑
m=0

cnm

[
1

Γ(1− β)

∫ t

0

(t− τ)−βψn,m(τ)dτ − a(t)

(∫
ψn,m(t)dt+ c

)]
= F(t, φ(t)).

The value constant c is obtained from the periodic or anti-periodic condition which

c = y(0) −
∫
ψn,m(t)dt

∣∣∣
t=0

. So, we rewrite the above equation for the collocation

nodes ti = i−1
M×2z−1 , 1 ≤ i ≤M × 2z−1 as

2z−1∑
n=1

M−1∑
m=0

cnm

[
1

Γ(1− β)

∫ ti

0

(ti − τ)−βψn,m(τ)dτ − a(ti)

(∫
ψn,m(t)dt+ c

)] ∣∣∣
t=ti

= F(ti),

(4.3)

where F(ti) = F(ti, φ(ti)), for all 1 ≤ i ≤M × 2z−1.
In this method, a linear algebraic system is acquired, which when solved gives us

the unknown coefficients {cnm}, 1 ≤ n ≤ 2z−1, 0 ≤ m ≤ M − 1. Because the above
integral has the answer analytically in system (4.3), we did not use numerical methods
for approximating the integral solution. If this integral was not solved numerically,
we would use Legendre-Gauss-Lobatto method, which is precise for the 2m−1 degree.

5. Outline of the error convergence

In this segment, we investigate some theorems for estimating the approximate
function of the wavelet basis. Let us express the following theorems which will be
used later in the proof of the main theorems.

Theorem 5.1. [21] Suppose f(t) defined on [0, 1) with bounded second derivative
can be expanded as an infinite sum of Chebyshev wavelets and the series converges
uniformly to f(t), that is

f(t) =

∞∑
n=1

∞∑
m=0

cnmψn,m(t), (5.1)

where cnm =
〈
f(t),ψn,m(t)

〉
Wn,z(t)

.

Theorem 5.2. [22] Assume f be a function pertaining to Ca ∩ L2(R), a > 0, and Φ
and Ψ be a scaling function and a mother wavelet. Also, assume Φ,Ψ ∈ Ca for some
0 < a < r provide the following decay condition

|Φ(t)| ≤ c(1 + |t|)−1−ε
, |Ψ(t)| ≤ c(1 + |t|)−1−ε

, c, ε > 0, (5.2)

Then PJ(f(t)) (3.8) converges to f(t) in the infinity norm. Moreover, ||PJ(f(t)) −
f(t)||∞ ≤ c2−Ja for some constant c depending only on f .

Now, using the approximate function (3.7), the residual Rnm(t) can be expressed
as

Rnmf(t) = C
0 D

β
t f(t)−PJ(C0 D

β
t f(t)) =

+∞∑
n=2J

+∞∑
m=M

cnmψn,m(t). (5.3)

In order to illustrate the error estimate, we have given the following theorem.
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Theorem 5.3. Assume that the operator 3.8, PJ(C0 D
β
t f(t)), obtained by using the

second kind Chebyshev wavelets and C
0 D

β
t f(t) is bounded by the second derivative, then

we have the following relation:

lim
J→∞

|Rnmf(t)| → 0. (5.4)

Proof. We have
∫ 1

0
ψn,m(t)ψn,m′ (t)Wn,z(t)dt = δm,m′ because the Chebyshev wavelet

sequence is orthonormal, where Wn,z is the weight function and δm,m′ is the Kronecker
delta, then

cnm =

∫ 1

0

Wn,z(t)ψn,m(t)C0 D
β
t f(t)dt

=

∫ n

2z−1

n−1

2z−1

2
z
2

√
2

π
Wn,z(t)Um(2zt− 2n + 1)C0 D

β
t f(t)dt.

Now, suppose x = 2zt− 2n + 1, then

cnm =

∫ 1

−1

2
z
2

√
2

π
W(x)Um(x)C0 D

β
t f(

x+ 2n− 1

2z
)
dx

2z
, (5.5)

On the other hand, we can also use Um(x)dx = 1
m+1dTm+1(x) where Tm(x) is the

Chebyshev polynomials of the first kind. Then

cnm =
1

(m + 1)× 2
z
2

√
2

π

∫ 1

−1

W(x)C0 D
β
t f(

x+ 2n− 1

2z
)dTm+1(x)

=
1

(m + 1)× 2
z
2

√
2

π

[
W(x)C0 D

β
t f(

x+ 2n− 1

2z
)Tm+1(x)

∣∣∣+1

−1

−
∫ 1

−1

(
W
′
(x)C0 D

β
t f(

x+ 2n− 1

2z
) +

1

2z
W(x)C0 D

β+1
t f(

x+ 2n− 1

2z
)

)
Tm+1(x)dx

]
,

The first sentence of the above bracket is zero. Now, we use Tm+1(x)dx = 1
m+1

(
(x2−

1)dUm(x) + xUm(x)dx
)
. Then

cnm =
−1

(m + 1)2 × 2
z
2

√
2

π

[∫ 1

−1

(x2 − 1)×W
′
(x)C0 D

β
t f(

x+ 2n− 1

2z
)dUm(x)

+

∫ 1

−1

x×W
′
(x)C0 D

β
t f(

x+ 2n− 1

2z
)Um(x)dx

+
1

2z

∫ 1

−1

(x2 − 1)×W(x)C0 D
β+1
t f(

x+ 2n− 1

2z
)dUm(x)

+
1

2z

∫ 1

−1

x×W(x)C0 D
β+1
t f(

x+ 2n− 1

2z
)Um(x)dx

]
.
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With simplifying the above equation and using (5.5), we obtain

cnm =
1

1 + (m + 1)2

√
2

π

[
3

2
3z
2

∫ 1

−1

x×W(x)C0 D
β+1
t f(

x+ 2n− 1

2z
)Um(x)dx

− 1

2
5z
2

∫ 1

−1

W3(x)C0 D
β+2
t f(

x+ 2n− 1

2z
)Um(x)dx

]
.

Thus

|cnm| ≤
1

1 + (m + 1)2

√
2

π

[
3

2
3z
2

∫ 1

−1

|x×W(x)||C0 D
β+1
t f(

x+ 2n− 1

2z
)||Um(x)|dx

+
1

2
5z
2

∫ 1

−1

|W3(x)||C0 D
β+2
t f(

x+ 2n− 1

2z
)||Um(x)|dx

]
.

If we set W(x) ≤ 1, Max|C0 D
β+1
t f(x+2n−1

2z )| ≤ M′
and Max|C0 D

β+2
t f(x+2n−1

2z )| ≤ M′′

for all x ∈ [−1, 1], we have

|cnm| ≤
1

1 + (m + 1)2

√
2

π

[
3M′

2
3z
2

∫ 1

−1

|Um(x)|dx+
M′′

2
5z
2

∫ 1

−1

|Um(x)|dx

]
.

Since
∫ 1

−1
|Um(x)|dx =

∫ π
0
|sin(m + 1)θ|dθ ≤ 2

m+1 then we get

|cnm| ≤
1

(1 + (m + 1)2)× (m+ 1)

√
2

π

[
6M′

2
3z
2

+
2M′′

2
5z
2

]

≤
√

2

π
× 1

m3

[
6M′

(2n)
3
2

+
2M′′

(2n)
5
2

]
=

1√
π
× 1

m3

[
3M′

n
3
2

+
M′′

4n
5
2

]
.

(5.6)

Therefore, we have

|Rnmf(t)| =

∣∣∣∣∣
+∞∑
n=2z

+∞∑
m=M

cnmψn,m(t)

∣∣∣∣∣ ≤
+∞∑
n=2z

+∞∑
m=M

∣∣∣cnm∣∣∣∣∣∣ψn,m(t)
∣∣∣. (5.7)

Using the Theorem 5.4 and substituting the relation (5.6) in (5.7), we get

|Rnmf(t)| ≤
+∞∑
n=2z

+∞∑
m=M

∣∣∣cnm∣∣∣∣∣∣ψn,m(t)
∣∣∣ ≤ c2−1−ε

+∞∑
n=2z

+∞∑
m=M

∣∣∣cnm∣∣∣
≤ c2−1−ε
√
π
×

+∞∑
m=M

1

m3

[
3M

′
×

+∞∑
n=2z

1

n
3
2

+
M′′

4

+∞∑
n=2z

1

n
5
2

]

≤ c2−1−ε
√
π
× (

1

2
PolyGamma[2,M ])

[
3M

′
× ζ(

3

2
, 2z) +

M′′

4
× ζ(

5

2
, 2z)

]
,

(5.8)
where ζ(s, q) =

∑∞
n=0

1
(q+n)s is the Hurwitz zeta function and the PolyGamma func-

tion of order M is the (M + 1)nd derivative of the logarithm of the gamma function.
We can see that |Rnmf(t)| → 0 when M is fixed and z→ +∞. �

For the convergence results of the current method, we prove the following theorem.
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Theorem 5.4. Let PJ(f(t)) = f̃nm(t) from (3.8) be approximate answer fnm(t) from

3.7. Then f̃nm(t) converges uniformaly to f(t). That is

||f(t)− f̃nm(t)|| ≤ c2−Ja, (5.9)

where c, a > 0 are constant.

Proof. In (1.1), we apply the derivative of Caputo then using delay condition we have

c
0D

β
t f(t) =

1

Γ(n− β)

∫ t

0

(t− τ)n−β−1f (n)(τ)dτ = F(t, φ(t)) + a(t)f(t),

The above relation can be written as follows for 0 < β < 1

f(t)−
∫ t

0

k(t, τ)df(τ) = −F (t), 0 ≤ t ≤ ζ.

where F (t) = 1
a(t)F(t, φ(t)) and k(t, τ) = (t−τ)−β

a(t)×Γ(1−β) . So, we can inscribe the problem

(1.1) as the below operator:

f(t)− If(t) = −F (t), 0 ≤ t ≤ ζ, (5.10)

where If(t) =
∫ t

0
k(t, τ)df(τ). Assume that fnm(t) is the approximation of function

f(t) and also, f̃nm(t) is a projection of fnm(t) in subspace VJ. Therefore, they apply
in operator of (5.12), so

fnm − IPJf = −FJ, f̃nm − I f̃nm = −FJ. (5.11)

Then we obtain

fnm − f̃nm = IPJf − I f̃nm + Ifnm − Ifnm = I(PJf − fnm) + I(fnm − f̃nm),

⇒fnm − f̃nm = (1− I)−1(IPJf − Ifnm) = (1− I)−1(IPJf − If + If − Ifnm).

(5.12)
Using Theorem 5.4 and assuming this theorem, we have

||IPJf − If || ≤ ||IPJ − I||||f || ≤ c12−Ja||f ||,
∃M > 0, |(1− I)−1| ≤ M.

(5.13)

Then we get

||fnm − f̃nm|| ≤ |(1− I)−1|
(
||IPJf − If ||+ ||If − Ifnm||

)
,

≤M
(
c12−Ja||f ||+ c22−Ja

)
= c32−Ja.

(5.14)

This yields

||f − f̃nm|| ≤ ||f − fnm||+ ||fnm − f̃nm|| ≤ c42−Ja + c32−Ja = c52−Ja, (5.15)

where {ci}5i=1 are positive constant. �



THE CHEBYSHEV WAVELET OF THE SECOND KIND FOR SOLVING FDDE’S 119

6. Numerical conclusions

We indicate the accuracy of the proposed method with numerical problems. In
order to accomplish the aforementioned, we investigate five examples whose exact
answer is recognized. In these examples, all the calculations accomplished using the
Mathematica software and numerical results compared with paper [6], [7], [10] and
[23]. Note that in all tables, we use the abbreviations RE, AE and MAE that means
the relative error with Euclidean norm, the absolute error of y(1) and maximum
absolute error of all collocation points in [0, 1] respectively.

Example 6.1. Here, we present the following problem definition where the values
of fractional order are in (0, 1). This is an example from articles [6, 23], which the
method presented is compared with these articles.

C
0 Dαt y(t) =

2

Γ(3− α)
t2−α − 1

Γ(2− α)
t1−α + 2tτ − τ2 − τ − y(t) + y(t− τ), t ∈ (0, 1),

y(t) = t2 − t, t ∈ [−1, 0],

The exact solution to this equation is y(t) = t2 − t for α = 0.7 and τ denotes the
delay constant or time-varying. The proposed manner is applied and illustrated the
numerical results in the Table 1 by applying different values of m = 4, scale degree
of J and the values of fractional order α = 0.7. We conclude that the numerical
errors achieved using current method better than the numerical methods of [6, 23].
Absolute errors for different values of α are plotted in Figure 1 for m = 4, J = 4. We
can see that the minimum error belongs to the values of fractional order α = 0.7 in
the interval [0, 1].

Table 1. Approximate errors for test Example 6.1, for m = 4, J = 1, 2, 3, 4.

J RE AE of y(1) MAE of [0,1]
1 2.34759× 10−14 7.51652× 10−14 7.51652× 10−14

2 2.15417× 10−14 2.20018× 10−14 2.20018× 10−14

3 1.06051× 10−15 3.33126× 10−16 3.46945× 10−16

4 5.88070× 10−16 1.55138× 10−16 2.77556× 10−16

Example 6.2. Suppose the following FDDE in terms of the Caputo fractional de-
rivative. This is an example from article [7], which is compared with the presented
method in this article

C
0 D0.5

t y(t) = y(t− 1)− y(t) + 2t− 1 +
Γ(3)

Γ(2.5)
t1.5, t ∈ [0, 1],

y(t) = t2, t ∈ [−1, 0],

The analytical solution is y(t) = t2. In this article, the stated manner is employed
and the shown measures are tabulated in Table 2 by utilizing the value of m = 4 and
a scale degree of J.
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Figure 1. Absolute error of all collocation points of example 6.1 for
α = 0.3, 0.5, 0.7and 0.9 with m = 4 and J = 4.

Table 2. Approximate errors for test Example 6.2, for m = 4, J = 1, 2, 3, 4.

Current method Absolute error in [7]
J RE AE of y(1) MAE of[0,1] h AE
1 1.01218× 10−13 1.01252× 10−13 1.01252× 10−13 1

10 4.91843× 10−2

2 1.97579× 10−14 1.27676× 10−14 1.27676× 10−14 1
20 2.76172× 10−2

3 2.77029× 10−15 8.88178× 10−16 2.16494× 10−15 1
40 1.46507× 10−2

4 2.70476× 10−15 2.22045× 10−16 3.74003× 10−15 1
80 7.56493× 10−3

Example 6.3. Suppose the following FDDE problem:

C
0 D0.3

t y(t) = y(t− 1)− y(t) + 3t2 − 3t+ 1 +
2000

1071Γ(0.7)
t2.7, t ∈ [0, 1],

y(t) = t3, t ∈ [−1, 0],

The exact solution is y(t) = t3. In Table 3, we reported the numerical conclusions by
applying the value of m = 5 and the scale degree of J. Also, the errors of the current
method are compared with absolute error in paper in paper [7].

Table 3. Approximate errors for test Example 6.3, for m = 5, J = 1, 2, 3, 4.

Current method Absolute error in [7]
J RE AE of y(1) MAE of[0,1] h AE
1 1.31288× 10−13 1.30340× 10−13 1.30340× 10−13 1

10 7.10508× 10−2

2 8.78671× 10−14 4.95159× 10−14 4.95159× 10−14 1
20 4.11543× 10−2

3 3.34876× 10−15 8.88178× 10−16 2.46331× 10−15 1
40 2.19612× 10−2

4 3.04858× 10−15 1.99840× 10−16 2.10942× 10−15 1
80 1.13125× 10−2
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Example 6.4. We examine the below FDDE’s problem with the anti-periodic con-
dition of the article [10].

C
0 D0.2

t y(t) + y(t− 1) =
Γ(3)t1.8

Γ(2.8)
− Γ(2)t0.8

Γ(1.8)
+ t2 − 3t+ 1, t ∈ [0, 2],

y(t) = t2 − t− 1, t ∈ [−1, 0],

y(0) = −y(2),

The exact solution is y(t) = t2 − t− 1. By using several values m and scale degree of
J, the errors of the current method are reported in Table 4. Also, the errors of the
current method are compared with absolute error in paper[10].

Table 4. Approximate errors for test Example 6.4, for m = 5, J = 1, 2, 3, 4.

Current method Absolute error in [10]
J RE AE of y(1) MAE of[0,1] h AE of y(1)
1 1.31288× 10−13 1.30340× 10−13 1.30340× 10−13 1

10 7.10508× 10−2

2 8.78671× 10−14 4.95159× 10−14 4.95159× 10−14 1
20 4.11543× 10−2

3 3.34876× 10−15 8.88178× 10−16 2.46331× 10−15 1
40 2.19612× 10−2

4 3.04858× 10−15 1.99840× 10−16 2.10942× 10−15 1
80 1.13125× 10−2

Example 6.5. We examine the below FDDE’s problem with the periodic condition
of the article [10].

C
0 D0.4

t y(t) + C
0 D0.3

t y(t) + y(t− 1) =
Γ(3)t1.6

Γ(2.6)
− Γ(2)t0.6

Γ(1.6)
+

Γ(3)t1.7

Γ(2.7)
− Γ(2)t0.7

Γ(1.7)
,

+ t2 − 3t+ 2, t ∈ [0, 1],

y(t) = t2 − t, t ∈ [−1, 0],

y(0) = y(1),

The correct solution is y(t) = t2 − t. In this article, we solve this problem with the
current method by using the value m = 5 and scale degree of J. The errors of the
current method are compared with the absolute error in paper[10] in Table 5.

Table 5. Approximate errors for test Example 6.5, for m = 5, J = 1, 2, 3, 4.

Current method Absolute error in [10]
J RE AE of y(1) MAE of[0,1] h AE of y(1)
1 2.43545× 10−14 8.79850× 10−15 8.79850× 10−15 0.1 1.55923× 10−3

2 1.64905× 10−14 3.39941× 10−15 4.02456× 10−15 0.05 5.10935× 10−4

3 2.75184× 10−15 5.06073× 10−16 8.60423× 10−16 0.01 3.67922× 10−5

4 2.02906× 10−15 4.54160× 10−16 5.55112× 10−16 0.005 1.18623× 10−5

Figures 2 and 3 represent the Absolute error for all test examples with m = 5 and
J = 4, 3 in all collocation points of [0, 1]. In these graphs, the person can see that
the error approximated of the collocation points in the stated method is very close to
zero.
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Figure 2. Absolute Error of all collocation points of all examples
with m = 5 and J = 4.

Figure 3. Absolute Error of all collocation points of all examples
with m = 5 and J = 3.

7. Conclusion

In this article, the collocation scheme of the second kind Chebyshev wavelet has
been used to solving the fractional delay differential equations on [0, 1] and the ap-
proximation solution acquired by using the linear system. The Chebyshev wavelet
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basis can construct a sparse coefficients matrix because they are orthonormal and
have small intervals of support. The convergence analysis of the collocation scheme
is presented. In Theorem 5.3, studied the error bound of the Caputo fractional deriv-
ative of the Chebyshev wavelet of the second kind and in Theorem 5.4 is shown that
the approximate solutions of FDDE’s are uniformly convergent to the analytic solu-
tion. The proof of the Theorem 5.3 is based on the first-order Chebyshev polynomial.
Using this method, several examples are tested and all numerical conclusions confirm
the accuracy of the methods.

References

[1] S. Das, Functional Fractional Calculus for System Identification and Controls, Springer, New

York, 2008.
[2] R. Almeida, A.B. Malinowoska, A fractional calculus of variations for multiple integral with

application to vibrating string, J Math Phys 51 (2010), 1–12.

[3] J. Sabatier, O.P. Agrwal, J.A. Tenreiro Machado, Advances in fractional calculus, Springer,
2007.

[4] S. Bhalekar, V.A. Daftardar-Gejji, predictor-corrector scheme for solving nonlinear delay differ-

ential equations of fractional order, J Fract Calc Appl 5 (2011), 1–9.
[5] Z. Wang, A numerical method for delayed fractional-order differential equations, J. Appl. Math.

7 (2013), 1–7.
[6] Z. Wang, X. Huang, J. Zhou, A numerical method for delayed fractional-order differential equa-

tions: based on G-L definition, Appl. Math. Inf. Sci. 7 (2013), 525–529.

[7] M.L. Morgado, N.J. Ford, P.M. Lima, Analysis and numerical methods for fractional differential
equations with delay, J. Comput. Appl. Math. 252 (2013), 159–168.

[8] B.P. Moghadam, Z.S. Mostaghim, A numerical method based on finite difference for solving

fractional delay differential equations, SciVerse ScienceDirect 7 (2013), 120–127.
[9] M.S. Heris, M. Javidi, On FBDF5 method for delay Differential equations of fractional order

with periodic and anti-periodic conditions, Mediterr. J. Math. 14(3) (2017), 1–19.

[10] M.s. Heris, M. Javidi, On fractional backward differential formulas for fractional delay differen-
tial equations with periodic and anti-periodic conditions, Applied Numerical Mathematics 118

(2017), 203–220.

[11] V. Lakshmikantham, Theory of fractional functional differential equations, J. Nonlinear Sci.
69 (2008), 3337–3343.

[12] V. Liao, H. Ye, Existence of positive solutions of nonlinear fractional delay differential equations,
Positivity 13 (2009), 601–609.

[13] E. Kaslik, S. Siavasundaram, Analytical and numerical methods for the stability analysis of lin-

ear fractional delay differential equations, Journal of Computational and Applied Mathematics
236 (2012), 4027–4041.

[14] K. Miller, B. Ross, An introduction to the fractional calculus and fractional differential Equa-

tions, New York, USA: John Wiley, Sons Inc, 1993.
[15] I. Podlubny, Fractional differential equations, San Diego, USA: Academic Press, 1999.

[16] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential

Equations, Amestardam, North-Holland: Elsevier, 2006.
[17] M. Caputo, Linear model of dissipation whose Q is almost frequency independent, The Geo-

physical journal of Royal Astronomical Society 13 (1967), 529–539.

[18] B.K. Alpert, A class of bases in L2 for the sparse representation of integral operators, SIAM
Journal on Mathematical Analysis New York, USA: John Wiley, Sons Inc 24 (1993), 246–262.

[19] M. Razzaghi, S. Yousefi, The Legendre wavelets operational matrix of integration, International

Journal of Systems Science 32 (2001), 495–502.
[20] M. Tavassoli Kajani, A. Hadi Vencheh, M. Ghasemi, The Chebyshev wavelets operational matrix

of integration and product operation matrix, Int. J. Comput. Math. 86 (2008), 1118–1125.
[21] S. Sohrabi, Comparison Chebyshev wavelets method with BPFs method for solving Abel’s

integral equation, Ain Shams Engineering Journal 2 (2011), 249–254.



124 H. SAFDARI, H. MESGARANI, M. JAVIDI, AND Y. ESMAEELZADE

[22] A. Karoui, Wavelets: Properties and approximate solution of a second kind integral equation,

Computers and Math. with Appl. 46 (2003), 263–277.

[23] R.K. Pandey, N. Kumar, R.N. Mohaptra, An approximate method for solving fractional delay
differential equations, Int. J. Appl. Comput. Math. 3 (2016), 1395–1405.

[24] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach (Third Edition), Prentice

Hall, 2009.
[25] O. Goubet, Ondes hydrodynamiques amorties, Annals of the University of Craiova, Mathemat-

ics and Computer Science Series 32 (2005), no. 1, 40–51.

[26] B. Brown, M. Aaron, The politics of mathematics, In J. Smith (ed) The rise of modern science,
3rd Edition, Wiley, New York (2001), 230–257.

[27] O. Goubet, Ondes hydrodynamiques amorties, Annals of the University of Craiova, Mathemat-
ics and Computer Science Series 32 (2005), no. 1, 40–51.

[28] C.I. Popescu, P.-C. Luis,d H. Alonso, A Java Implementation of Mobile Agents, Proceedings

of the International Conference on Multi-Agents Systems, Barcelona, Spain, June 14-17, 2004
(Garcia-Falset, J. et al., Eds.), IEEE Press, Los Alamitos (2005), 31–38.

[29] I. Mierswa, Making indefinite kernel learning practical, Technical Report TR 41-06, University

of Dortmund (2006).
[30] W.J. Clancey, Transfer of rule-based expertise through a tutorial dialogue, Ph.D. thesis, De-

partment of Computer Science, Stanford University (1979).

(Hamid Safdari, Hamid Mesgarani, Yones Esmaeelzade) Department of Mathematics, Shahid

Rajaee Teacher Training University, Tehran, Iran
E-mail address: Hsafdari@sru.ac.ir, Hmesgarani@sru.ac.ir, Yonesesmaeelzade@gmail.com

(Mohamad Javidi) Department of Mathematics, Faculty of Mathematical Sciences,
University of Tabriz, Tabriz, Iran

E-mail address: Correspondence : mo javidi@tabrizu.ac.ir


