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On the generalized Hermite-Hadamard inequalities
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ABSTRACT. In this paper, we present a new definition which generalizes some significant well
known fractional integral operators such as Riemann-Liouville fractional integral, k-Riemann-
Liouville fractional integral, Katugampola fractional operators, conformable fractional inte-
gral, Hadamard fractional integrals, etc. Then, using a general class of this generalized
fractional integral operator, we establish new generalized fractional integral inequalities of
Hermite-Hadamard type which cover the previously published results.
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1. Introduction

The subject of the fractional calculus (integrals and derivatives) has gained consider-
able popularity and importance during the past there decades or so, due mainly to its
demonstrated applications in numerous seemingly diverse and widespread fields of sci-
ence and engineering. The fractional integral does indeed provide several potentially
useful tools for various problems involving special functions of mathematical science
as well as their extensions and generalizations in one and more variables. This subject
is still being studied extensively by many authors, see for instance ([1], [2], [4], [6], [8]-
[25]). One of the important applications of fractional integrals is Hermite-Hadamard
integral inequality, see [10], [19]-[21]. First, let’s recall the basic expressions of the
classical Hermite-Hadamard inequality as follows:

Let f: I CR — R be a convex mapping defined on the interval I of real numbers
and a,b € I, with a < b. The following double inequality is well known in the literature
as the Hermite-Hadamard inequality [7]:

f<a+b>S 1 /abf(x)dng(“)JFf(b). (1)

2 b—a 2

The most well-known inequalities related to the integral mean of a convex function
are the Hermite Hadamard inequalities.

In [3], Dragomir and Agarwal proved the following results connected with the right
part of (1).
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194 M. ZEKI SARIKAYA AND F. ERTUGRAL

Lemma 1.1. Let f : I° C R — R be a differentiable mapping on I°, a,b € I° with
a <b. If f' € Lla,b], then the following equality holds:

—a 1
L );f _a/ fla _° /0(1*2t)f'(ta+(17t)b)dt. (2)

Theorem 1.2. Let f:1° CR — R be a differentiable mapping on 1°, a,b € I° with
a <b. If |f'] is convex on [a,b], then the following inequality holds:

fla)+ f(b a)
‘ 2 b—a/f

In [5], Kirmaci proved the following results connected with the left part of (1). In
[5] some inequalities of Hermite-Hadamard type for differentiable convex mappings
were proved using the following lemma.

(I (@) + @) - 3)

Lemma 1.3. Let f: I° CR — R, be a differentiable mapping on I°, a,b € I° (I° is
the interior of I) with a <b. If f" € L([a,b]), then we have

L[ @ (450

—(b-a) Vztf'(twu—t)b)dw/l (t—1) f'(ta+ (L—Db)dt| . (4)

0 3

Theorem 1.4. Let f:1° CR — R be a differentiable mapping on I°, a,b € I° with
a <b. If|f'| is convexr on [a,b], then we have

Now, let’s recall the basic expressions of Hermite-Hadamard inequality for frac-
tional integrals is proved by Sarikaya et al. in [10] as follows:

Theorem 1.5. Let f : [a,b] = R be a positive function with a < b and f € Li([a,b]).
If f is a convez function on [a, b], then the following inequalities for fractional integrals

hold:
F(45) = et ey + gy gt < LOHLO

with o > 0.

Meanwhile, in [10], Sarikaya et al. gave the following interesting Trapeozid identity
for Riemann-Liouville integral:

Lemma 1.6. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If
f' € Lla,b], then the following equality for fractional integrals holds:

fla)+f(b) ~ T(a+1)
2 2(b—a)"

:bgaﬂ[a_w“—wwwm+u—ﬂ®ﬁ~ @)

[Jas f(b) + T f(a)]
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Theorem 1.7. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If
|f’] is convex on [a,b], then the following inequality for fractional integrals holds:

1410 T 10 gy g g
b—a 1 , ,
< sag (173 F@+ 70 0

On the other hand, in [19] Igbal et al. gave the following results connected with
the left part of Riemann-Liouville integral inequalities of Hermite-Hadamard type (6)
by using the following Midpoint identity as follows.

Lemma 1.8. Let f : [a,b] — R be a differentiable function on (a,b). If f' € L [a,b],
then the following identity for Riemann-Liouville fractional z'ntegmls holds:

a+b @
H("57) - sy s+ g3 1

9)

where

= [ tf (tb+ (1 —t)a) dt, = [ (1) f (ta + (1 — t)b) dt,

Iy = fl (t* —1) f (tb+ (1 — t)a)dt, I, = fg (1—1t2) f (ta + (1 — t)b) dt.

Many papers study the Riemann-Liouville fractionals integrals and give new and
interesting generalizations of Hermite-Hadamard type inequalities using these kind of
integrals, see for instance see ([10]-[13]).

The purpose of this paper is to introduce a more general integral definition which
generalizes some significant well known fractional integral operators such as Riemann-
Liouville fractional integral, k-Riemann-Liouville fractional integral, Katugampola
fractional integrals, conformable fractional integral, Hadamard fractional integrals,
etc. In second section, using a general class of this generalized fractional integral
operator, we establish new Hermite-Hadamard type inequalities. In third section,
using functions whose first derivatives absolute values are convex, we obtained new
trapezoid inequalities that are connected with the celebrated Hermite-Hadamard type
which cover the previously puplished results. In the last section, we extend some
estimates of the left hand side of a Hermite-Hadamard type inequality for functions
whose first derivatives absolute values are convex.

2. Generalized fractional integral operators

In this section, we state the following new integral definition which are useful in
the proofs of main theorems:
Let’s define a function ¢ : [0,00) — [0, 00) satisfiying the following conditions:

/1 AR (10)
, ¢

(s)

(r)

jS)

< < A for

<2<2 (11)

S l®»

1
Ay

S
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p(r) o 4 #0)

5 S A2 fors<r (12)
e(r)  ¢(s) e(r) . 1 _s
o < Aslr— s 2 for 3 < - <2 (13)

where Ay, As, A3 > 0 are independent of r,s > 0. If ¢(r)r® is increasing for some
a > 0 and ”’T(;) is decreasing for some § > 0, then ¢ satisfies (10)-(13), see [26].
Therefore, we define the following left-sided and right-sided generalized fractional
integral operators, respectively, as follows:

ot I f(@) = /w%ﬂt)dt, z>a, (14)
b — X
,,_wa(x)z/ %f(t)dt, x < b (15)

The most important feature of generalized fractional integrals is that they generalize
some types of fractional integrals such as Riemann-Liouville fractional integral, k-
Riemann-Liouville fractional integral, Katugampola fractional integrals, conformable
fractional integral, Hadamard fractional integrals, etc. These important special cases
of the integral operators (14) and (15) are mentioned below.

i) If we take ¢ (t) = ¢, the operators (14) and (15) reduce to the Riemann integral
as follows:

I, f(x)= /51? f®)dt, x> a,

b
Ib,f(x)z/ F(t)dt, z<b.

ii) If we take @ (t) = %, the operators (14) and (15) reduce to the Riemann-
Liouville fractional integral as follows:

I f(z) = r(la) /x (z— ) f(t)dt, x> a,
b
o f(z) = F(la) / (t— 2" fB)dt, @ <b.

iii) If we take ¢ (t) = mt%, the operators (14) and (15) reduce to the k-
Riemann-Liouville fractional integral as follows:

1 @) = i [

b
@) = [ =

o0 &
Ty (o) = / t* e ®dt, R(a)>0
0

=R

“Lrdt, x> a,

>

“Lr@)dt, z<b

where

and
«

s (@) = k%10 (k) ., R(a) >0k >0
are given by Mubeen and Habibullah in [20].
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iv) If we take

p(t) = ﬁt (x —t)° (xs+1 — ts+1)a71
and
p(t)= ﬁt (t—x)° (ts'*‘l _ xs+1)a*1 7

in the operators (14) and (15), respectively, then the (14) and (15) reduce to the
Katugampola fractional operators as follows: for & > 0 and s # —1 is a real numbers

-« T

I:ir,sf(x) = %/ (ws-i-l _ ts+1)°‘*1 tsf(t)dt, T>a,
11—« b

Iy o f(x) = %/ (@5 — Y T e p(ydt, @ < b,

are given by Katugampola in [24].
v) If we take ¢ (t) = t(z —¢)*"", the operator (14) reduces to the conformable
fractional operators as follows:

If(z) = /E t*" L f(t)dt = /m f®)dat, = >a, a€(0,1),

is given by Khalil et.al in [25].

vi) If we take
1 [(logz —log(x —t)]* "
a) x—t

and
}(1—1

o(t) = F(1 t[(log(t —x)—logx

)

a) t—zx

in the operators (14) and (15), respectively, then operators (14) and (15) reduce to
the right-sided and left-sided Hadamard fractional integrals:

Iﬁf(x)r(la)/w(logxlogt)o‘l @dt, O<a<z<b,
b
Ilf‘_f(x)r(la)/ (1ogtflogx)“*1@dt, 0<a<az<b

vii) If we take ¢ (t) = L exp (—1=2¢) in the operators (14) and (15), respectively,
then operators (14) and (15) reduce to the right-sided and left-sided fractional integral
operators with exponential kernel for a € (0, 1), as follows:

If;f(x):é/gﬂexp <1;a(xt)> f)dt, a<u,

70 f(a) = ;/:exp (—1 - :@) FOdt, @ <b

are defined by Kirane and Torebek in [18].
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3. Hermite-Hadamard inequalities for generalized fractional integrals

Throughout this study, for brevity, we define
Y h— 1 b—
M) = [EOED gy <o, a) = [ gy <o
0 u y U

In this section, using generalized fractional integral operators, we begin by the fol-
lowing theorem:

Theorem 3.1. Let f : [a,b] = R be a convex function on [a,b] with a < b, then the
following inequalities for generalized fractional integral hold:

1(*5°) < o b Fof @+ o Lop@] < L2200

Proof. For t € [0,1], let x =ta+ (1 — )b, y = (1 —t)a + tb. The convexity of ¢ yields
a+b r+y\ _f@)+f)

f(2)=f(2>§ 5 (17)

2f<a;b)<f(ta+(1—t)b)+f((1—t)a+tb). (18)

Multiplying both sides of (18) by M, then integrating the resulting inequality
with respect to t over (0, 1], we obtain

2f<a—2kb> Alw((b;a)t)dtg/lso((b_a)t)f(m+(1t)b)dt

0 t
Lo(-a)
+/0 LR (- tat th) e
As consequence, we obtain
a ! —a
o (“50) [ 2Tt < (ot 0) + Tl (19)

and the first inequality is proved.
To prove the other half of the inequality in (16), since f is convex, for every
t € [0, 1], we have,

flta+ @ =8)b)+ f((1—t)a+tb) < f(a)+ f (D). (20)

Then multiplying both sides of (20) by M and integrating the resulting inequal-
ity with respect to ¢ over (0, 1], we obtain

1
p((b—a)t
e TS0 + o L@ < U @+ s o) [ 2D
0
and the second inequality is proved. O
Remark 3.1. If in Theorem 3.1, we get o (t) = t, then the inequalities (16) become
the inequalities (1).

Remark 3.2. If in Theorem 3.1, we get ¢ (t) = Ft((;), then the inequalities (16)

become the inequalities (6) of Theorem 1.5.
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Remark 3.3. If in Theorem 3.1, we get ¢ (t) = #%(a), then the inequalities (16)

become the inequalities

a+b Fk(OZ—Fk) o f((l)—l—f(b)
f( 2 >_ (b—a)® I Fo)+ Ly f(a)}éf.

which are proved by Hussain et. al. in [22].

Corollary 3.2. Under the assumption of Theorem 4.5 with ¢ (t) =t (b — t)ail , and

(a+b) , then we have

f is a symmetric to

f(a;—b)_ba_ /f ot < ()+f()

which are Hermite-Hadamard type inequalities for conformable fractional integrals.

Corollary 3.3. Under the assumption of Theorem 4.5 with ¢ (t) = éexp (,1?7%),
€ (0,1), we have

a+b -« N . Fla) f ()
f< 2 >§2(16XP(A)) I fo) + I f(a)}sf

where A = -2 (b —a).

This result is given by Kirane and Torebek in [18].

4. Trapezoid inequalities for generalized fractional integrals

Before starting and proving our next result in this section, we need the following
lemma.

Lemma 4.1. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If
f' € Lla,b], then the following equalities for generalized fractional integrals hold:

fla) +f(b) 1

. - AT [+ Lo F(b) + -1, f(a)]
=S [ a-0 - a0l s a0 - on
=) N b+ () a1 OB)d (21)

2A(1)

Proof. Here, we apply integration by parts in integrals of right part of (21), then we

have
S1 =/01 [/Ot‘p((b_a)u)du] I (ta+ (1 —t)b)dt

u

L0 ez, , 1 [eboas)

b—a u b—a
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And similarly, we obtain
1 gt _
So :/ U S0((ba)u)du} f b+ (1 —t)a)dt
o LJo u
_f) /1 p(b-a)uw, 1 /” ¢ ((b—a)x)
0 a

T b—a u b—a T

f(z)dz.

If we subtract S; from Sy and multiply by (b — a), we obtain proof of the (21). O

Remark 4.1. If in Lemma 4.1, we get ¢ (t) = t, then the inequalities (21) become
the identity (2) of Lemma 1.1.

Remark 4.2. If in Lemma 4.1, we get ¢ (t) = %, then the inequalities (21) become
the identity (7) of Lemma 1.6.

a

Remark 4.3. If in Lemma 4.1, we get ¢ (t) = #?(a), then the identity (21) reduces
to

F@)+F6) Tu(ath) [0 )
2 B (I;, —a)* {Iﬁ,k fO) + I f(a)}

_ b;a/ol [(1_@% _t%} f'(ta+ (1 —t)b)dt

which are proved by Hussain et. al. in [22].

Corollary 4.2. Under the assumption of Lemma 4.1 with ¢ (t) =t (b— t)ail and f

is a symmetric to “FY | then we have
i) o /ab 0ot
- M/Olab— (b—a) (1= )" — [b— (b—a) ") ' (ta+ (1 — )b) dt
- 2((12_—(2)&)/01 B = b= (b—a) %) [ (tb+ (1 = £)a) — f' (ta+ (1 — )b)] dt.

Remark 4.4. If in Lemma 4.1, we get ¢ (t) = Lexp (—1=2t), a € (0,1), then we
have the following identity

f(a)+ f(b) 1—« N .
2 ) (I —exp(—A)) [Ia+ f(b) JrIb, f(a)}
b—a ! /
N 2(1Tp(+1))/0 [exp (—At) —exp (= A (L = 1)) f' (ta + (1 — t)b) dt

is proved by Kirane and Torebek in [18].

Now, we extend some estimates of the right hand side of a Hermite-Hadamard type
inequality for functions whose first derivatives absolute values are convex as follows:

Theorem 4.3. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If
|/’ is convex on [a,b], then the following inequality for generalized fractional integrals
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hold:
‘f(a) ; fFb) 2A1(1) I f () + »-I,f(a)]
(b—a) [! |f" (a)] + | (b)]
< AU).A HAﬂt)A@ﬂdt<12>. (22)

Proof. Using Lemma 4.1 and the convexity of | f’|, we find that

’f(a) + /() 2A1(1) [+ I f(b) + I, f(a)]

S(b )/1 [/1t(‘0((l)_wdu—/0t<p((b;wdu] | (ta + (1 — t)b)| dt

( ) u
[— t [—
S —a) ‘f |/ / a)u)du_/Mdu dt

u 0 u

1—t ¢ _

Do [ | [T, [,
u 0 u
which this completes the proof of the (22). This completes the proof. O

Remark 4.5. If in Theorem 4.3, we get ¢ (¢) = ¢, then, the inequalities (22) become
the inequalities (3) of Theorem 1.2.

Remark 4.6. If in Theorem 4.3, we get ¢ (t) = FtZ)v then the inequalities (22)

become the inequalities (8) of Theorem 1.7.

cy

Remark 4.7. If in Theorem 4.3, we get ¢ (t) = then the inequalities (22)

(a) )
become

2 (b— a)% |:I:+k f(b) + Il?i,k f(a)}

(-3 ()

which are proved by Hussain et. al. in [22].

Corollary 4.4. Under the assumption of Theorem 4.8 with ¢ (t) =t (b—t)*"" and
f is a symmetric to (atb) +b) , then we have

‘f()+f /'f ot

‘ﬂ®+ﬂw_FMa+M

2

2¢ 2

ot ypett _ @ E DT (@) + |f ()
S EroTersyi DA 1[ }

Proof. In (22), if we take ¢ (t) =t (b—t)* ", then it follows that

|f()+f /‘f Ndot

2
(b—a)a [/ ()| + 1/ (B)]
SW/O tia = - soja (HELAER). e
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By computing M = fol t|A(1 —t) — A(t)| dt in (23), we get

1
M = é/ tib—(b—a)(1—=8)]" = [b—(b—a)t]*|dt
0
1 b o o
= M/g (u—a)lu®—la+b—u]"|du
1 =

- oz(b—a)g/ (u—a)([a+b—u]” —u*)du

b
bt / (u—a) (u® - [a+b—u]*)du

a(b—a)’ ath
a+1
— 1 anrl + ba+1 _ (a‘ + b) *
ab—a)(a+1) 20
which completes the proof. O

Remark 4.8. If in Corollary 4.4, we take o = 1, then we have

‘ﬂ®+f@_$ialwﬁMt

2 4 2

< b9 {If’ (@l +1f (b)l]

which are proved by Dragomir and Agarwal in [3].

Remark 4.9. If in Theorem 4.3, we get ¢ (t) = L exp (—1=2t), a € (0,1), then we
have

F@I®)  dma
2 T 2(1—exp(—A)) [Irﬁf(b) +1° f(a)} ‘

< bQ_Aa tanh (’2) (W)

is proved by Kirane and Torebek in [18].

Theorem 4.5. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b.
If | f'|? is conver on [a,b] for some q > 1, then the following inequality for fractional
integrals holds:

1
: = ga ket L O + v Lo f (@)

< (;)A_(f;) (/01 |A(1—t)—A(t)|pdt):) ('f' (“”q;'f/ (b”q);. (24)
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Proof. Using Lemma 4.1, Holder’s inequality and the convexity of |f’|?, we find that

HOLTO) - S e L0+ 4 I f @)
b—a) ([ [T elb—a)u) Lo((b—a)u) |
([ [ ooy )
b—a) ([ [Telb—a)u "o(b—a)uw) I
<G ([ 1) e [ 20T )
< ([ er@r v a-olr o)
which this completes the proof of the (24). This completes the proof. O

=

Q=

X </01 |f (ta+ (1 —t)b)|th>

=

Remark 4.10. If in Theorem 4.5, we get ¢ (t) = ¢, then, the inequalities (24) become
the inequalities (2.4) of Theorem 2.3 in [3].

Remark 4.11. If in Theorem 4.5, we get ¢ (t) = Ft(;),

) then the inequalities (24)
become the inequalities (2.7) of Theorem 8 in [14].

Remark 4.12. If in Theorem 4.5 we get ¢ () = ﬁ%@), then the inequalities (24)
become

fla)+ f(b)  Thla+k)
2 (b—a)%
(b—a) <|f’<a>|q+|f'<b>|“)3

S 2(2p+1)” 2

where % + % =1, ¢ €10,1], which are proved Hussain et. al. in [22].

LS OR f(a)]‘

Corollary 4.6. Under the assumption of Theorem 4.5 with ¢ (t) =t (b—t)*"" and
f is a symmetric to (atb) +b) , then we have

f(a)+ £ (b
e Cy Ty
< (b—aﬁ I P (R ki p(lff<a>|"+|f/<b>lq)é.
T 20 (0% —a®) (ap+1)* 20 2
Proof. In (24), we take w():t(b—t)a_l,thenweget
f(a)+ £ (b
| . Sy

- “ ( /Olw_t)_AWdt)i<|f/<a>|Q;|f'<b>|‘I>3_ o5)



204 M. ZEKI SARIKAYA AND F. ERTUGRAL

By computing right-side integral in (25), using the inequality A > B > 0 and ¢ > 1,
(A—B)?! < A7 — B4, we get

/1|A(1—t) ()P dt = /|b— Q) (1= 8] — b — (b—a) ] dt
0

1 o o p
—m/‘; |u —[a—|—b—u] ‘ du

a+b
> b

1 1
— b— a _ a\P a . 1\P
ap(b—a)/a ([a+b—u]” —u®) du+ap(b—a)/a;rb(u [a+b—ul") du
1 agt 1 b
< ——— b—ul"? —u*)d _ P — b—u]*")d
_ap(b—a)/a (Ja+b—1 u®P) u+a1’(b—a)/az+b(u [a+b—ul")du
ap+1
_ 2 aaerl 4 bap+1 _ (CL + b) P
a? (b—a)(ap+1) 20p
which completes the proof. O

5. Midpoint inequalities for generalized fractional integrals

Before starting and proving our next result, we need the following lemma.

Lemma 5.1. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If
f' € Lla,b], then the following equalities for generalized fractional integrals holds:

H(57) ~gam e IO+ LS @ = G S
where

fo (&) f (tb+ (1 —t)a)dt, fo ) [/ (ta+ (1 —t)b) dt,
J3 f( A®) f (tb+ (1 —t)a)dt, J4_f A (ta—i—(l—t)b)dt.

Proof. In the proof of (26), we apply integration by parts, then we have

J1/0%</0t‘p(( D), > (th+ (1 — t)a) dt

1 a+b 1 %go((b—a)t) P
_b_a</0 ! /0 — (1= tya)
b

f
(b—a)u )
b—a
JQ:/§ </ (b= a)u du)f’ (ta+ (1 —t)b) dt
0 0
(b—a)u )

a+

bia/j @((bt_a)wf(ta—l-(l—t)b)dt
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ng/ll (—/tl Mdu) b+ (1 —t)a)dt

! —a)u a ! —a
- ([ ) () -k [

J4=/1 (/tlsp((b_wdu)f’(ta—i—(l—t)b)dt

1 U
1 Lo ((b—a)u) a+b L [te(b-a)t)
= d — t 1—1)b)dt.
ba(/; U wlf 2 ba/; t flta+( )8)
Thus, by the above expressions, the desired identity (26) is obtained. O

Remark 5.1. If in Lemma 5.1, we get ¢ (¢) = t, then, the identity (26) become the
identity (4) of Lemma 1.3 by Kirmaci in [5].

Remark 5.2. If in Lemma 5.1, we get ¢ (t) = (a), then the identity (26) become
the inequalities (9) of Lemma 1.8 by Igbal et al. in [19] .

Corollary 5.2. Under the assumption of Lemma 5.1 with ¢ (t) = kF (a), then the
identity (26) become

a+b Iy (e + k) b—a o
- e fo)+ 12 1
(557) - e e s@)] = >l

where

fosz’ (tb + (1 — t)a) dt, fo (=t%) f ta+(1—t)b)dt
13_f (tx —1) f/ (tb+ (1 — t)a) dt, 14_f7( —t%) f' (ta+ (1 —t)b) dt.

Corollary 5.3. Under the assumption of Lemma 5.1 with o (t) =t (b—t)*"" and f

(a+b , then we have

s a symmetric to

a+b « b b—a -
(%) 5o/ Ot = gy S

where
Heg [ == eau) f o0 — o
B [0 b- -0t (1= ),
@ Jo
B=g [ (o=@t —a) (1~ o)
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Proof. In (26), if we take ¢ (t) = t)* ", then we get

=
A = = (0~ B~ (b~ a))")
and

At) = é (b—(b—a) 4] —a®).

Thus, we obtain

a+b « b b—a
1(50) - s [ 0ot = = Y

which completes the proof. O

Corollary 5.4. Under the assumption of Lemma 5.1 with ¢ (t) = éexp (—%t) , o €
(0,1), then we have

a+b 11—« o o . b—a : 1
f( 2 )‘2(1_exp(_A))[a+f(b)+Ib f(a)}_Q(l—eXp(—A));Jk

where A = =% (b —a) and

gl = / *(exp (= Al — 1) f (th+ (1 — t)a) dt,

g = / (1= exp (—A1)) ' (ta+ (1 — )b) dt,

J; = /l (exp (—At) —exp (—=A)) f' (tb+ (1 — t)a) dt,

2

1
Ji = / (exp (—A) —exp (—At)) f' (ta+ (1 — t)b) dt.
1
3
Finally, we extend some estimates of the left hand side of a Hermite-Hadamard
type inequality for functions whose first derivatives absolute values are convex as
follows:

Theorem 5.5. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If
|f'| is convex on [a,b], then the following inequality for generalized fractional integrals
hold:

£(“57) - g b o0+ b TofGo)

_b—a) [ @I+ 1O [ [* !
<55 [ : }(/0 |A(t)dt+/% |A(t)|dt>. (27)

Proof. By using the convexity of |f’|, then the inequality (27) is obtained as follows

‘f <‘” b) - gy et LT 0+ o Lo f (@)

(b—a) / /Ow«b;a)u)du dt+/11

2A(1) .

IN

/t Mdu‘dt] (L (@) + [ (B)]].-
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This completes the proof. O

Remark 5.3. If in Theorem 5.5, we get ¢ (t) = ¢, then, the inequality (27) reduces
to the inequality (2.3) of Theorem 2.3 by Kirmaci in [5].

Remark 5.4. If in Theorem 5.5, we get ¢ (t) = %, then the inequality (27) reduces
to the inequality (3) of Theorem 2 by Igbal et al. in [19] .

Corollary 5.6. Under the assumption of Theorem 5.5 with ¢ (t) = 5 “(a) then the
inequality (27) become

(o) BB g

1 1 1 /" (@) + 1/ (0)]
2<;:+1>*<z+1>2%“ )

< (b-a)

where ¢ € [0,1].

Proof. In (27), if we take ¢ (t) = then we have

kF (a) ’

|f (52) - R e, o+ 1 f(a)}‘

2 2(b—a)*
r ’ ’ 1 1
<(bh—aylt (a+ k) {If (@) +|f (b)l] / IA(t)] dt +/ IA()|dt | . (28)
(b— a) 2 0 1
By computing two integrals in (28), since A(t) = Igz(_;}j)tk , we get

3 (b—a)® /% N k(b—a)®
A@)|dt = =———— trdt = =
/0 [A®) Tk (a4 k) Jo (a+ k)T (a+k)2%+!

and since A(t) = % (1—t%), we have

1 _ (b_a)% 1 N
/5|A(t)|dtFIC(OHFk)/é (1—t%)dt

(b—a)* (1 k 3
rk(a+k)( - (a+k)+(a+k)25:+1>'

Thus, we get

/ol "“*/'A (t)]di = M[l‘mikﬁ(w%z%}

which completes the proof. U
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Corollary 5.7. Under the assumption of Theorem 5.5 with o (t) =t (b—t)*"" and
f is a symmetric to @, then we have

b
‘Jc(a;—b) B bafaa/ F(t)dat

1 a a+b  (a+0b)*t
< a+1 ba+1 o «@ ba
= 0o — a9) [(a T Sy @ T lat 1)

2

[If’ (@) +[f ()]

Proof. In (27), if we take ¢ (t) =t (b—t)* ", it follows that

() o
<o) faa {If’ |‘2*‘|f/()|]</05|1\(t)|dt+ﬁl

2

IA(t)] dt) . (29)

By computing two integrals in (29), we get
1
3

1

3 1 o b (b o) gl
/O|A(t)|dt _ a/0 b — [b— (b— a) | dt

1 b

a+1
_ 1 « ba+1+ (a+b)+ _baa+b
alb—a) |a+1 20t (o + 1) 2
and
1 1 !
/\A(t)|dt = — [ |[b—(b—a)t]* —a®|dt
1 a1
2 2
a+b
1 =
- - a_ a2l d
a(b—a)/a [5% — a%| ds
— 1 « aa+1 (a+b)a+1 7aaa+b
ab—a) |la+1 20t (a4 1) 2
Thus, we get
3 1
/ |A(t)|dt—|—/ A(H)] dt
0 3
1 atl N a+b  (a+b)*"
— ba+ _ [e% ba
a(b—a) [(a + )a+1 (a% +%) 2 +2°‘(a+1)
which completes the proof. O

Remark 5.5. If in Corollary 5.7, we take a = 1, then we have

f<a+b)/ fioa| < 059 [0l 17 0]

2
which is given by Kirmaci in [5].




ON THE GENERALIZED HERMITE-HADAMARD INEQUALITIES 209

(63

Corollary 5.8. Under the assumption of Theorem 5.5 with ¢ (t) = L exp (—15%t),
€ (0,1), then we have

‘f ("3%) - saep oy 10+ f(“)H S

« (; - %exp(—A) + % <2exp (_‘§> — exp (—A) — 1)) w

Proof. In (27), we take ¢ (t) = L exp (—1=2¢), a € (0,1), we have

‘f (*37) - sa-ep oy 10+ f(“)H e (A

><|f/(a)|+f/(b)</;|l—exp( avdi+ [ Jexp (~ A)—exp(—At)dt>
2 0

:1_ZX;?_A)|f’(a)I;rf’(b) (2 +Xp<2 ) ( DGXM_A))

which is completed the proof. O

Remark 5.6. If in Corollary 5.8, for « =1, A — 0, it follows that

(b—a) }‘1210

1 1
3 3 &XPp
(1—ex (

then we have

UCOR=INCE

which is given by Kirmaci in [5].

2

[If’( )I+|f’(b)|}

Theorem 5.9. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b.
If | f'|7 is convex on [a,b] for some q > 1, then the following inequality for fractional
integrals holds:

‘f (“52) - oy b 10+ o L f @)

_ (05, l<3|f’ (@) + 17" <b>lq)é " ('f' (“”q”'f'(b)'qﬂ . (30)

24 A1) 4 4

where

Sp=</j |pdt> (/ A |”dt>
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Proof. By using the convexity of |f/|?, then the inequality (30) is obtained as follows
b 1
£("52) - o e A0+ o TofCa)
b—a [([H [ eteam, PN (] eomaw, P oY
SQ%A(l) </0 /0 " du dt) —|—</§ /f " du dt)
/ q / q é / q / q %
. Kw @'+ 17" ®) ) +(|f @' +31f <b>|) ]

This completes the proof. O

Remark 5.7. If in Theorem 5.9, we get ¢ (t) = ¢, then, the inequality (30) reduces
to the inequality (5) of Theorem 1.4 by Kirmaci in [5].

Remark 5.8. If in Theorem 5.9, we get ¢ (t) = ( > then the inequality (30) reduces
to the inequality (4) of Theorem 3 by Igbal et al. in [19] .

Corollary 5.10. Under the assumption of Theorem 5.9 with ¢ (t) = then the

kF (a)’
inequalities (30) becomne

’f <a+b> _Ti(atk)

2 2(b—a)*
b—a 31F @)+ [F O\ (1 @7 +31F B)\7
< 1
T (ep+1)rot K 4 ) +( 4 > ]
where ¢ € [0,1].

I, )+ I f(a)]’

Proof. In (30), if we take ¢ (t) = #%(a), it follows that
a+b Fk (Oé+/€)
— = [1° b I
|f( ! ) oy (10 S0+ 1 1)
< (b—a) Tr(at k) | (B3I @P SO\ (@ + 3170
- %( ) 4 4
x [</| |pdt> +</ IA(t |pdt> ] (31)
0
By computing two integrals in (31), since A(t) = F(Z?;ii)t%, we get
1 e p 1
2 b—a)k 2 .
AP dt = b-af / tRPdL
[ora - |d22g] )
P

1
(Fp+ 1) 28777
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Let a € (0,1] and Vt1,t € [0,1], [t¢ —t5| < |t1 —t2|®. Then, since A(t) =

b—a)® any .
Lot (1 - 1%) it follows that
1 o p 1
b — a) k a
AD|Pdt < (7 / 1=t P qt
/%| WP dt < lrkmk) 0

(b—a)® 1

Fk (a+k) (%p+1) 2%1"‘!‘15
which is completed the proof. 0

Corollary 5.11. Under the assumption of Theorem 5.9 with o (t) =t (b—t)*"" and

. . (a+b)
f is a symmetric to ~—5—, then we have

a+b « b
’f< r) i S0

(b—a)t T(a,b;a5p) [ (31F (@) + 1 BI\T | (If (@ +3]f B\
= 27 (b — a®) [( 4 >+( 4 )]

where

1
P

b bap+1
T(a,b;05p) = < o e*d >ba1’+1 (a+0)

ap+1 2 200+ (ap + 1)

1
P

ap . a—+ b aap+1 (a’ + b)O‘p+1
ap+1 2 20+ (ap + 1)

Proof. In (27), if we take ¢ (t) = ¢ (b—t)*"", it follows that

b
‘f <a42rb) - faa/ F(t)dat

(s <b>|q>5 W GCIEL (b)q)ﬂ

a(b—a)
23 (b — a®)

y (/0 |A(t)|”dt> +</ |A(t)pdt> . (32)

By computing two integrals in (32), using the inequality A > B > 0 and ¢ > 1,
(A— B)? < A7 — B4, we get

<
- 4 4

1 1
3 1 3
AP dt = — b —[b— (b—a)t]*" dt
|l o == t—an
1 b

< b — 5P d
>~ Oép(ba)/a;b( S ) S
- 1 ap  a+b popHL (a+ b)*PH
— aP(b—a) |[\ap+1 2 2er+l (ap + 1)
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and
1 1 /1 .
p _ 7 _ _ o«
/l [A@)|"dt = o | [[b—(b—a)t] a®|” dt
2
L
< ap _ oy 4
~ aP(b—a) /a (s a®F) ds
B 1 ap  a+bd gortl (a + b)*H
 ar(b—a) [\ap+1 2 20+ (ap + 1)
Thus, we get
1 1
% P 1 P
/ A@®)[Pdt | + / |A() [P dt
0 3
1
< 1 ( ap a+ b) por-1 (a+ )t 17
“a(b—a)? ap+1 2 200+ (ap + 1)
Lop ak D\ e, (@D T
ap+1 2 20r+1 (ap + 1) ’
which is completed the proof. O
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