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Stochastic perturbation of Frank-Wolfe method for nonconvex
programming problems
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Abstract. In this paper, we present a random perturbation of Frank-Wolfe method (a.k.a.
Conditional gradient method) for solving nonconvex differentiable programming under linear

differentiable constraints. The perturbation avoids convergence to local minima. Theoretical

results guarantee the convergence of the proposed method towards a global minimizer. Some
numerical results of medium and large size problems are provided to show the effectiveness of

our approach.
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1. Introduction

Convex optimization has played an important role in recent years with the advent of
the computer to study a given phenomenon, or to study a range of phenomena. A
main challenge today is on nonconvex problems in these phenomena. There exist sev-
eral application areas for non-convex optimization with linear constraints (NCOLC)
problems like combinatorial optimization (water distribution [6], co-localization im-
age and video), optimal control [7], integer programming of call center [2], machine
learning [14, 15], and or learning neural networks based on parsimonious coding and
Frank-Wolfe algorithm. This algorithm also known as the conditional gradient, was
originally proposed by Marguerite Frank and Philip Wolfe in 1956 [10], is one of the
oldest methods for nonlinear constrained optimization and has seen an impressive re-
vival in recent years due to its low memory requirement and projection-free iterations.
It makes it possible to approximate to each iteration a function by its development
in first-order Taylor series.

We consider nonconvex optimization problems with linear equality or inequality
constraints of the form  minimize f(x)

subject to Ax ≤ b
` ≤ x ≤ η

(1)

where f : Rn → R is a twice continuously differentiable function, A is m× n matrix
with rank m, b is an m-vector, and the lower and upper bound vectors, ` and η, may
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contain some infinite components;
and  minimize f(x)

subject to Ax = b
0 ≤ x

(2)

where f : Rn → R is an objective function non-convex and continuously differentiable,
A ∈ Rm×n and b ∈ Rm.

In convex situations, the global optimization problem can be tackled by a set of
classical methods, such as, for example, those based on the gradient, which have shown
their effectiveness in this field. When the situation is not convex, this problem cannot
be solved using the classic deterministic methods like the Frank-Wolfe. The stochastic
algorithms like the genetic algorithm and the simulated annealing algorithm are also
ineffcients for solving this type of problems. For this reason, in order to solve this
kind of problems, we try to perturb stocasicly the deterministic classic method.

The problem (2) can be numerically approached by using Frank-Wolfe (FW) method,
which generates a sequence {xk}k≥0, where x0 is an initial feasible point and, for each
k > 0, a new feasible point xk+1 is generated from xk by using an operator Qk (see
Section 3). Thus, the iterations are given by:

∀k ≥ 0 : xk+1 = Qk(xk).

We introduce in this paper a different approach, inspired from the method of
stochastic perturbations introduced in [17] for unconstrained minimization of contin-
uously differentiable functions and adapted to linearly constrained problems in [5].

In such a method, the sequence {xk}k≥0 is replaced by a random vectors sequence
{Xk}k≥0 and the iterations are modified as follows:

∀k ≥ 0 : Xk+1 = Qk(Xk) + Pk,

where Pk is a suitable random variable, usually referred as the stochastic perturba-
tion. The sequence {Pk}k≥0 must converge to zero slowly enough in order to prevent
convergence of the sequence {Xk}k≥0 to a local minimum (see Section 4).

The rest of the article is organized as follows. In section 2, we introduce some
notations and give some precise assumptions that will be useful for the rest of the
article. The principle of the Frank-Wolfe method is recalled in section 3. Then, in
section 4, we present the stochastic perturbation of FW method. Finally, in section
5, we provide some numerical experiments.

2. Notations and assumptions

We use the following notations:
E = Rn, the n-dimensional positive real Euclidean space,
x = (x1, . . . , xn)t ∈ E,

‖x‖ =
√
xTx = (x21 + · · ·+ x2n)1/2 the Euclidean norm of x.

xt denotes the transpose of x.
Let

S = {x ∈ E | Ax = b, x ≥ 0}.
The objective function is f : E → R, its lower bound on S is denoted by α∗ i.e.

α∗ = min
S
f .
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Let us introduce

Sλ = Cλ ∩ S; where Cλ = {x ∈ E | f(x) ≤ λ}.

We assume that

f is twice continuously differentiable on E, (3)

∀λ > α∗ : Sλ is not empty, closed and bounded, (4)

∀λ > α∗ : meas(Sλ) > 0, (5)

where meas(Sλ) is the measure of Sλ.
Since E is a finite dimensional space, the assumption (4) is verified when S is

bounded or f is coercive, i.e., lim
‖x‖→+∞

f(x) = +∞ . Assumption (4) is verified when S

contains a sequence of neighborhoods of a point of optimum x∗ having strictly positive
measure, i.e., when x∗ can be approximated by a sequence of points of the interior of
S.

We observe that the assumptions (3) and (4) yield that

S =
⋃
λ>α∗

Sλ, i.e., ∀x ∈ S : ∃λ > α∗ such that x ∈ Sλ.

From (3)-(4), one has:

γ1 = sup {‖∇f(x)‖ : x ∈ Sλ} < +∞.

Consequently, one deduces

γ2 = sup {‖d‖ : x ∈ Sλ} < +∞,

where d is the direction of Frank–Wolfe method.
Thus,

β (λ, ε) = sup {‖y − (x+ ηd)‖ : (x, y) ∈ Sλ × Sλ, 0 ≤ η ≤ ε} < +∞, (6)

where ε, η are positive real numbers.

3. The Frank-Wolfe method

In this section, we recall Frank-Wolfe method for convex optimization, see Frank
and Wolfe [10], as well as Demyanov and Rubinov [4], cited here for minimization
problems. From now on, we consider a nonlinear programming problem with linear
equality or inequality constraints of the form min f(x)

s.t Ax = (or ≤) b
0 ≤ x

where f : Rn −→ Rn is non-convex twice continuously differentiable function, A is
m× n matrix with m ≤ n and b is a vector in Rm.
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3.1. Search direction & line search. In the Frank-Wolfe algorithm one determines
dk through the solution of the approximation of the problem (1) that is obtained by
replacing the function f with its first-order Taylor expansion around xk :

f(x) ∼ f(xk) +∇f(xk)(x− xk).

By eliminating the constants, this amounts to minimizing the linear function: minimize ∇f(xk)>s
subject to As = (or ≤) b

0 ≤ s

This is an LP problem, and it gives an extreme point, sk, as an optimal solution. The
search direction is dk := sk − xk, that is, the direction vector from the feasible point
xk towards the extreme point.
dk is a descent direction. Indeed,

∇f(xk)>dk = ∇f(xk)>(sk − xk)

= ∇f(xk)>sk −∇f(xk)>xk < 0

since ∇f(xk)>sk < ∇f(xk)>xk.
By using iterations of the general form:

∀k ≥ 0 : xk+1 = Qk(xk) = xk + ηkdk. (7)

One determine a step length, ηk, such that

f(xk + ηkdk) ≤ f(xk).

Among the many different step size rules that the Frank-Wolfe algorithm admits,
we detail two :
1. exact line-search: we choose ηk solution of the problem of one-dimensional mini-
mization of the function η → f(xk + ηdk) on [0, 1], we have

f(xk + ηkdk) = min
η∈[0,1]

f(xk + ηdk).

2. inexact line search: Armijo rule, we have

f(xk + ηkdk) ≤ f(xk) + βηkd
>
k∇f(xk).

3.2. Algorithm of Frank-Wolfe. The Frank-Wolfe algorithm is an iterative first-
order optimization algorithm for constrained non-convex optimization, that given an
initial guess x0 constructs a sequence of estimates x1, x2, . . . that converges towards a
solution of the optimization problem. The algorithm is defined as follows (Algorithm
1):

3.3. Convergence of Frank-Wolfe for Non-Convex Objectives. Let us present
a convergence rate result which is valid for objectives with L-Lipschitz gradient
but not necessarily convex. This was first proven by Simon Lacoste-Julien (see for
instance,[12]):
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Algorithm 1 Frank-Wolfe algorithm

1: Choose a feasible point x(0)

2: for k = 0 . . .K do
3: Compute sk := LMO (∇f(x(k)))
4: Let dk := sk − x(k) (the FW direction)
5: Compute gk :=

〈
−∇f(x(k)),dk

〉
(FW gap)

6: if gk < ε then return x(k)

8: Step size by optimal line search
αt ∈ arg min

α∈[0,1]
f(x(t) + αdt)

9: Update x(k+1) := x(k) + ηtdk
10: end for
11: return x(K)

Theorem 3.1. (Convergence of FW on non-convex objectives). If f is differentiable
with L-Lipschitz gradient and the domain D is a convex and compact set, then we
have the following O(1/

√
t) bound on the best Frank-Wolfe gap:

min
0≤i≤t

gi ≤
max

{
2h0, Ldiam(D)2

}
√
t+ 1

for t ≥ 0,

where h0 := f(x0)−min
x∈D

f(x) is the initial global suboptimality.

Proof. See, [12]. �

4. Stochastic perturbation of Frank-Wolfe method

From [10], it is well-known that if f is not convex, the global minimum can not be
found using a FW algorithm. To overcome this difficulty, we propose an appropriate
random perturbation. In the next, we will establish the convergence of SPFW to a
global minimum for non-convex optimization problems.

The sequence of real numbers
{
xk
}
k≥0 is replaced by a sequence of random vari-

ables
{
Xk
}
k≥0 involving a random perturbation Pk of the deterministic iteration (7);

then we have X0 = x0;

∀k ≥ 0 Xk+1 = Qk(Xk) + Pk = Xk + ηkd
k + Pk = Xk + ηk(dk +

Pk
ηk

), (8)

where ηk 6= 0 satisfied the Step 8 in FW algorithm, and

∀k ≥ 1 Pk is independent from (Xk−1, . . . ,X0).

and

X ∈ S ⇒ Qk(X) + Pk ∈ S.
Equation (8) can be viewed as perturbation of the ascent direction dk, which is re-
placed by a new direction Dk = dk +Pk

ηk
and the iterations (8) become

Xk+1 = Xk + ηkDk.
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General properties defining convenient sequences of perturbation {Pk}k≥0 can be

found in the literature [5, 17]: usually, sequence of Gaussian laws may be used in
order to produce elements satisfying these properties.

We introduce a random vector Zk, we denote by Φk and φk the cumulative distri-
bution function and the probability density of Zk, respectively.

We denote by Fk+1(y | Xk = x) the conditional cumulative distribution function

Fk+1(y | Xk = x) = P (Xk+1 < y | Xk = x),

and the condition probability density of Xk+1 is denoted by fk+1.
Let us introduce a sequence of n-dimensional random vectors {Zk}k≥0 ∈ S. We

consider also {ξk}k≥0, a suitable decreasing sequence of strictly positive real numbers
converging to 0 and such that ξ0 ≤ 1.

The optimal choice for ηk is determined by Step 8. Let Pk = ξkZk

Fk+1(y | Xk = x) = P (Xk+1 < y | Xk = x).

It follow that

Fk+1(y | Xk = x) = P

(
Zk <

y−Qk(x)

ξk

)
= Φk

(
y−Qk(x)

ξk

)
.

So, we have

fk+1(y | Xk = x) =
1

ξnk
φk

(
y−Qk(x)

ξk

)
, y ∈ S. (9)

The relation (6) shows that

‖y−Qk(x)‖ ≤ β(λ, ε) for (x,y) ∈ Sλ × Sλ.

We assume that there exists a decreasing function t 7→ hk(t) > 0 on R+ such that

y ∈ Sλ ⇒ φk

(
y−Qk(x)

ξk

)
≥ hk(

β(λ, ε)

ξk
). (10)

For simplicity, let

Zk = 1C(Zk)Zk, (11)

where Z is a random variable, for simplicity let Z ∼ N(0,1).
The procedure generates a sequence Uk = f(Xk). By construction this sequence is

increasing and upper bounded by α∗.

∀k ≥ 0 : α∗ ≥ Uk+1 ≥ Uk. (12)

Thus, there exists U ≤ α∗ such that

Uk → U for k → +∞.

Lemma 4.1. Let Pk = ξkZk and γ = f(x0) if Zk is given by (11), then there exists
v > 0 such that

P (Uk+1 > θ|Uk ≤ θ) ≥
meas(Sγ − Sθ)

ξnk
hk

(
β(γ, ε)

ξk

)
> 0 ∀θ ∈ (α∗, α∗ + v],

where n = dim(E).
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Proof. Let Sθ = {x ∈ S | f(x) < θ} , for θ ∈ (α∗, α∗ + v].

Since Sλ ⊂ Ŝθ, α
∗ < λ < θ, it follows from (5) that Ŝθ is not empty and has a

strictly positive measure.
If meas(S−Ŝθ) = 0 for any θ ∈ (α∗, α∗+ v], the result is immediate, since we have

f(x) = α∗ on S.

Let us assume that there exists ε > 0 such that meas(S−Ŝθ) > 0. For θ ∈ (α∗, α∗+

ε], we have Ŝθ ⊂ Ŝε and meas(S−Ŝθ) > 0.

P (Xk /∈ Ŝθ) = P (Xk ∈ S−Ŝθ) =
∫
S−Ŝθ P (Xk ∈ dx) > 0 for any θ ∈ (α∗, α∗ + ε],

since the sequence {Ui}i≥0 is increasing, we have also{
Xi
}
i≥0 ⊂ Sγ . (13)

Thus

P (Xk /∈ Ŝθ) = P (Xk ∈ S−Ŝθ) =

∫
Sγ−Ŝθ

P (Xk ∈ dx) > 0 for any θ ∈ (α∗, α∗ + ε].

Let θ ∈ (α∗, α∗ + ε], we have from (12)

P (Uk+1 > θ | Uk ≤ θ) = P (Xk+1 ∈ Ŝθ | Xi /∈ Ŝθ, i = 0, . . . , k).

But Markov chain yield that

P (Xk+1 ∈ Ŝθ | Xi /∈ Ŝθ, i = 0, . . . , k) = P (Xk+1 ∈ Ŝθ | Xk /∈ Ŝθ).

By the conditional probability rule

P (Xk+1 ∈ Ŝθ | Xk /∈ Ŝθ) =
P (Xk+1 ∈ Ŝθ,Xk /∈ Ŝθ)

P (Xk /∈ Ŝθ)
.

Moreover

P (Xk+1 ∈ Ŝθ | Xk /∈ Ŝθ) =

∫
S−Ŝθ

P (Xk ∈ dx)

∫
Ŝθ

fk+1(y | Xk = x)dy.

From (13) we have

P (Xk+1 ∈ Ŝθ | Xk /∈ Ŝθ) =

∫
Sγ−Ŝθ

P (Xk ∈ dx)

∫
Ŝθ

fk+1(y | Xk = x)dy,

and

P (Xk+1 ∈ Ŝθ | Xk /∈ Ŝθ) ≥ inf
x∈Sγ−Ŝθ

{∫
Ŝθ

fk+1(y | Xk = x)dy

}∫
Sγ−Ŝθ

P (Xk ∈ dx).

Thus

P (Xk+1 ∈ Ŝθ | Xk /∈ Ŝθ) ≥ inf
x∈Sγ−Ŝθ

{∫
Ŝθ

fk+1(y | Xk = x)dy

}
.

Taking (9) into account, we have

P (Xk+1 ∈ Ŝθ | Xk /∈ Ŝθ) ≥
1

ξnk
inf

x∈Sγ−Ŝθ

{∫
Ŝθ

φk

(
y−Qk(x)

ξk

)
dy

}
.

The relation (6) shows that

‖y−Qk(x)‖ ≤ β(γ, ε).
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and (10) yields that

φk

(
y−Qk(x)

ξk

)
≥ hk

(
β(γ, ε)

ξk

)
.

Hence

P (Xk+1 ∈ Ŝθ|Xk
/∈ Ŝθ) ≥

1

ξnk
inf

x∈Sγ−Ŝθ

∫
Ŝθ

hk

(
β(γ, ε)

ξk

)
dy.

P (Xk+1 ∈ Ŝθ|Xk
/∈ Ŝθ) ≥

meas(Sγ − Sθ)
ξnk

hk

(
β(γ, ε)

ξk

)
.

�

4.1. Global convergence. The global convergence is a consequence of the following
result, which is a consequence of the Borel-Catelli’s lemma (for instance, see [17]):

Lemma 4.2. Let {Uk}k≥0 be a increasing sequence, upper bounded by α∗. Then,
there exists U such that Uk → U for k → +∞. Assume that there exists v > 0 such
that for any θ ∈ (α∗, α∗ + v], there is a sequence of strictly positive real numbers
{ck(θ)}k≥0 such that

∀k ≥ 0 : P (Uk+1 > θ | Uk ≤ θ) ≥ ck(θ) > 0 and

+∞∑
k=0

ck(θ) = +∞.

Then U=α∗ almost surely.

Proof. For instance, see [13, 17]. �

Theorem 4.3. Let γ = f(x0) , assume that x0 ∈ S, the sequence ξk is non increasing
and

+∞∑
k=0

hk

(
β(γ, ε)

ξk

)
= +∞. (14)

Then U=α∗ almost surely.

Proof. Let

ck(θ) =
meas(Sγ − Sθ)

ξnk
hk

(
β(γ, ε)

ξk

)
> 0.

Since the sequence {ξk}k≥0 is non increasing,

ck(θ) ≥ meas(Sγ − Sθ)
ξnk

hk

(
β(γ, ε)

ξk

)
> 0.

Thus, Eq. (14) shows that

+∞∑
k=0

ck(θ) ≥ meas(Sγ − Sθ)
ξnk

+∞∑
k=0

hk

(
β(γ, ε)

ξk

)
= +∞.

Using Lemmas 4.1 and 4.2 we have U=α∗ almost surely. �

Theorem 4.4. Let Zk define by (11), and let

ξk =

√
â

log(k + d̂)
,
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where â > 0, d̂ > 0 and k is the iteration number. If x0 ∈ S then, for â large enough,
U=α∗ almost surely.

Proof. We have

φk(Z) =
1

(
√

2π)n
exp(−1

2
‖Z‖2) = hk(‖Z‖) > 0,

so,

hk

(
β(γ, ε)

ξk

)
=

1

(
√

2π)n(k + d̂)β(γ,ε)2/2â
.

For â such that

0 <
β(γ, ε)2

2â
< 1,

we have
+∞∑
k=0

hk

(
β(γ, ε)

ξk

)
= +∞,

and, from the preceding Theorem 4.4, we have U=α∗ almost surely. �

5. Numerical experiments

In this section, we describe practical implementation of stochastic perturbation and
we present the results of some numerical experiments which illustrate the numerical
behavior of the method.

In order to apply the method, we start with the initial value X0 = x0 ∈ S. At step
k ≥ 0,Xk is known and Xk+1 is determined.

We generate ksto the number of perturbation, the case ksto = 0 corresponds to the
unperturbed Frank-Wolfe method.

In our experiments, the Gaussian variates are obtained from calls to standard
generators. We use

ξk =

√
â

log(k + 2)
, where â > 0.

The methods in the tables have the following meanings:
(i) “FW” stands for the method of Frank-Wolfe.

(ii) “SPFW” stands for the method of stochastic perturbation of Frank-Wolfe.
The code of the proposed algorithm SPFW is written by using Matlab program-

ming language. We test SPFW method and compare it with FW algorithm. This
algorithms has been tested on some problems from [1, 9, 16, 18, 19, 20], where linear
constraints are present with given initial feasible points x0. The results are listed in
Table 2 to Table 4, where n stands for the dimension of tested problem and nc stands
for the number of constraints. We will report the following results: theoptimal value
f∗ and the number of iteration Iter.
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5.1. Small and medium scale problem. We give in each small and medium scale
problem the initial value x0, the optimal solution x∗ of problem (1) the number of
stochastic perturbation ksto and best known minimum value fbest.

Problem 1. ([1]) minimize : x21 + 2x22 − 0.3 cos(3πx1) cos(4πx2) + 0.3
subject to : −50 ≤ x1 ≤ 50

−50 ≤ x2 ≤ 50

We use ksto = 3 and initial point x0 = (20, 10)T . The Matlab code of our approach
furnish this optimal solution x∗ = (0.00518, 0.00284)T and f∗SPFW = fbest = 5.92e-04.

Problem 2. ([1]) minimize : 4x21 − 2.1x41 + 1
3x

6
1 + x1x2 − 4x22 + 4x42

subject to : −5 ≤ x1 ≤ 5
−5 ≤ x2 ≤ 5

We use ksto = 5 and initial point x0 = (1, 1)T . The Matlab code of our ap-
proach furnish this optimal solution x∗ = (−0.13147, 0.7303)T and f∗SPFW = fbest =
−1.0232.

Problem 3. ([1]) minimize : 105x21 + x22 − (x21 + x22)2 + 10−5(x21 + x22)4

subject to : −20 ≤ x1 ≤ 20
−20 ≤ x2 ≤ 20

We use ksto = 10 and initial point x0 = (5, 5)T . The Matlab code of our ap-
proach furnish this optimal solution x∗ = (0.00067, 14.8546)T and f∗SPFW = fbest =
−24776.45.

Problem 4. ([1]) minimize : − cos(x1) cos(x2) exp(−(x1 − π)2 − (x2 − π)2)
subject to : −10 ≤ x1 ≤ 10

−10 ≤ x2 ≤ 10

We use ksto = 25 and initial point x0 = (2, 1)T . The Matlab code of our approach
furnish this optimal solution x∗ = (3.0928, 3.204)T and f∗SPFW = fbest = −0.99062.

Problem 5. ([1])
minimize : (exp(x1)− x2)4 + 100(x2 − x3)6 + (tan(x3 − x4))4 + x81
subject to : −1 ≤ x1 ≤ 1

−1 ≤ x2 ≤ 1
−1 ≤ x3 ≤ 1
−1 ≤ x4 ≤ 1

We use ksto = 20 and initial point x0 = (0.5, 0.9, 0.9, 0.9)T . The Matlab code of our
approach furnish this optimal solution x∗ = (−0.15227, 0.84332, 0.81448, 0.81061)T

and f∗SPFW = fbest = 4.03e-07.
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Problem 6. ([1])

minimize : 100(x2 − x21)2 + (1− x1)2 + 90(x4 − x23)2 + (1− x3)2 + 10.1((x2 − 1)2

+(x4 − 1)2) + 19.8(x2 − 1)(x4 − 1)
subject to : −10 ≤ x1 ≤ 10

−10 ≤ x2 ≤ 10
−10 ≤ x3 ≤ 10
−10 ≤ x4 ≤ 10

We use ksto = 20 and initial point x0 = (0.9, 1, 1.2, 1.2)T . The Matlab code of our
approach furnish this optimal solution x∗ = (0.91266, 0.83238, 1.0803, 1.1674)T and
f∗SPFW = fbest =0.02534.

Problem 7. ([16])
minimize : −x1 + x1x2 − x2
subject to : −6x1 + 8x2 ≤ 3

3x1 − x2 ≤ 3
0 ≤ x1, x2 ≤ 5

We use ksto = 15 and initial point x0 = (0, 0)T . The Matlab code of our approach
furnish this optimal solution x∗ = (1.1667, 0.50005)T and f∗SPFW = fbest = −1.0833.

Problem 8. ([18])
minimize : −2x1 − 6x2 + x31 + 8x22
subject to : x1 + 6x2 ≤ 6

5x1 + 4x2 ≤ 10
0 ≤ x1 ≤ 2
0 ≤ x2 ≤ 1

We use ksto = 2 and initial point x0 = (0, 1)T . The Matlab code of our approach
furnish this optimal solution x∗ = (0.81618, 0.37523)T and f∗SPFW = fbest = −2.2137.

Problem 9. ([20])

minimize : x21 − 10x1x2 + 7x1 + 7x2 − 9
subject to : −2x1 + 3x2 ≤ 6

4x1 − 5x2 ≤ 8
5x1 + 3x2 ≤ 15
−4x1 − 3x2 ≤ −12
x1, x2 ≥ 0

We use ksto = 10 and initial point x0 = (1, 3)T . The Matlab code of our approach
furnish this optimal solution x∗ = (1.547, 2.4188)T and f∗SPFW = fbest = −16.27.

Problem 10. ([19])

minimize : 2x1 − 2x21 + 2x1x2 + 3x2 − 2x22
subject to : −x1 + x2 ≤ 1

x1 − x2 ≤ 1
−x1 + 2x2 ≤ 3

2x1 − x2 ≤ 3
x1, x2 ≥ 0
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We use ksto = 10 and initial point x0 = (0.5, 0.5)T . The Matlab code of our
approach furnish this optimal solution x∗ = (3, 3)T and f∗SPFW = fbest = −3.

Problem 11. ([8]) minimize : (x1 − 1)2 + (x2 − x3)2 + (x4 − x5)
subject to : x1 + x2 + x3 + x4 + x5 = 5

x3 − 2(x4 + x5) = −3

We use ksto = 20 and initial point x0 = (2, 3/2, 0, 3/2, 0)T . The Matlab code of
our approach furnish this optimal solution x∗ = (1, 0.73395, 0.73401, 1.266, 1.266)T

and f∗SPFW = fbest =3.91e-09.

Problem 12. ([8])
minimize : −32.174(255 ln((x1 + x2 + x3 + 0.03)/(0.09x1 + x2 + x3 + 0.03))

+280 ln((x2 + x3 + 0.03)/(0.07x2 + x3 + 0.03))
+290 ln((x3 + 0.03)/(0.13x3 + 0.03)))

subject to : x1 + x2 + x3 = 1
0 ≤ xi ≤ 1, i = 1, 2, 3

We use ksto = 20 and initial point x0 = (1, 0, 0)T . The Matlab code of our approach
furnish this optimal solution x∗ = (0.61781, 0.3282, 0.053988)T and f∗SPFW = fbest =
−26250.46.

Problem 13. ([8])

minimize : −
235∑
i=1

ln
(
(ai(x) + bi(x) + ci(x))/

√
2π
)

subject to : 1− x1 − x2 ≥ 0
0.001 ≤ xi ≤ 0.499, i = 1, 2
100 ≤ x3 ≤ 180
130 ≤ x4 ≤ 210
170 ≤ x5 ≤ 240
5 ≤ xi ≤ 25, i = 6, . . . , 8

where:

ai(x) =
x1
x6

exp(−(yi − x3)2/(2x26))

bi(x) =
x2
x7

exp(−(yi − x4)2/(2x27))

ci(x) =
1− x2 − x1

x8
exp(−(yi − x5)2/(2x28))

and data of y is presented in table 5.1 (see [8]).

We use ksto = 50 and initial point x0 = (0.1, 0.2, 180, 160, 210, 11.21, 3.21, 5.8)T .
The Matlab code of our approach furnish this optimal solution x∗ = (0.5009916, 0.50099
25, 137.247, 187.1867, 174.5884, 16.48846, 24.89633, 10.55855)T and f∗SPFW = fbest =
1149.78.

Problem 14. ([8]) minimize : −(x1 + 0.5x2 + 0.667x3 + 0.75x4 + 0.8x5)1.5

subject to : Ax ≤ b
x ≥ 0
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Table 1. Data of y.

i yi i yi i yi
1 95 102-118 150 199-201 200
2 105 119-122 155 102-204 205

3-6 110 123-142 160 205-212 210
7-10 115 143-150 165 213 215
11-25 120 168-175 175 220-224 230
41-55 130 176-181 180 225 235
56-68 135 182-187 185 226-232 240
69-89 140 188-194 190 233 245
90-101 145 195-198 195 234-235 250

where:

A =



0.795137 0.225733 0.371307 0.225064 0.878756
−0.905037 −0.638848 −0.134430 −0.921211 0.150370
0.905037 0.248231 0.278197 0.376265 −0.597468
0.762043 −0.304755 −0.012345 −0.394012 −0.792129
0.564347 0.746523 −0.822105 −0.892331 −0.922916
−0.954276 −0.196016 0.242000 0.797813 −0.147119
0.747682 0.912055 −0.529338 0.243496 0.279402
−0.109599 0.727219 −0.741781 −0.058455 0.749470
0.209106 −0.074202 −0.022484 −0.144214 −0.735169


and

b =



4.242372
−1.785220
3.213560
1.205676
−0.891062
−0.066698
2.286079
0.521564
−0.730516


We use ksto = 1 and initial point x0 = (2.9, 0, 0.8, 0.2, 1.7)T . The Matlab code

of our approach furnish this optimal solution x∗ = (0.40964, 5.6011, 6.1354, 7.7007e−
12, 0.4258)T and f∗SPFW = fbest = −21.1304.

Problem 15. ([8])

minimize :
π

n

(
k1 sin2(πy1) +

n−1∑
i=1

[
(yi − k2)2(1 + k1 sin2(πyi+1))

]
+ (yn − k2)2

)
subject to : 3x1 + x2 + 2x5 + x7 − x9 + 6x10 ≤ 120

2x1 + 4x2 + 7x4 + 3x5 + x8 ≤ 57
x5 + 2x8 − x10 ≤ 10
x3 + x8 + 2x10 ≤ 42
x4 + x9 + x10 ≤ 23

0 ≤ xi ≤ 6 i = 1, 2, 5, 0 ≤ xi ≤ 8 i = 3, 4, 8, 9, 10, 0 ≤ xi ≤ 10 i = 6, 7



STOCHASTIC PERTURBATION OF FRANK-WOLFE METHOD 327

where yi = 1 + 0.25(xi − 1), i = 1, 2, . . . , 10.

We use ksto = 5 and initial point x0 = (1, 1, 1, 1, 1, 1, 1, 1, 0.5, 0.5)T . The Matlab
code of our approach furnish this optimal solution x∗ = (0.99561, 0.94154, 0.94154, 0.94154,
0.94154, 0.94154, 0.94154, 0.94154)T and f∗SPFW = fbest =0.0063.

Problem 16. ([8])

minimize : x1 − x2 − x3 − x1x3 + x1x4 + x2x3 − x2x4
subject to : x1 + 2x2 ≤ 8

4x1 + x2 ≤ 12
3x1 + 4x2 ≤ 12
2x3 + x4 ≤ 8
x3 + 2x4 ≤ 8
x3 + x4 ≤ 5
0 ≤ xi, i = 1, . . . , 10.

We use ksto = 5 and initial point x0 = (0, 0, 0, 0)T . The Matlab code of our
approach furnish this optimal solution x∗ = (3,−7.2287e−12, 4,−3.3552e−09)T and
f∗SPFW = fbest = −13.

Problem 17. ([8])

minimize : −
10∑
i=1

(x2i + 0.5xi)

subject to : 2x1 − x6 + x7 ≤ 3
x3 − x5 + x7 ≤ 1.5
3x4 − 2x9 + x10 ≤ 2.2
x5 + 2x6 − x9 ≤ 2.7
x2 + x9 − x10 ≤ 2.3
x3 + 2x8 − x10 ≤ 3
0 ≤ xi ≤ 1, i = 1, 2, . . . , 10

We use ksto = 1 and initial point x0 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T . The Matlab
code of our approach furnish this optimal solution x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T and
f∗SPFW = fbest = −15.

Problem 18. ([8]) 

minimize:
m∑
i=1

n∑
j=1

(cijxij + dijx
2
ij)

subject to:
m∑
i=1

xij = bj , j = 1, . . . , n

n∑
j=1

xij = ai, i = 1, . . . ,m

0 ≤ xij
where

dij ≤ 0,

m∑
i=1

ai =

n∑
j=1

bj .

This problem features n+m equality constraints and nm variables. There is exactly
one redundant equality constraint.

n = 4, m = 6
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a = (8, 24, 20, 24, 16, 12)T

b = (29, 41, 13, 21)T

c =


300 270 460 800
740 600 540 380
300 490 380 760
430 250 390 600
210 830 470 680
360 290 400 310

 and d =


−7 −4 −6 −8
−12 −9 −14 −7
−13 −12 −8 −4
−7 −9 −16 −8
−4 −10 −21 −13
−17 −9 −8 −4

 .

We remark that the rank of the matrix of constraints is less than the number of there
rows in this problem, so we need to add the intelligent variables.

We use ksto = 15 and initial point x0 = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2)T . The Matlab code of our approach furnish this optimal solution x∗ =
(5.9998, 2.0002, 0, 0, 0, 2.9998, 0, 21, 20, 0, 0, 0, 0, 24, 0, 0, 3.0002, 0, 12.9998, 0, 0, 12, 0, 0)T

and f∗SPFW = fbest =15639.

Table 2. Comparing results between FW, SPFW algorithms.

Algorithm
Problem FW SPFW

# n nc f∗ Iter f∗ Iter
1 2 4 0.4936 9 5.92e-04 5
2 2 4 -0.2154 18 -1.0232 4
3 2 4 -24757.98 1934 -24776.45 897
4 2 4 -5e-09 2 -0.99062 2
5 4 4 0.06923 2 4.03e-07 2
6 4 4 0.02647 6 0.02534 2
7 2 2 -0.9999 2 -1.0833 2
8 2 2 -2.2136 8 -2.2137 5
9 2 4 -16.25 75 -16.27 60
10 2 4 0 3 -3 2
11 5 2 2.15e-05 12 3.91e-09 7
12 3 1 -26247.10 600 -26250.46 17
13 8 15 1538.31 3 1149.78 2
14 5 9 -21.1304 3 -21.1304 2
15 10 15 0.70 5 0.0063 1
16 4 6 -13 9 -13 2
17 10 16 -15 3 -15 2
18 24 10 18270 5 15639 3

5.2. Large scale problems. The numerical results of large scale problems are listed
in Table 3 and Table 4.

Problem 19. ([8]) minimize : −0.1
n∑
i=1

cos(5πxi) +
n∑
i=1

x2i

subject to : −1 ≤ xi ≤ 1, i = 1, 2, . . . , n
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Problem 20. ([8]){
minimize : 1− cos (2π ‖x‖) + 0.1 ‖x‖
subject to : −100 ≤ xi ≤ 100, i = 1, 2, . . . , n

where ‖x‖ =

√
n∑
i=1

x2i .

Table 3. Comparing results between FW, SPFW algorithms for
problem 19.

Algorithm
Problem 19 FW SPFW

k n nc f∗ Iter f∗ Iter
100 100 200 -109.98 3 -110 1
200 200 400 -220 5 -220 1
300 300 600 -329.95 3 -330 1
500 500 1000 -550 5 -550 1
900 900 1800 -990 5 -990 1

Table 4. Comparing results between FW, SPFW algorithms for
problem 20.

Algorithm
Problem 20 FW SPFW

k n nc f∗ Iter f∗ Iter
100 100 200 1.8999 111 0.3999 1
200 200 400 3.0104 45 0.10811 1
300 300 600 0.7046 5 0.5998 2
500 500 1000 4.99 132 0.8 2
900 900 1800 0.717 48 0.99 3

From Table 2 above, we see that our algorithm SPFW can find a global solution
with a small number of iterations, and the computation results illustrate that our
algorithm SPFW executes well for those problems. In contrast to the numerical
results of FW algorithm, the results in Table 3 and Table 4 show that when the
number of variables increases, this benefit becomes extremely apparent. This shows
the potential advantage of SPFW algorithm when applied to solving problems with
large numbers of variables.

6. Conclusion

In this work, we have studied the behavior of the Frank-Wolfe in non-convex sit-
uations. The stochastic perturbation of the Frank-Wolfe method (SPFW) converges
to the global minimum for all differential objective functions, but the FW method
converges to the local minimum. The numerical experiments show that the method is
effective to calculate the global optimum. However, we observe that the adjunction of
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the stochastic perturbation improves the result, with a larger number of evaluations
of the objective function. The main difficulty in the practical use of the stochastic
perturbation is connected to the tuning of the parameters â and Ksto.
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