Properties of derivations in a Semantic Schema

NICOLAE ŢĂNDĂREANU AND MIHAELA GHINDEANU

ABSTRACT. The concept of semantic schema was introduced in [2]. The inference process was modeled there by means of a relation which is named derivation. In this paper we study several properties of the derivations in such a structure. These properties will be used in a future paper to design a knowledge manager based on semantic schemas.

2000 Mathematics Subject Classification. Primary 68T30; Secondary 68Q55. Key words and phrases. semantic schema, Peano algebra, derivation.

1. Introduction

The concept of semantic schema was introduced in [2]. We describe there a simple mechanism by which we can represent and process the knowledge. A semantic schema is a tuple of entities, each of which specifying some features of the representation process. This concept is an abstract structure which becomes a real description of a knowledge piece if some interpretation is considered. Various interpretations can be used for the same semantic schema. The concepts and results were applied in a client-server technology, trying to model some aspects concerning the use of the distributed knowledge in the domain of logic programming with constraints ([2]).

Two aspects are relieved in connection with a semantic schema \mathcal{S} :

1) A formal aspect in S by which some formal computations in a Peano algebra are obtained.

2) An *evaluation aspect* with respect to some interpretation. The entities obtained in the previous step get values from a space, which is named the *semantic space*.

In this paper we give several algebraic properties for the formal aspect of the computations in a semantic schema. These computations are based on a specific relation defined in a semantic schema and this is named *derivation*. In Section 2 we review this concept. Several algebraic properties of a derivation are given in Section 3. These properties are useful to continue this research work, as we mention in the last section of this paper.

2. Semantic schema

Consider a symbol θ of arity 2 and a finite non-empty set A_0 . We denote by \overline{A}_0 the Peano θ -algebra ([1]) generated by A_0 , therefore $\overline{A}_0 = \bigcup_{n\geq 0} A_n$ where A_n are defined recursively as follows ([1]):

$$A_{n+1} = A_n \cup \{ \theta(u, v) \mid u, v \in A_n \}, \quad n \ge 0$$

$$\tag{1}$$

For every $\alpha \in \overline{A_0}$ we define $trace(\alpha)$ as follows:

Received: July 15, 2005.

(1) if $\alpha \in A_0$ then $trace(\alpha) = <\alpha >$

(2) if $\alpha = \theta(u, v)$ then $trace(\alpha) = \langle p, q \rangle$, where $trace(u) = \langle p \rangle$ and $trace(v) = \langle q \rangle$.

If $E \subseteq A_1 \times \ldots \times A_n$ and $i \in \{1, \ldots, n\}$ then we denote

 $pr_i E = \{x \in A_i \mid \exists (x_1, \dots, x_{i-1}, x, x_{i+1}, x_n) \in E\}$

Definition 2.1. A semantic θ -schema is a system $S = (X, A_0, A, R)$ where

- X is a finite non-empty set of symbols and its elements are named object symbols
- A_0 is a finite non-empty set of elements named label symbols
- $A_0 \subseteq A \subseteq \overline{A}_0$, where \overline{A}_0 is the Peano θ -algebra generated by A_0
- $R \subseteq X \times A \times X$ is a non-empty set which fulfills the following conditions

$$(x, \theta(u, v), y) \in R \Longrightarrow \exists z \in X : (x, u, z) \in R, (z, v, y) \in R$$

$$(2)$$

$$\theta(u,v) \in A, (x,u,z) \in R, (z,v,y) \in R \Longrightarrow (x,\theta(u,v),y) \in R$$
(3)

$$pr_2R = A \tag{4}$$

In the remainder of this paper we say shortly θ -schema instead of semantic θ -schema. We denote

$$R_0 = R \cap (X \times A_0 \times X) \tag{5}$$

Let $S = (X, A_0, A, R)$ be a semantic schema. We consider a symbol h of arity 1, a symbol σ of arity 2 and take the set:

$$M = \{ h(x, a, y) \mid (x, a, y) \in R_0 \}$$

We denote by \mathcal{H} the Peano σ -algebra generated by M.

We denote by Z the alphabet which includes the symbol σ , the elements of X, the elements of A, the left and right parentheses, the symbol h and comma. We denote by Z^* the set of all words over Z. As in the case of a rewriting system we define two rewriting rules in the next definition.

Definition 2.2. Let be $w_1, w_2 \in Z^*$. We define the binary relation \Rightarrow as follows:

- If $(x, a, y) \in R_0$ then $w_1(x, a, y)w_2 \Rightarrow w_1h(x, a, y)w_2$
- Let be $(x, \theta(u, v), y) \in R$. If $(x, u, z) \in R$ and $(z, v, y) \in R$ then

$$w_1(x,\theta(u,v),y)w_2 \Rightarrow w_1\sigma((x,u,z),(z,v,y))w_2$$

The relation \Rightarrow is named the **direct derivation** relation over Z^* . We denote by \Rightarrow^* and \Rightarrow^+ the reflexive and transitive closure of the relation \Rightarrow , respectively the transitive closure. The relation \Rightarrow^* will be called simply the **derivation** relation over Z^* .

Definition 2.3. For each $w \in Z^*$ where $w = w_1 \dots w_n$ with $w_i \in Z, i \in \{1, \dots, n\}$, $n \ge 1$, we denote first $(w) = w_1$ and $last(w) = w_n$.

Definition 2.4. The mapping generated by S is the mapping

$$\mathcal{G}_{\mathcal{S}}: R \longrightarrow 2^{\mathcal{H}}$$

defined as follows:

- $\mathcal{G}_{\mathcal{S}}(x, a, y) = \{h(x, a, y)\} \text{ for } a \in A_0$
- $\mathcal{G}_{\mathcal{S}}(x, \theta(u, v), y) = \{ w \in \mathcal{H} \mid (x, \theta(u, v), y) \Rightarrow^* w \}$

148

3. Properties of the derivation relation

Proposition 3.1. Suppose $(x, \theta(u, v), y) \in R$. If $(x, \theta(u, v), y) \Rightarrow^+ w$ then:

- i) There is $z \in X$ such that $(x, \theta(u, v), y) \Rightarrow \sigma((x, u, z), (z, v, y)) \Rightarrow^* w$
 - ii) There are α and β such that:
 - 1) $w = \sigma(\alpha, \beta)$

2)
$$(x, u, z) \Rightarrow^* \alpha, (z, v, y) \Rightarrow^* \beta$$

Proof. The assertion *i*) is obviously true. We verify by induction on $n \ge 1$ that if $\sigma((x, u, z), (z, v, y)) \Rightarrow^n w$ then *ii*) is true and moreover, $last(\alpha) \in \{\}$ and $first(\beta) \in \{(, \sigma, h\}.$

For n = 1 the following cases can be encountered:

1) $u \in A_0$ and $w = \sigma(h(x, u, z), (z, v, y))$. In that case $\alpha = h(x, u, z), \beta = (z, v, y)$ and $(x, u, z) \Rightarrow h(x, u, z)$.

2) $v \in A_0$ and $w = \sigma((x, u, z), h(z, v, y))$. We have $\alpha = (x, u, z), \beta = h(z, v, y)$ and $(z, v, y) \Rightarrow h(z, v, y)$.

3)
$$u = \theta(u_1, v_1), w = \sigma(\sigma((x, u_1, z_1), (z_1, v_1, z)), (z, v, y)), \alpha = \sigma((x, u_1, z_1), (z_1, v_1, z)), \beta = (z, v, y)$$
 for some $z_1 \in X$.

4)
$$v = \theta(u_2, v_2), w = \sigma((x, u, z), \sigma((z, u_2, z_2), (z_2, v_2, y))), \alpha = (x, u, z), \beta = \sigma((z, u_2, z_2), (z_2, v_2, y))$$
 for some $z_2 \in X$.

We observe that the assertion is true for these cases. Suppose the assertion is true for n and consider a derivation:

$$\sigma((x, u, z), (z, v, y)) \Rightarrow^n w_1 \Rightarrow w$$

By the inductive assumption, there are α_1 and β_1 such that

$$\begin{split} w_1 &= \sigma(\alpha_1, \beta_1), \\ (x, u, z) \Rightarrow^* \alpha_1, \ (z, v, y) \Rightarrow^* \beta_1, \\ last(\alpha_1) &\in \{\}\} \text{ and } first(\beta_1) \in \{(, \sigma, h\} \\ \text{We have } w_1 \Rightarrow w, \text{ therefore the following cases can be encountered:} \\ i_1) \ \sigma(\alpha_1, \beta_1) &= \omega_1(x_1, a, y_1)\omega_2 \Rightarrow \omega_1 h(x_1, a, y_1)\omega_2 = w, \ a \in A_0 \\ i_2) \ \sigma(\alpha_1, \beta_1) &= \omega_1(x_1, \theta(u_1, v_1), y_1)\omega_2 \Rightarrow \omega_1 \sigma((x_1, u_1, z_1), (z_1, v_1, y_1))\omega_2 = w \text{ for } \end{split}$$

 $i_{2}) \ \sigma(\alpha_{1}, \beta_{1}) = \omega_{1}(x_{1}, \theta(u_{1}, v_{1}), y_{1})\omega_{2} \Rightarrow \omega_{1}\sigma((x_{1}, u_{1}, z_{1}), (z_{1}, v_{1}, y_{1}))\omega_{2} = w \text{ for some } z_{1} \in X$

Let us take into consideration the assumption $last(\alpha_1) \in \{\}$ and $first(\beta_1) \in \{(, \sigma, h\})$. It follows that the word

$$last(\alpha_1), first(\beta_1)$$

can be only one of the following words:

), (
),
$$\sigma$$

), h

therefore either α_1 is a subword of ω_1 or β_1 is a subword of ω_2 .

The following cases are taken into consideration:

a) Suppose α_1 is a subword of ω_1 .

From i_1) and i_2) we deduce that (x_1, a, y_1) or $(x_1, \theta(u_1, v_1), y_1)$ is a subword of β_1 .

• If (x_1, a, y_1) is a subword of β_1 then $\beta_1 = \mu_1(x_1, a, y_1)\mu_2$ for some words μ_1 and μ_2 . In that case, from i_1) we deduce that

$$\sigma(\alpha_1,\beta_1) = \sigma(\alpha_1,\mu_1(x_1,a,y_1)\mu_2) \Rightarrow \sigma(\alpha_1,\mu_1h(x_1,a,y_1)\mu_2) = w$$

therefore $w = \sigma(\alpha, \beta)$ for $\alpha = \alpha_1$ and $\beta = \mu_1 h(x_1, a, y_1) \mu_2$. But

$$(x, u, z) \Rightarrow^* \alpha_1 \Rightarrow^* \alpha$$
$$(z, v, y) \Rightarrow^* \beta_1 \Rightarrow \beta$$

 $last(\alpha) = last(\alpha_1) \in \{\}, \ first(\beta) = first(\mu_1) = first(\beta_1) \ \text{if} \ \mu_1 \ \text{is a}$ non-empty word and $first(\beta) = h$ if μ_1 is the empty word.

- Let us suppose that $(x_1, \theta(u_1, v_1), y_1)$ is a subword of β_1 . In that case we obtain $\beta_1 = \mu_1(x_1, \theta(u_1, v_1), y_1)\mu_2$ and from i_2) we deduce that
 - $\sigma(\alpha_1, \beta_1) = \sigma(\alpha_1, \mu_1(x_1, \theta(u_1, v_1), y_1)\mu_2)$

 $\sigma(\alpha_1, \mu_1(x_1, \theta(u_1, v_1), y_1)\mu_2) \Rightarrow \sigma(\alpha_1, \mu_1\sigma((x_1, u_1, z_1), (z_1, v_1, y_1))\mu_2)$ $\sigma(\alpha_1, \mu_1 \sigma((x_1, u_1, z_1), (z_1, v_1, y_1))\mu_2) = w$

therefore $w = \sigma(\alpha, \beta)$ for $\alpha = \alpha_1$ and $\beta = \mu_1 \sigma((x_1, u_1, z_1), (z_1, v_1, y_1))\mu_2$. b) Suppose now that β_1 is a subword of ω_2 . From i_1 and i_2 we deduce that (x_1, a, y_1) or $(x_1, \theta(u_1, v_1), y_1)$ is a subword of α_1 . Suppose that (x_1, a, y_1) is a subword of α_1 , therefore $\alpha_1 = \mu_1(x_1, a, y_1)\mu_2$. From i_1 we deduce that $\sigma(\alpha_1,\beta_1) = \sigma(\mu_1(x_1,a,y_1)\mu_2,\beta_1) \Rightarrow \sigma(\mu_1h(x_1,a,y_1)\mu_2,\beta_1) = w$, therefore $w = \sigma(\alpha_1,\beta_1) = \sigma(\alpha_1,\beta$ $\sigma(\alpha,\beta)$ for $\alpha = \mu_1 h(x_1, a, y_1) \mu_2$ and $\beta = \beta_1$. But $(x, u, z) \Rightarrow^* \alpha_1$ and $\alpha_1 \Rightarrow \alpha$, therefore $(x, u, z) \Rightarrow^* \alpha$. We have also $(z, v, y) \Rightarrow^* \beta_1$ and $\beta_1 = \beta$, therefore $(z, v, y) \Rightarrow^* \beta$. In addition, $first(\beta) = first(\beta_1)$ and $last(\alpha) \in \{\}$ if μ_2 is the empty word. If μ_2 is a non-empty word, then $last(\alpha) = last(\mu_2) = last(\alpha_1)$.

Thus the proposition is proved.

Proposition 3.2. If $(x, u, y) \Rightarrow^+ \alpha$ and $\alpha \in (\{\sigma\} \cup M)^*$ then $\alpha \in \mathcal{H}$.

Proof. We prove by induction on n that if $(x, u, y) \Rightarrow^n \alpha$ and $\alpha \in (\{\sigma\} \cup M)^*$ then $\alpha \in \mathcal{H}$. We verify this property for n=1. If $(x, u, y) \Rightarrow \alpha$ then two cases are possible: 1) $u \in A_0$ and $\alpha = h(x, u, y)$. In that case we have $\alpha \in \mathcal{H}$.

2) $u \in A \setminus A_0$, therefore $u = \theta(u_1, v_1)$. In that case $\alpha = \sigma((x, v_1, z_1), (z_1, v_2, y))$ for some $z_1 \in X$. This case is not possible because $\alpha \notin (\{\sigma\} \cup M)^*$.

Suppose the assertion is true for $n \in \{1, ..., k\}$ and take a derivation $(x, u, y) \Rightarrow^{k+1} \alpha$ such that $\alpha \in (\{\sigma\} \cup M)^*$. Because $k+1 \ge 2$ and $\alpha \in (\{\sigma\} \cup M)^*$ we have $u = \theta(v_1, v_2)$ for some $v_1, v_2 \in A$. Really, if by contrary we suppose that $u \in A_0$ then we have:

$$(x, u, y) \Rightarrow h(x, u, y) \Rightarrow^{k} h^{k}(x, u, y) = \alpha$$

therefore $\alpha \notin (\{\sigma\} \cup M)^*$.

The derivation $(x, u, y) \Rightarrow^{k+1} \alpha$ can be written as follows:

$$(x, \theta(v_1, v_2), y) \Rightarrow \sigma((x, v_1, z), (z, v_2, y)) \Rightarrow^k \alpha$$

for some $z \in X$. Applying Proposition 3.1 we deduce that there are β_1 , β_2 such that $(x, v_1, z) \Rightarrow^* \beta_1, (z, v_2, y) \Rightarrow^* \beta_2$ and $\alpha = \sigma(\beta_1, \beta_2)$. Because $\alpha \in (\{\sigma\} \cup M)^*$ we have $\beta_1, \beta_2 \in (\{\sigma\} \cup M)^*$. Applying the inductive assumption we have $\beta_1, \beta_2 \in \mathcal{H}$, therefore $\alpha = \sigma(\beta_1, \beta_2) \in \mathcal{H}$.

Proposition 3.3. Suppose that $w \in \mathcal{G}_{\mathcal{S}}(x, \theta(u, v), y)$ and denote by α and β those elements of \mathcal{H} , uniquely determined, such that $w = \sigma(\alpha, \beta)$. There is $z \in X$, such that

 $(x,\theta(u,v),y) \Rightarrow \sigma((x,u,z),(z,v,y)) \Rightarrow^* w$ $\alpha \in \mathcal{G}_{\mathcal{S}}(x, u, z)$ and $\beta \in \mathcal{G}_{\mathcal{S}}(z, v, y)$

Proof. We have $(x, \theta(u, v), y) \Rightarrow^+ w$ and $w \in \mathcal{H}$ because $w \in \mathcal{G}_{\mathcal{S}}(x, \theta(u, v), y)$. But \mathcal{H} is a Peano σ -algebra, therefore w is written as $w = \sigma(\alpha, \beta)$ for $\alpha, \beta \in \mathcal{H}$ uniquely determined. By Proposition 3.1 there is $z \in X$ such that:

$$(x, \theta(u, v), y) \Rightarrow \sigma((x, u, z), (z, v, y)) \Rightarrow^* w$$

and there are α_1, β_1 such that $w = \sigma(\alpha_1, \beta_1), (x, u, z) \Rightarrow^* \alpha_1, (z, v, y) \Rightarrow^* \beta_1$. By Proposition 3.2 we obtain $\alpha_1 \in \mathcal{H}$ and $\beta_1 \in \mathcal{H}$. But $w = \sigma(\alpha, \beta) = \sigma(\alpha_1, \beta_1)$, where $\alpha, \beta, \alpha_1, \beta_1 \in \mathcal{H}$. By the property of the Peano σ -algebra \mathcal{H} , we have $\alpha = \alpha_1$ and $\beta = \beta_1$. In conclusion, the proposition is proved.

Remark 3.1. Finally we shall prove that just one element z satisfies the conditions of the previous proposition.

Proposition 3.4. If $(x, u, z) \Rightarrow^* \alpha$ and $(z, v, y) \Rightarrow^* \beta$ then $\sigma((x, u, z), (z, v, y)) \Rightarrow^* \sigma(\alpha, \beta)$

Proof. There are the following derivations:

 $\begin{aligned} (x,u,z) \Rightarrow \omega_1 \Rightarrow \omega_2 \Rightarrow \ldots \Rightarrow \omega_k \Rightarrow \alpha \\ (z,v,y) \Rightarrow w_1 \Rightarrow w_2 \Rightarrow \ldots \Rightarrow w_r \Rightarrow \beta \end{aligned}$

We know that if $\mu \Rightarrow \nu$ is a direct derivation and $w \in Z^*$ then $w\mu \Rightarrow w\nu$ and $\mu w \Rightarrow \nu w$. Based on this property we obtain the following derivations:

$$\sigma((x, u, z), (z, v, y)) \Rightarrow \sigma(\omega_1, (z, v, y)) \Rightarrow \dots \Rightarrow \sigma(\alpha, (z, v, y))$$

 $\sigma(\alpha, (z, v, y)) \Rightarrow \sigma(\alpha, w_1) \Rightarrow \dots \Rightarrow \sigma(\alpha, \beta)$

and the proposition is proved.

Corollary 3.1.

$$\mathcal{G}_{\mathcal{S}}(x,\theta(u,v),y) = \bigcup_{z \in X} \mathcal{G}_{\mathcal{S}}(x,u,z) \otimes_{\sigma} \mathcal{G}_{\mathcal{S}}(z,v,y)$$

where $P \otimes_{\sigma} Q = \{\sigma(u, v) \mid u \in P, v \in Q\}.$

Proof. By Proposition 3.3, if $w \in \mathcal{G}_{\mathcal{S}}(x, \theta(u, v), y)$ then $w \in \mathcal{G}_{\mathcal{S}}(x, u, z) \otimes_{\sigma} \mathcal{G}_{\mathcal{S}}(z, v, y)$. Conversely, consider $w = \sigma(\alpha, \beta)$, where $\alpha \in \mathcal{G}_{\mathcal{S}}(x, u, z)$ and $\beta \in \mathcal{G}_{\mathcal{S}}(z, v, y)$.

It follows that $(x, u, z) \Rightarrow^* \alpha$, $(z, v, y) \Rightarrow^* \beta$ and $\alpha \in \mathcal{H}, \beta \in \mathcal{H}$. On the other hand, if $(x, u, z) \Rightarrow^* \alpha$ and $(z, v, y) \Rightarrow^* \beta$ then

$$\sigma((x, u, z), (z, v, y)) \Rightarrow^* \sigma(\alpha, \beta) = w$$
(6)

as is stated in Proposition 3.4. But $\theta(u, v) \in A$, $(x, \theta(u, v), y) \in R$, $(x, u, z) \in R$ and $(z, v, y) \in R$. It follows that:

$$(x, \theta(u, v), y) \Rightarrow \sigma((x, u, z), (z, v, y))$$

therefore using (6) we deduce $(x, \theta(u, v), y) \Rightarrow^* w$. We recall that $\alpha, \beta \in \mathcal{H}$ and $w = \sigma(\alpha, \beta)$, therefore $w \in \mathcal{H}$. In this way we have $w \in \mathcal{G}_{\mathcal{S}}(x, \theta(u, v), y)$ and the proposition is proved.

Definition 3.1. We define:

 $\begin{array}{l} H(h(x,a,y)) = < h(x,a,y) > \textit{for } h(x,a,y) \in M \\ H(\sigma(\alpha,\beta)) = < p, q >, \textit{ where } H(\alpha) = \textit{ and } H(\beta) = < q >, \sigma(\alpha,\beta) \in \mathcal{H}, \\ \alpha \in \mathcal{H}, \ \beta \in \mathcal{H}. \end{array}$

Proposition 3.5. Let be $u \in A$ such that $trace(u) = \langle a_1, \ldots, a_n \rangle$. For every $\alpha \in \mathcal{G}_{\mathcal{S}}(x_1, u, z_1)$ there are $y_1, \ldots, y_{n-1} \in X$ such that $H(\alpha) = \langle h(x_1, a_1, y_1), h(y_1, a_2, y_2), \ldots, h(y_{n-1}, a_n, z_1) \rangle$ for $n \geq 2$ and $H(\alpha) = \langle h(x_1, u, z_1) \rangle$ for n = 1.

Proof. We proceed by induction on n. For n=1 we have $trace(u) = \langle a_1 \rangle$, therefore $u = a_1 \in A_0$. If α is an arbitrary element of $\mathcal{G}_{\mathcal{S}}(x_1, u, z_1)$ then $(x_1, u, z_1) \Rightarrow^* \alpha$ and $\alpha \in \mathcal{H}$. This derivation is a direct one, that is $(x_1, u, z_1) \Rightarrow h(x_1, u, z_1) = \alpha$. It follows that $H(\alpha) = \langle h(x_1, u, z_1) \rangle$ and the property is verified for n=1.

Consider $k \geq 1$ and suppose the proposition is true for $n \in \{1, \ldots, k\}$. Take an element $u \in A$ such that $trace(u) = \langle a_1, \ldots, a_{k+1} \rangle$. There is $u_1, v_1 \in A$ such that $u = \theta(u_1, v_1)$. Take an element $\alpha \in \mathcal{G}_{\mathcal{S}}(x_1, u, z_1) = \mathcal{G}_{\mathcal{S}}(x_1, \theta(u_1, v_1), z_1)$. By Corollary 3.1 we deduce that there is $z \in X$ such that $\alpha = \sigma(\alpha_1, \beta_1)$, where $\alpha_1 \in \mathcal{G}_{\mathcal{S}}(x_1, u_1, z)$ and $\beta_1 \in \mathcal{G}_{\mathcal{S}}(z, v_1, z_1)$. We use the inductive assumption. Because $u = \theta(u_1, v_1)$ and $trace(u) = \langle a_1, \ldots, a_{k+1} \rangle$, it follows that there is $i \in \{1, \ldots, k\}$ such that $trace(u_1) = \langle a_1, \ldots, a_i \rangle$ and $trace(v_1) = \langle a_{i+1}, \ldots, a_{k+1} \rangle$.

By the inductive assumption we have the following properties:

1) there are $y_1, \ldots, y_{i-1} \in X$ such that $H(\alpha_1) = \langle h(x_1, a_1, y_1), h(y_1, a_2, y_2), \ldots, h(y_{i-1}, a_i, z) \rangle$

2) there are $t_1, \ldots, t_{k-i} \in X$ such that $H(\beta_1) = \langle h(z, a_{i+1}, t_1), h(t_1, a_{i+2}, t_2), \ldots, h(t_{k-i}, a_{k+1}, z_1) \rangle$

 \square

But $\alpha = \sigma(\alpha_1, \beta_1)$, therefore $H(\alpha)$ is the following system:

$$< h(x_1, a_1, y_1), h(y_1, a_2, y_2), \dots, h(y_{i-1}, a_i, z), h(z, a_{i+1}, t_1), \dots, h(t_{k-i}, a_{k+1}, z_1) > 0$$

and the proposition is proved.

Corollary 3.2. If $\mathcal{G}_{\mathcal{S}}(x_1, u, z_1) \cap \mathcal{G}_{\mathcal{S}}(x_2, v, z_2) \neq \emptyset$ then $x_1 = x_2$, trace(u) = trace(v) and $z_1 = z_2$.

Proof. If $\alpha \in \mathcal{G}_{\mathcal{S}}(x_1, u, z_1) \cap \mathcal{G}_{\mathcal{S}}(x_2, v, z_2)$ and $trace(u) = \langle a_1, \ldots, a_n \rangle$, $trace(v) = \langle b_1, \ldots, b_k \rangle$ then by Proposition 3.5 there are $y_1, \ldots, y_{n-1}, t_1, \ldots, t_{k-1} \in X$ such that:

 $H(\alpha) = \langle h(x_1, a_1, y_1), h(y_1, a_2, y_2), \dots, h(y_{n-1}, a_n, z_1) \rangle$ $H(\alpha) = \langle h(x_2, b_1, t_1), h(t_1, b_2, t_2), \dots, h(t_{k-1}, b_k, z_2) \rangle$

therefore n = k, $a_1 = b_1$, ..., $a_n = b_k$, $x_1 = x_2$, $y_1 = t_1$, ..., $y_{n-1} = t_{k-1}$ and $z_1 = z_2$. Thus, $x_1 = x_2$, trace(u) = trace(v) and $z_1 = z_2$.

Corollary 3.3. The element $z \in X$ from Proposition 3.3 is uniquely determined.

Proof. If $\alpha \in \mathcal{G}_{\mathcal{S}}(x, u, z_1) \cap \mathcal{G}_{\mathcal{S}}(x, u, z_2)$ then $z_1 = z_2$ by Corollary 3.2.

4. Open problems

The following open problems are relieved:

- Study the case when the component A of a semantic schema is an infinite set. The corresponding set R is also an infinite set. Give an example of knowledge piece which can be modeled by such structures.
- Embed two distinct semantic schemas in a semantic schema.
- Introduce a partial order between two semantic schemas and find the least semantic schema which contains some semantic schemas.
- Combine two semantic schemas such that the reasoning by analogy can be performed.
- Design a knowledge manager which uses the previous concepts and can process the distributed knowledge.

References

- V.Boicescu, A.Filipoiu, G.Georgescu, S.Rudeanu, "Lukasiewicz-Moisil Algebras", Annals of Discrete Mathematics 49, North-Holland, 1991
- [2] N. Ţăndăreanu Semantic Schemas and Applications in Logical Representation of Knowledge, Proceedings of the 10th International Conference on Cybernetics and Information Technologies, Systems and Applications (CITSA2004), July 21-25, Orlando, Florida, 2004

(Nicolae Țăndăreanu) DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CRAIOVA, AL.I. CUZA STREET, NO. 13, CRAIOVA RO-200585, ROMANIA, TEL. & FAX: 40-251412673 *E-mail address*: ntand@oltenia.ro

(Mihaela Ghindeanu) DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CRAIOVA, AL.I. CUZA STREET, NO. 13, CRAIOVA RO-200585, ROMANIA, TEL. & FAX: 40-251412673 *E-mail address*: mghindeanu@yahoo.com