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Properties of derivations in a Semantic Schema

NICOLAE TANDAREANU AND MIHAELA GHINDEANU

ABSTRACT. The concept of semantic schema was introduced in [2]. The inference process
was modeled there by means of a relation which is named derivation. In this paper we study
several properties of the derivations in such a structure. These properties will be used in a
future paper to design a knowledge manager based on semantic schemas.
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1. Introduction

The concept of semantic schema was introduced in [2]. We describe there a simple
mechanism by which we can represent and process the knowledge. A semantic schema
is a tuple of entities, each of which specifying some features of the representation
process. This concept is an abstract structure which becomes a real description of
a knowledge piece if some interpretation is considered. Various interpretations can
be used for the same semantic schema. The concepts and results were applied in
a client-server technology, trying to model some aspects concerning the use of the
distributed knowledge in the domain of logic programming with constraints ([2]).

Two aspects are relieved in connection with a semantic schema S:

1) A formal aspect in S by which some formal computations in a Peano algebra

are obtained.

2) An evaluation aspect with respect to some interpretation. The entities ob-

tained in the previous step get values from a space, which is named the semantic

space.
In this paper we give several algebraic properties for the formal aspect of the com-
putations in a semantic schema. These computations are based on a specific relation
defined in a semantic schema and this is named derivation. In Section 2 we review
this concept. Several algebraic properties of a derivation are given in Section 3. These
properties are useful to continue this research work, as we mention in the last section
of this paper.

2. Semantic schema

Consider a symbol 6 of arity 2 and a finite non-empty set Ag. We denote by Ay
the Peano 0-algebra ([1]) generated by Ao, therefore Ay = {J,5qAn where A, are
defined recursively as follows ([1]):

Any1 = A, U{ 0(u,v) | wv € A}, n>0 (1)

For every a € Ag we define trace(a) as follows:
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148 N. TANDAREANU AND M. GHINDEANU

(1) if @ € Ag then trace(a) =< a >
(2) if @« = 6(u,v) then trace(a) =< p,q >, where trace(u) =< p > and
trace(v) =< q >.

IfECA x...x A, and i € {1,...,n} then we denote

priEE={x € A; | Nay,...,xi-1,2,241,2,) € B}

Definition 2.1. A semantic f-schema is a system S = (X, Ag, A, R) where

o X is a finite non-empty set of symbols and its elements are named object symbols
e Ao is a finite non-empty set of elements named label symbols
e Ay C A C Ay, where Aqy is the Peano 0-algebra generated by Ag
e RC X x Ax X is a non-empty set which fulfills the following conditions
(z,0(u,v),y) e R=—= 3z € X : (z,u,2) € R,(2,v,y) € R (2)
0(u,v) € A, (z,u,2) € R, (2,0,y) € R=> (2,0(u,v),y) € R 3)
proR=A (4)

In the remainder of this paper we say shortly 6-schema instead of semantic 6-
schema. We denote

RO:RQ(XXAO><X) (5)

Let § = (X, Ap, A, R) be a semantic schema. We consider a symbol h of arity 1, a
symbol o of arity 2 and take the set:

M = {h(x,a,y) | (lL’,(l,y) € RO}

We denote by ‘H the Peano o-algebra generated by M.

We denote by Z the alphabet which includes the symbol o, the elements of X, the
elements of A, the left and right parentheses, the symbol A and comma. We denote
by Z* the set of all words over Z. As in the case of a rewriting system we define two
rewriting rules in the next definition.

Definition 2.2. Let be wi,ws € Z*. We define the binary relation = as follows:
o If (z,a,y) € Ry then wy(x,a,y)ws = wih(zx,a,y)ws
o Let be (x,0(u,v),y) € R. If (z,u,2) € R and (z,v,y) € R then

wi(x,0(u,v), y)ws = wio((x,u, 2), (z,v,y))ws

The relation = is named the direct derivation relation over Z*. We denote by
=* and =71 the reflexive and transitive closure of the relation =, respectively the
transitive closure. The relation =* will be called simply the derivation relation over

zZ*.
Definition 2.3. For each w € Z* where w = wy ... w, with w; € Z,i € {1,...,n},
n > 1, we denote first(w) = wy and last(w) = wy,.
Definition 2.4. The mapping generated by S is the mapping
gg : R e QH

defined as follows:
e Gs(x,a,y) = {h(z,a,y)} fora € Ay
e Gs(w,0(u,v),y) ={w e H | (z,0(u,v),y) =" w}
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3. Properties of the derivation relation

Proposition 3.1. Suppose (z,0(u,v),y) € R. If (z,0(u,v),y) = w then:
i) There is z € X such that (z,0(u,v),y) = o((z,u, 2), (z,v,y)) =* w
it) There are o and 3 such that:

1) w=o(a,p)

2) (z,u,2) =" a, (z,v,y) =" B

Proof. The assertion i) is obviously true. We verify by induction on n > 1 that if
o((z,u, 2), (z,v,y)) =™ w then i) is true and moreover, last(a) € {)} and first(3) €
{(,0,n}.
For n = 1 the following cases can be encountered:
1) u e Ag and w = o(h(x,u, 2), (2,v,y)). In that case @ = h(x,u, 2), 5 = (z,v,y)
and (z,u, z) = h(z,u, 2).
2) v € Ag and w = o((x,u, 2),h(z,v,y)). We have a = (z,u, 2), = h(z,v,y)
and (z,v,y) = h(z,v,y).
3) u = 0(uy,v1), w=o(o((z,u1,21), (21,v1,2)), (2,0,y)), & = o((z,u1, 21), (21,
v1,2)), B = (z,v,y) for some z; € X.
4) v = O(ug,v2), w = o((z,u, 2),0((z,u2,22), (22,v2,9))), @ = (z,u,z2), § =
o((z,ug, 22), (22,v2,y)) for some 2z, € X.
We observe that the assertion is true for these cases. Suppose the assertion is true
for n and consider a derivation:

o((z,u,2),(z,v,y)) =" w = w

By the inductive assumption, there are a; and (37 such that
wy = o(ay, f1),
(z,u,2) =* aq, (2,0,y) =* 51,
last(ay) € {)} and first(61) € {(,o,h}
We have w; = w, therefore the following cases can be encountered:
i1) ooy, B1) = wi(x1,a,y1)we = wih(x1,a,y1)ws = w, a € Ay
i2) o(a1, 1) = wi(z1, 0(ur,v1),y1)we = wio((z1,u1, 21), (21, v1,¥1))we = w for
some z1 € X
Let us take into consideration the assumption last(ay) € {)} and first(81) € {(,0,
h}. It follows that the word

last(aq), first(51)

can be only one of the following words:

therefore either oy is a subword of wy or f; is a subword of ws.
The following cases are taken into consideration:
a) Suppose «; is a subword of w;.
From 1) and i2) we deduce that (x1,a,y1) or (z1,60(u1,v1),y1) is a subword of
Br-
o If (x1,a,y1) is a subword of 81 then 81 = pi(x1,a,y1)ue for some words
w1 and po. In that case, from i;) we deduce that

o(on, Br) = olar, pr(xy, a,y1)p2) = o(a, prh(r, a,y1)pe) = w
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therefore w = o(a, 3) for @« = a1 and 8 = p1h(x1,a,y1)ue. But

(r,u,2) =" a1 =" «

(Z,’U,y) =" 61 = ﬁ

last(a) = last(ar) € {)}, first(B8) = first(u1) = first(By) if p1 is a
non-empty word and first(3) = h if p; is the empty word.
e Let us suppose that (x1,0(u1,v1),y1) is a subword of 8;. In that case we
obtain 81 = pi(x1,0(u1,v1),y1)pe and from is) we deduce that
o(or, f1) = o(ag, pr(z1, O(ur,v1), Y1) p2)
oo, pa(z1, 0(ur,v1),y1)p2) = oo, pro((z1,ur, 21), (21,01, Y1) 12)
o(on, pio((z1,ur, 21), (21,01, 91))p2) = w
therefore w = o(«, ) for a = a1 and 8 = pyo((x1,u1, 21), (21,01, 1)) pia-
b) Suppose now that [(; is a subword of wy. jFrom i1) and is) we deduce that
(z1,a,y1) or (x1,0(ur,v1),y1) is a subword of ;. Suppose that (z1,a,y;) is
a subword of aq, therefore oy = p1(21,a,y1)pe. From i;) we deduce that
olay, B1) = o(pi(x1, a,y1)pe, B1) = o(pih(zy, a,y1)ug, f1) = w, therefore w =
o(a, B) for o = prh(x1,a,y1)p2 and § = B1. But (z,u,2) =* a1 and a1 = «,
therefore (z,u,z) =* a. We have also (z,v,y) =* (5 and 1 = (3, therefore
(z,v,9) =* B. In addition, first(8) = first(81) and last(«) € {)} if ps is the
empty word. If po is a non-empty word, then last(«) = last(ua) = last(ay).
Thus the proposition is proved. ([

Proposition 3.2. If (z,u,y) =" a and a € ({c} UM)* then a € H.

Proof. We prove by induction on n that if (z,u,y) =" o and o € ({o} U M)* then
a € H. We verify this property for n=1. If (x,u,y) = a then two cases are possible:
1) u € Ag and o = h(z,u,y). In that case we have o € H.
2) u € A\ Ay, therefore u = 6(uy,v1). In that case a« = o((x,v1,21), (21, v2,¥))
for some z; € X. This case is not possible because o & ({o} U M)*.
Suppose the assertion is true for n € {1,...,k} and take a derivation (z,u,y) ="' a
such that @ € ({c}UM)*. Because k+1 > 2 and o € ({o}UM)* we have u = 0(vy1, v2)
for some vy, vy € A. Really, if by contrary we suppose that u € Ag then we have:

(z,u,y) = h(z,u,y) =F ¥ (z,u,y) = a

therefore oo ¢ ({o} U M)*.
The derivation (z,u,y) =**! a can be written as follows:

(:L’,G‘(Ul,vg),y) = U((iﬂ,’UhZ), (ZaUQ;y)) ik «Q

for some z € X. Applying Proposition 3.1 we deduce that there are 31, B2 such that
(x,v1,2) =" b1, (2,v2,y) =* 02 and a = 0(01,F2). Because a € ({0} U M)* we
have 31,32 € ({o} U M)*. Applying the inductive assumption we have ;1,32 € H,
therefore a = o (31, 32) € H. O

Proposition 3.3. Suppose that w € Gs(x,0(u,v),y) and denote by o and B those
elements of H, uniquely determined, such that w = o(«,3). There is z € X, such
that

(z,0(u,v),y) = o((z,u, 2), (z,v,y)) =* w

a € Gs(x,u,z) and B € Gs(z,v,y)
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Proof. We have (z,0(u,v),y) =% w and w € H because w € Gs(z,0(u,v),y). But
H is a Peano o-algebra, therefore w is written as w = o(a, 8) for a, 8 € H uniquely
determined. By Proposition 3.1 there is z € X such that:

(z,0(u,v),y) = o((z,u,2), (2,0,9)) =" w

and there are oy, ; such that w = o(aq,31), (x,u,z) =* a1, (z,v,y) =* B1. By
Proposition 3.2 we obtain a; € H and $; € H. But w = o(a, 8) = o(a1, 1), where
a,fB,a1,01 € H. By the property of the Peano o-algebra H, we have o = 7 and
0 = B1. In conclusion, the proposition is proved. O

Remark 3.1. Finally we shall prove that just one element z satisfies the conditions
of the previous proposition.

Proposition 3.4. If (z,u,z) =* a and (z,v,y) =* 0 then o((z,u, 2), (z,v,y)) =*

o(a, )

Proof. There are the following derivations:
(z,u,2) > w = w = ... =>w, =«
(z,0,9) => w1 = wy = ... > w,. = 0
We know that if p = v is a direct derivation and w € Z* then wuy = wvr and
pw = vw. Based on this property we obtain the following derivations:
o((z,u, 2), (2,v,9)) = (w1, (2,0,9)) = ... = oo, (z,v,y))
ola, (z,0,9)) = ola,wy) = ... = o(a, B)
and the proposition is proved. ([

Corollary 3.1.
gs(x79(u7v)>y) = U gs(fﬂ, U, Z) Ko gS(zavay)

zeX
where P ®, Q = {o(u,v) |u € P,v € Q}.

Proof. By Proposition 3.3, if w € Gs(x,8(u,v),y) then w € Gs(x,u,2) ®s Gs(z,v,y).
Conversely, consider w = o(«, 3), where a € Gs(x,u,2) and 8 € Gs(z,v,y).

It follows that (z,u,2) =* «, (z,v,y) =* 8 and a« € H, 8 € H. On the other
hand, if (z,u, 2) =* a and (z,v,y) =* § then

o((z,u, 2), (2,0,9)) =" o(e, ) = w (6)

as is stated in Proposition 3.4. But §(u,v) € A, (x,0(u,v),y) € R, (z,u,z) € R and
(z,v,9) € R. Tt follows that:

(z,0(u,v),y) = o((z,u, 2), (z,v,y))

therefore using (6) we deduce (z,60(u,v),y) =* w. We recall that o, € H and
w = o(a, (), therefore w € H. In this way we have w € Gs(x,6(u,v),y) and the
proposition is proved. ([l

Definition 3.1. We define:
H(h(z,a,)) =< h(z,a,) > for h(z,a,y) € M
H(o(a,B)) =< p,q >, where H(a)) =< p > and H(B) =< q >, o(o, ) € H,
a€H, BeH.

Proposition 3.5. Let be u € A such that trace(u) =< ay,...,a, >. For every a €
Gs(x1,u,21) there are yy, ..., Yn—1 € X such that H(«a) =< h(x1,a1,y1), h(y1, a2, y2),
vy B(Yn—1,an,21) > forn >2 and H(a) =< h(z1,u,21) > forn=1.
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Proof. We proceed by induction on n. For n=1 we have trace(u) =< a; >, therefore
u=a; € Ap. If v is an arbitrary element of Gs(z1,u,21) then (z1,u,21) =* « and
« € H. This derivation is a direct one, that is (x1, u, z1) = h(z1,u, 21) = a. It follows
that H(«) =< h(z1,u,21) > and the property is verified for n=1.

Consider k > 1 and suppose the proposition is true for n € {1,... k}. Take an
element u € A such that trace(u) =< ai,...,ap+1 >. There is uy,v; € A such that
u = 0(uy,v1). Take an element o € Gs(x1,u, 21) = Gs(x1,6(u1,v1), 21). By Corollary
3.1 we deduce that there is z € X such that a = o(«a1, (1), where oy € Gs(x1,u1, 2)
and 31 € Gs(z,v1,21). We use the inductive assumption. Because u = 0(uy,v1)
and trace(u) =< ai,...,ax41 >, it follows that there is ¢ € {1,...,k} such that
trace(uy) =< ay,...,a; > and trace(vy) =< @jt1,...,0p+1 >.

By the inductive assumption we have the following properties:

1) there are yi,...,y;—1 € X such that H(a1) =< h(z1,a1,91), h(y1,a2,92),. . -,
(yz 1, Q4,2 )>
2) there are ty,...,tx—; € X such that H(81) =< h(z, ait1,t1), h(t1, aiq2,t2),. . .,
h(tk—i, ap1,21) >

But o = o(a1, 31), therefore H(«) is the following system:

< h(xla alayl)? h(yla a2ay2), sy h(yi—l,ai7 Z)» h(Z, ai+1atl)7 sy h(tkfia Ap41, Zl) >

and the proposition is proved. (I

Corollary 3.2. If Gs(x1,u,21) N Gs(x2,v, 22) # O then 1 = za, trace(u) = trace(v)
and z1 = zo.

Proof. If o € Gs(x1,u,21) NGs(xa,v, 22) and trace(u) =< ay,...,a, >, trace(v) =<
b1,...,bx > then by Proposition 3.5 there are y1, ..., yn—1,%1,.-.,tx—1 € X such that:
H(a) =< h(x1,a1,y1), h(y1,a2,92)s s h(Yn—1, an, 21) >
H(a) =< h(w2,b1,t1), h(t1,b2,t2), ..., h(tg—1,bk, 22) >
therefore n =k, a1 = by, ..., ap =bg, x1 =22, y1 =t1, ..., Yn_1 = tx_1 and 21 = 29.
Thus, 1 = x, trace(u) = trace(v) and z1 = zs. O

Corollary 3.3. The element z € X from Proposition 3.3 is uniquely determined.

Proof. If a € Gs(x,u,z1) NGs(x,u, z3) then z; = zo by Corollary 3.2. O

4. Open problems

The following open problems are relieved:

e Study the case when the component A of a semantic schema is an infinite set.
The corresponding set R is also an infinite set. Give an example of knowledge
piece which can be modeled by such structures.

e Embed two distinct semantic schemas in a semantic schema.

e Introduce a partial order between two semantic schemas and find the least se-
mantic schema which contains some semantic schemas.

e Combine two semantic schemas such that the reasoning by analogy can be per-
formed.

e Design a knowledge manager which uses the previous concepts and can process
the distributed knowledge.
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