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Properties of derivations in a Semantic Schema

Nicolae Ţăndăreanu and Mihaela Ghindeanu

Abstract. The concept of semantic schema was introduced in [2]. The inference process
was modeled there by means of a relation which is named derivation. In this paper we study
several properties of the derivations in such a structure. These properties will be used in a
future paper to design a knowledge manager based on semantic schemas.
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1. Introduction

The concept of semantic schema was introduced in [2]. We describe there a simple
mechanism by which we can represent and process the knowledge. A semantic schema
is a tuple of entities, each of which specifying some features of the representation
process. This concept is an abstract structure which becomes a real description of
a knowledge piece if some interpretation is considered. Various interpretations can
be used for the same semantic schema. The concepts and results were applied in
a client-server technology, trying to model some aspects concerning the use of the
distributed knowledge in the domain of logic programming with constraints ([2]).

Two aspects are relieved in connection with a semantic schema S:
1) A formal aspect in S by which some formal computations in a Peano algebra
are obtained.
2) An evaluation aspect with respect to some interpretation. The entities ob-
tained in the previous step get values from a space, which is named the semantic
space.

In this paper we give several algebraic properties for the formal aspect of the com-
putations in a semantic schema. These computations are based on a specific relation
defined in a semantic schema and this is named derivation. In Section 2 we review
this concept. Several algebraic properties of a derivation are given in Section 3. These
properties are useful to continue this research work, as we mention in the last section
of this paper.

2. Semantic schema

Consider a symbol θ of arity 2 and a finite non-empty set A0. We denote by A0

the Peano θ-algebra ([1]) generated by A0, therefore A0 =
⋃

n≥0 An where An are
defined recursively as follows ([1]):

An+1 = An ∪ { θ(u, v) | u, v ∈ An}, n ≥ 0 (1)

For every α ∈ A0 we define trace(α) as follows:
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(1) if α ∈ A0 then trace(α) =< α >
(2) if α = θ(u, v) then trace(α) =< p, q >, where trace(u) =< p > and
trace(v) =< q >.

If E ⊆ A1 × . . .×An and i ∈ {1, . . . , n} then we denote

priE = {x ∈ Ai | ∃(x1, . . . , xi−1, x, xi+1, xn) ∈ E}
Definition 2.1. A semantic θ-schema is a system S = (X,A0, A,R) where
• X is a finite non-empty set of symbols and its elements are named object symbols
• A0 is a finite non-empty set of elements named label symbols
• A0 ⊆ A ⊆ A0, where A0 is the Peano θ-algebra generated by A0

• R ⊆ X ×A×X is a non-empty set which fulfills the following conditions

(x, θ(u, v), y) ∈ R =⇒ ∃z ∈ X : (x, u, z) ∈ R, (z, v, y) ∈ R (2)

θ(u, v) ∈ A, (x, u, z) ∈ R, (z, v, y) ∈ R =⇒ (x, θ(u, v), y) ∈ R (3)

pr2R = A (4)

In the remainder of this paper we say shortly θ-schema instead of semantic θ-
schema. We denote

R0 = R ∩ (X ×A0 ×X) (5)

Let S = (X,A0, A, R) be a semantic schema. We consider a symbol h of arity 1, a
symbol σ of arity 2 and take the set:

M = {h(x, a, y) | (x, a, y) ∈ R0}
We denote by H the Peano σ-algebra generated by M .

We denote by Z the alphabet which includes the symbol σ, the elements of X, the
elements of A, the left and right parentheses, the symbol h and comma. We denote
by Z∗ the set of all words over Z. As in the case of a rewriting system we define two
rewriting rules in the next definition.

Definition 2.2. Let be w1, w2 ∈ Z∗. We define the binary relation ⇒ as follows:
• If (x, a, y) ∈ R0 then w1(x, a, y)w2 ⇒ w1h(x, a, y)w2

• Let be (x, θ(u, v), y) ∈ R. If (x, u, z) ∈ R and (z, v, y) ∈ R then

w1(x, θ(u, v), y)w2 ⇒ w1σ((x, u, z), (z, v, y))w2

The relation ⇒ is named the direct derivation relation over Z∗. We denote by
⇒∗ and ⇒+ the reflexive and transitive closure of the relation ⇒, respectively the
transitive closure. The relation ⇒∗ will be called simply the derivation relation over
Z∗.

Definition 2.3. For each w ∈ Z∗ where w = w1 . . . wn with wi ∈ Z, i ∈ {1, ..., n},
n ≥ 1, we denote first(w) = w1 and last(w) = wn.

Definition 2.4. The mapping generated by S is the mapping

GS : R −→ 2H

defined as follows:
• GS(x, a, y) = {h(x, a, y)} for a ∈ A0

• GS(x, θ(u, v), y) = {w ∈ H | (x, θ(u, v), y) ⇒∗ w}
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3. Properties of the derivation relation

Proposition 3.1. Suppose (x, θ(u, v), y) ∈ R. If (x, θ(u, v), y) ⇒+ w then:
i) There is z ∈ X such that (x, θ(u, v), y) ⇒ σ((x, u, z), (z, v, y)) ⇒∗ w
ii) There are α and β such that:

1) w = σ(α, β)
2) (x, u, z) ⇒∗ α, (z, v, y) ⇒∗ β

Proof. The assertion i) is obviously true. We verify by induction on n ≥ 1 that if
σ((x, u, z), (z, v, y)) ⇒n w then ii) is true and moreover, last(α) ∈ {)} and first(β) ∈
{(, σ, h}.
For n = 1 the following cases can be encountered:

1) u ∈ A0 and w = σ(h(x, u, z), (z, v, y)). In that case α = h(x, u, z), β = (z, v, y)
and (x, u, z) ⇒ h(x, u, z).
2) v ∈ A0 and w = σ((x, u, z), h(z, v, y)). We have α = (x, u, z), β = h(z, v, y)
and (z, v, y) ⇒ h(z, v, y).
3) u = θ(u1, v1), w = σ(σ((x, u1, z1), (z1, v1, z)), (z, v, y)), α = σ((x, u1, z1), (z1,
v1, z)), β = (z, v, y) for some z1 ∈ X.
4) v = θ(u2, v2), w = σ((x, u, z), σ((z, u2, z2), (z2, v2, y))), α = (x, u, z), β =
σ((z, u2, z2), (z2, v2, y)) for some z2 ∈ X.

We observe that the assertion is true for these cases. Suppose the assertion is true
for n and consider a derivation:

σ((x, u, z), (z, v, y)) ⇒n w1 ⇒ w

By the inductive assumption, there are α1 and β1 such that
w1 = σ(α1, β1),
(x, u, z) ⇒∗ α1, (z, v, y) ⇒∗ β1,
last(α1) ∈ {)} and first(β1) ∈ {(, σ, h}

We have w1 ⇒ w, therefore the following cases can be encountered:
i1) σ(α1, β1) = ω1(x1, a, y1)ω2 ⇒ ω1h(x1, a, y1)ω2 = w, a ∈ A0

i2) σ(α1, β1) = ω1(x1, θ(u1, v1), y1)ω2 ⇒ ω1σ((x1, u1, z1), (z1, v1, y1))ω2 = w for
some z1 ∈ X

Let us take into consideration the assumption last(α1) ∈ {)} and first(β1) ∈ {(, σ,
h}. It follows that the word

last(α1), first(β1)

can be only one of the following words:

), (

), σ

), h

therefore either α1 is a subword of ω1 or β1 is a subword of ω2.
The following cases are taken into consideration:

a) Suppose α1 is a subword of ω1.
From i1) and i2) we deduce that (x1, a, y1) or (x1, θ(u1, v1), y1) is a subword of
β1.

• If (x1, a, y1) is a subword of β1 then β1 = µ1(x1, a, y1)µ2 for some words
µ1 and µ2. In that case, from i1) we deduce that

σ(α1, β1) = σ(α1, µ1(x1, a, y1)µ2) ⇒ σ(α1, µ1h(x1, a, y1)µ2) = w
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therefore w = σ(α, β) for α = α1 and β = µ1h(x1, a, y1)µ2. But

(x, u, z) ⇒∗ α1 ⇒∗ α

(z, v, y) ⇒∗ β1 ⇒ β

last(α) = last(α1) ∈ {)}, first(β) = first(µ1) = first(β1) if µ1 is a
non-empty word and first(β) = h if µ1 is the empty word.

• Let us suppose that (x1, θ(u1, v1), y1) is a subword of β1. In that case we
obtain β1 = µ1(x1, θ(u1, v1), y1)µ2 and from i2) we deduce that

σ(α1, β1) = σ(α1, µ1(x1, θ(u1, v1), y1)µ2)
σ(α1, µ1(x1, θ(u1, v1), y1)µ2) ⇒ σ(α1, µ1σ((x1, u1, z1), (z1, v1, y1))µ2)
σ(α1, µ1σ((x1, u1, z1), (z1, v1, y1))µ2) = w

therefore w = σ(α, β) for α = α1 and β = µ1σ((x1, u1, z1), (z1, v1, y1))µ2.
b) Suppose now that β1 is a subword of ω2. ¿From i1) and i2) we deduce that
(x1, a, y1) or (x1, θ(u1, v1), y1) is a subword of α1. Suppose that (x1, a, y1) is
a subword of α1, therefore α1 = µ1(x1, a, y1)µ2. From i1) we deduce that
σ(α1, β1) = σ(µ1(x1, a, y1)µ2, β1) ⇒ σ(µ1h(x1, a, y1)µ2, β1) = w, therefore w =
σ(α, β) for α = µ1h(x1, a, y1)µ2 and β = β1. But (x, u, z) ⇒∗ α1 and α1 ⇒ α,
therefore (x, u, z) ⇒∗ α. We have also (z, v, y) ⇒∗ β1 and β1 = β, therefore
(z, v, y) ⇒∗ β. In addition, first(β) = first(β1) and last(α) ∈ {)} if µ2 is the
empty word. If µ2 is a non-empty word, then last(α) = last(µ2) = last(α1).

Thus the proposition is proved. ¤

Proposition 3.2. If (x, u, y) ⇒+ α and α ∈ ({σ} ∪M)∗ then α ∈ H.

Proof. We prove by induction on n that if (x, u, y) ⇒n α and α ∈ ({σ} ∪M)∗ then
α ∈ H. We verify this property for n=1. If (x, u, y) ⇒ α then two cases are possible:

1) u ∈ A0 and α = h(x, u, y). In that case we have α ∈ H.
2) u ∈ A \ A0, therefore u = θ(u1, v1). In that case α = σ((x, v1, z1), (z1, v2, y))
for some z1 ∈ X. This case is not possible because α 6∈ ({σ} ∪M)∗.

Suppose the assertion is true for n ∈ {1, ..., k} and take a derivation (x, u, y) ⇒k+1 α
such that α ∈ ({σ}∪M)∗. Because k+1 ≥ 2 and α ∈ ({σ}∪M)∗ we have u = θ(v1, v2)
for some v1, v2 ∈ A. Really, if by contrary we suppose that u ∈ A0 then we have:

(x, u, y) ⇒ h(x, u, y) ⇒k hk(x, u, y) = α

therefore α 6∈ ({σ} ∪M)∗.
The derivation (x, u, y) ⇒k+1 α can be written as follows:

(x, θ(v1, v2), y) ⇒ σ((x, v1, z), (z, v2, y)) ⇒k α

for some z ∈ X. Applying Proposition 3.1 we deduce that there are β1, β2 such that
(x, v1, z) ⇒∗ β1, (z, v2, y) ⇒∗ β2 and α = σ(β1, β2). Because α ∈ ({σ} ∪ M)∗ we
have β1, β2 ∈ ({σ} ∪M)∗. Applying the inductive assumption we have β1, β2 ∈ H,
therefore α = σ(β1, β2) ∈ H. ¤

Proposition 3.3. Suppose that w ∈ GS(x, θ(u, v), y) and denote by α and β those
elements of H, uniquely determined, such that w = σ(α, β). There is z ∈ X, such
that

(x, θ(u, v), y) ⇒ σ((x, u, z), (z, v, y)) ⇒∗ w
α ∈ GS(x, u, z) and β ∈ GS(z, v, y)
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Proof. We have (x, θ(u, v), y) ⇒+ w and w ∈ H because w ∈ GS(x, θ(u, v), y). But
H is a Peano σ-algebra, therefore w is written as w = σ(α, β) for α, β ∈ H uniquely
determined. By Proposition 3.1 there is z ∈ X such that:

(x, θ(u, v), y) ⇒ σ((x, u, z), (z, v, y)) ⇒∗ w

and there are α1, β1 such that w = σ(α1, β1), (x, u, z) ⇒∗ α1, (z, v, y) ⇒∗ β1. By
Proposition 3.2 we obtain α1 ∈ H and β1 ∈ H. But w = σ(α, β) = σ(α1, β1), where
α, β, α1, β1 ∈ H. By the property of the Peano σ-algebra H, we have α = α1 and
β = β1. In conclusion, the proposition is proved. ¤

Remark 3.1. Finally we shall prove that just one element z satisfies the conditions
of the previous proposition.

Proposition 3.4. If (x, u, z) ⇒∗ α and (z, v, y) ⇒∗ β then σ((x, u, z), (z, v, y)) ⇒∗

σ(α, β)

Proof. There are the following derivations:
(x, u, z) ⇒ ω1 ⇒ ω2 ⇒ ... ⇒ ωk ⇒ α
(z, v, y) ⇒ w1 ⇒ w2 ⇒ ... ⇒ wr ⇒ β

We know that if µ ⇒ ν is a direct derivation and w ∈ Z∗ then wµ ⇒ wν and
µw ⇒ νw. Based on this property we obtain the following derivations:

σ((x, u, z), (z, v, y)) ⇒ σ(ω1, (z, v, y)) ⇒ ... ⇒ σ(α, (z, v, y))
σ(α, (z, v, y)) ⇒ σ(α,w1) ⇒ ... ⇒ σ(α, β)

and the proposition is proved. ¤

Corollary 3.1.

GS(x, θ(u, v), y) =
⋃

z∈X

GS(x, u, z)⊗σ GS(z, v, y)

where P ⊗σ Q = {σ(u, v) | u ∈ P, v ∈ Q}.
Proof. By Proposition 3.3, if w ∈ GS(x, θ(u, v), y) then w ∈ GS(x, u, z)⊗σ GS(z, v, y).
Conversely, consider w = σ(α, β), where α ∈ GS(x, u, z) and β ∈ GS(z, v, y).

It follows that (x, u, z) ⇒∗ α, (z, v, y) ⇒∗ β and α ∈ H, β ∈ H. On the other
hand, if (x, u, z) ⇒∗ α and (z, v, y) ⇒∗ β then

σ((x, u, z), (z, v, y)) ⇒∗ σ(α, β) = w (6)

as is stated in Proposition 3.4. But θ(u, v) ∈ A, (x, θ(u, v), y) ∈ R, (x, u, z) ∈ R and
(z, v, y) ∈ R. It follows that:

(x, θ(u, v), y) ⇒ σ((x, u, z), (z, v, y))

therefore using (6) we deduce (x, θ(u, v), y) ⇒∗ w. We recall that α, β ∈ H and
w = σ(α, β), therefore w ∈ H. In this way we have w ∈ GS(x, θ(u, v), y) and the
proposition is proved. ¤

Definition 3.1. We define:
H(h(x, a, y)) =< h(x, a, y) > for h(x, a, y) ∈ M
H(σ(α, β)) =< p, q >, where H(α) =< p > and H(β) =< q >, σ(α, β) ∈ H,
α ∈ H, β ∈ H.

Proposition 3.5. Let be u ∈ A such that trace(u) =< a1, . . . , an >. For every α ∈
GS(x1, u, z1) there are y1, . . . , yn−1 ∈ X such that H(α) =< h(x1, a1, y1), h(y1, a2, y2),
. . . , h(yn−1, an, z1) > for n ≥ 2 and H(α) =< h(x1, u, z1) > for n = 1.
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Proof. We proceed by induction on n. For n=1 we have trace(u) =< a1 >, therefore
u = a1 ∈ A0. If α is an arbitrary element of GS(x1, u, z1) then (x1, u, z1) ⇒∗ α and
α ∈ H. This derivation is a direct one, that is (x1, u, z1) ⇒ h(x1, u, z1) = α. It follows
that H(α) =< h(x1, u, z1) > and the property is verified for n=1.

Consider k ≥ 1 and suppose the proposition is true for n ∈ {1, . . . , k}. Take an
element u ∈ A such that trace(u) =< a1, . . . , ak+1 >. There is u1, v1 ∈ A such that
u = θ(u1, v1). Take an element α ∈ GS(x1, u, z1) = GS(x1, θ(u1, v1), z1). By Corollary
3.1 we deduce that there is z ∈ X such that α = σ(α1, β1), where α1 ∈ GS(x1, u1, z)
and β1 ∈ GS(z, v1, z1). We use the inductive assumption. Because u = θ(u1, v1)
and trace(u) =< a1, . . . , ak+1 >, it follows that there is i ∈ {1, . . . , k} such that
trace(u1) =< a1, . . . , ai > and trace(v1) =< ai+1, . . . , ak+1 >.

By the inductive assumption we have the following properties:
1) there are y1, . . . , yi−1 ∈ X such that H(α1) =< h(x1, a1, y1), h(y1, a2, y2),. . . ,
h(yi−1, ai, z) >
2) there are t1, . . . , tk−i ∈ X such that H(β1) =< h(z, ai+1, t1), h(t1, ai+2, t2),. . . ,
h(tk−i, ak+1, z1) >

But α = σ(α1, β1), therefore H(α) is the following system:

< h(x1, a1, y1), h(y1, a2, y2), . . . , h(yi−1, ai, z), h(z, ai+1, t1), . . . , h(tk−i, ak+1, z1) >

and the proposition is proved. ¤

Corollary 3.2. If GS(x1, u, z1)∩GS(x2, v, z2) 6= ∅ then x1 = x2, trace(u) = trace(v)
and z1 = z2.

Proof. If α ∈ GS(x1, u, z1)∩GS(x2, v, z2) and trace(u) =< a1, . . . , an >, trace(v) =<
b1, . . . , bk > then by Proposition 3.5 there are y1, . . . , yn−1, t1, . . . , tk−1 ∈ X such that:

H(α) =< h(x1, a1, y1), h(y1, a2, y2), . . . , h(yn−1, an, z1) >
H(α) =< h(x2, b1, t1), h(t1, b2, t2), . . . , h(tk−1, bk, z2) >

therefore n = k, a1 = b1, . . ., an = bk, x1 = x2, y1 = t1, . . ., yn−1 = tk−1 and z1 = z2.
Thus, x1 = x2, trace(u) = trace(v) and z1 = z2. ¤

Corollary 3.3. The element z ∈ X from Proposition 3.3 is uniquely determined.

Proof. If α ∈ GS(x, u, z1) ∩ GS(x, u, z2) then z1 = z2 by Corollary 3.2. ¤

4. Open problems

The following open problems are relieved:
• Study the case when the component A of a semantic schema is an infinite set.

The corresponding set R is also an infinite set. Give an example of knowledge
piece which can be modeled by such structures.

• Embed two distinct semantic schemas in a semantic schema.
• Introduce a partial order between two semantic schemas and find the least se-

mantic schema which contains some semantic schemas.
• Combine two semantic schemas such that the reasoning by analogy can be per-

formed.
• Design a knowledge manager which uses the previous concepts and can process

the distributed knowledge.
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