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Manifolds and Symplectic Manifolds Trajectories Generation
and Visualization

Mihai Dupac

Abstract. Manifolds visualization was a challenging subject in order interpret the data and
to have a better understanding of system dynamics. Different mathematical functions com-
bined with geometry and color have been used to define the shapes for a successful visual-
ization. In this paper the visualization of different manifolds types is discussed. Trajectories
visualization in the case of a symplectic manifold via a Poisson integrator method for the free
rigid body is also provided and compared with other classical numerical results.
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1. Introduction

Visualization techniques are indispensable tools for the understanding of dynamical
systems, the modeling and visualization techniques being a challenging subject for the
researchers.

So far, a lot of dynamical systems turned out to be Lie-Poisson or Hamilton-Poisson
systems. They contain the Euler equations of the free rigid body, the Maxwell-Poisson
equations from plasma physics, the magnetohydrodynamic equations and many oth-
ers Abraham, Marsden and Ratiu[3], Marsden[5] and Puta[12]. In the last time, a lot
of technics that approximate conventional mechanical systems using discreet meth-
ods have been developed. From these technics we choose the numerical integrators
in order to approximate the solution. If they preserve the symplectic structure on
the phase space of the system, then they are usually called symplectic algorithms.
Details regarding symplectic algorithms, structures and manifolds may be found in
Marsden[5], McLahlan and Scovel[7] and the references included there.

Theoretically, any manifold can be visualized using numerical methods. How-
ever, numerical solutions are not always very successful, having a bad behavior near
singularities. Instead of numerical solutions parametric representation of manifold’s
geometry may be used, which is more simpler and more practical. Parametric rep-
resentations of shapes have been discussed in [8], and are very appropriate selections
when handling complex shapes in three dimensional dimensions.

Since computer visualization is very important for understanding geometrical shapes,
the associated graphics is a useful tool for researching manifolds and their properties.
The study of the system dynamics, and the visualization of the associated trajectories
may cover some essential properties, many times hidden within manifolds equations.
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Figure 1. Torus and triple torus

The work in the present paper is dedicated to the manifolds visualization. For this
purpose, a parametric representation, the most straightforward method of function-
based shape modeling, was used to visualize some classical manifolds. Geometry and
color, as well as different textures, may be included.

An example of trajectory visualization via a Poisson integrator method is provided
and compared with other numerical results, obtained by using Runge-Kutta and Euler
method.

2. Manifolds and Manifolds Visualization

In a general manifold theory there are many defined manifold types, such as dif-
ferentiable manifolds, topological manifolds and complex manifold. A differential
manifold is a topological manifold where the notions of continuity and differentiation
applies. The differentiation in this case means that for every non-empty intersection,
the transitions functions are diffeomorphisms (bijective and differentiable) from Rn

to Rn. For the next part, local coordinates, open subset, chart, atlas are supposed to
be well known notions.

A 3D manifold can be represented either explicitly or implicitly (atlas or set of
points), and so the visualization of such of 3D objects can be envisioned either ex-
plicitly or implicitly. Sometimes, such objects are difficult to visualize (the case of
complex functions) because their representation is inside a four-dimensional space.

There are two basic ways to visualize a manifold, by numerically solving the asso-
ciated equation and using the Marching Cubes algorithm [4], or by a classical para-
metric representation. The firs case applies when the manifold can be describe by an
algebraic equation with integers coefficients

F (x1, x2, ..., xn) =
∑

n

Cg1,...,gnxg1
1 ...xgn

n = ξ (1)

where the sum is finite and the exponents are natural numbers. In the second case,
the manifold may be described using a parametric representation such as

Π(x1, ..., xn) =





y1 = F1(x1, ..., xn)
.
.
.

yn = Fn(x1, ..., xn)

While the first case may require a lot of computational power the second one is
usually very simple and fast (but a parametric representation may be sometimes
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Figure 2. Klein Bottle

very difficult to obtain). Defining shapes with parametric representation is the most
straightforward method of function-based shape modeling. Besides defining geome-
try, functions can be used for creating sophisticated colors and textures. Parametric
functions for mapping texture images, or simple texture mapping, is a common ap-
proach implemented in many software and hardware systems Peachey [11], Wyvill et
al. [21].

Some classical manifolds (a torus, a triple torus and the Klein bottle) using a
parametric representation are shown in Fig. 1 and Fig. 2.

3. Poisson integrators of the free rigid body

The Euler equations of the free rigid body can be written as




·
m1= a1m2m3
·

m2= a2m1m3
·

m3= a3m1m2

(2)

with a canonical Poisson realization (R3,Π,H), where

Π =




0 −m3 m2

m3 0 −m1

−m2 m1 0




H =
1
2

[
m2

1

I1
+

m2
2

I2
+

m2
3

I3

]

A Casimir of the configuration is given by

C =
1
2

[
x2

1 + x2
2 + x2

3

]

One can observe that

H = H1 + H2 + H3

where

H1 =
1

2I1
m2

1,H2 =
1

2I2
m2

2,H3 =
1

2I3
m2

3
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Figure 3. Trajectory using Poisson Algorithm

The dynamics of XH1 is given by m = Π · ∇H1 or equivalent




·
m1= 0
·

m2= −m1m3

I1·
m3=

m1m2

I1

One can obtain




·
m1
·

m2
·

m3


 =




0 0 0

0 0 −m1(0)
I1

0
m1(0)

I1
0







m1

m2

m3




with the solution




m1(t)
m2(t)
m3(t)


 =




0 0 0

0 0 − tm1(0)
I1

0
tm1(0)

I1
0







m1(0)
m2(0)
m3(0)




In a similar way the integral curves of XH2 and XH3 can be written as




m1(t)
m2(t)
m3(t)


 =




cos
tm2(0)

I2
0 − sin

tm2(0)
I2

0 1 0

sin
tm2(0)

I2
0 cos

tm2(0)
I2







m1(0)
m2(0)
m3(0)


 (3)




m1(t)
m2(t)
m3(t)


 =




cos
tm3(0)

I3
sin

tm3(0)
I3

0

− sin
tm3(0)

I3
cos

tm3(0)
I3

0

0 0 1







m1(0)
m2(0)
m3(0)


 (4)

The Hamilton-Poisson system given by Eq.(2) is linear separable, and via (3) and
(4), the first order Poisson integrator (the explicit Poisson integrators appear for the
first time in the papers of McLachlan[6], Reich[16] and Puta[14]) P1(t) can be written
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Figure 4. Trajectories using Poisson, Runge-Kutta and Euler Algorithms

as, 



mk+1
1 = mk

1 cosB cos C + mk
2(sinC cos A + sin A cosC sin B)

+mk
3(sinA sin C − cosA cos C sin B)

mk+1
2 = −mk

1 sin C cos B + mk
2(sinC cos A− sin A sin B sin C)

+mk
3(sinA cos C + cos A sin C sin B)

mk+1
3 = mk

1 sinB −mk
2 sin A cos B + mk

3 cos A cosB

(5)

where

A =
m1(0)

I1
t;B =

m2(0)
I2

t; C =
m3(0)

I3
t.

Since computer visualization is very important for understanding geometrical shapes,
the associated graphics is a useful tool for researching manifolds and their properties.
The study of the system dynamics, and the visualization of the associated trajectories
may cover some essential properties, many times hidden within manifolds equations.
Such trajectories are shown in Fig. 3, the case of Poisson integrators for the free rigid
body (for more details see Puta and Dupac [15]). Similar trajectories shown in Fig. 4
have been obtained when using Runge-Kutta and Euler method.

4. Conclusions

In this paper different parametric representations for manifold visualization have
been used. Geometry and color, as well as different textures combinations may also
be included.

It was demonstrated that trajectory visualization may cover some essential prop-
erties, many times hidden within manifolds equations. Furthermore, an example of
trajectory visualization via a Poisson integrator method is provided and compared
with other classical numerical results.
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