Some results on Lorentzian β-Kenmotsu manifolds

N.S. Basavarajappa*,C.S.Bagewadi** and D.G.Prakasha***

[^0]
1. Introduction

In [14], S. Tanno classified connected almost contact metric manifolds whose automorphism groups possess the maximum dimension. For such a manifold, the sectional curvature of plane sections containing ξ is a constant, say c. He showed that they can be divided into three classes:
(1) homogeneous normal contact Riemannian manifolds with $c>0$,
(2) global Riemannian products of a line or a circle with a Kaehler manifold of constant holomorphic sectional curvature if $c=0$ and
(3) a warped product space $\mathbf{R} \times{ }_{f} \mathbf{C}$ if $c>0$. It is known that the manifolds of class (1) are characterized by admitting a Sasakian structure. Kenmotsu [7] characterized the differential geometric properties of the manifolds of class (3); the structure so obtained is now known as Kenmotsu structure. In general, these structures are not Sasakian [7]. In the Gray-Hervella classification of almost Hermitian manifolds [6], there appears a class, W_{4}, of Hermitian manifolds which are closely related to locally conformal Kaehler manifolds [5]. An almost contact metric structure on a manifold M is called a trans-Sasakian structure [11] if the product manifold $M \times \mathbf{R}$ belongs to the class W_{4}. The class $C_{6} \oplus C_{5}([8],[9])$ coincides with the class of the trans-Sasakian structures of type (α, β). In fact, in [9], local nature of the two subclasses, namely, C_{5} and C_{6} structures, of trans-Sasakian structures are characterized completely.

We note that trans-Sasakian structures of type $(0,0),(0, \beta)$ and $(\alpha, 0)$ are cosymplectic [3], β-Kenmotsu [7] and α-Sasakian [7] respectively. In [15] it is proved that trans-Sasakian structures are generalized quasi-Sasakian [10]. Thus, trans-Sasakian structures also provide a large class of generalized quasi-Sasakian structures.

An almost contact metric structure (ϕ, ξ, η, g) on M is called a trans-Sasakian structure [11] if ($M \times \mathbf{R}, J, G$) belongs to the class $W_{4}[6]$, where J is the almost complex structure on $M \times \mathbf{R}$ defined by

$$
J(X, f d / d t)=(\phi X-f \xi, \eta(X) f d / d t)
$$

Received: 11 December 2007.
for all vector fields X on M and smooth functions f on $M \times \mathbf{R}$, and G is the product metric on $M \times \mathbf{R}$. This may be expressed by the condition [4]

$$
\left(\nabla_{X} \phi\right) Y=\alpha(g(X, Y) \xi-\eta(Y) X)+\beta(g(\phi X, Y) \xi-\eta(Y) \phi X)
$$

for some smooth functions α and β on M, and we say that the trans-Sasakian structure is of type (α, β).
Theorem 1.1. [1] A trans-sasakian structure of type (α, β) with β a nonzero constant is always β-Kenmotsu

In this case β becomes a constant. If $\beta=1$, then β-Kenmotsu manifold is Kenmotsu.

The present paper dals with the study of Lorentzian β-Kenmotsu manifold satisfying certian conditions. After preliminaries, in section 3 we study Lorentzian β Kenmotsu manifold satisfying the condition $R(X, Y) \cdot \widetilde{P}=0$, where \widetilde{P} is the pseudo projective curvature tensor and $R(X, Y)$ is considred as a derivation of the tensor algebra at each point of the manifold for tangent vectors X, Y and it is shown that in a Lorentzian β-Kenmotsu manifold satisfying the condition $R(X, Y) \cdot P=0$ is an η Einstein manifold. Section 4 is devoted to the study of pseudo projectively recurrent Lorentzian β-Kenmotsu manifolds. In the last section we show that in a Lorentzian β Kenmotsu manifold the transformation μ which leaves the curvature tensor invariant is an isometry and the infinitesimal paracontact transformationwhich leaves a Ricci tensor invariant is an infinitesimal strict paracontact transformation.

2. Preliminaries

A differentiable manifold M of dimension n is called Lorentzian Kenmotsu manifold if it admits a $(1,1)$-tensor field ϕ, a contravariant vector field ξ, a covariant vector field η and Lorentzian metric g which satisfy

$$
\begin{align*}
& \eta \xi=-1, \quad \phi \xi=0, \quad \eta(\phi X)=0 \tag{1}\\
& \phi^{2} X=X+\eta(X) \xi, \quad g(X, \xi)=\eta(x) \tag{2}\\
& g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y) \tag{3}
\end{align*}
$$

for all $X, Y \in T M$.
Also if Lorentzian Kenmotsu manifold M satisfies

$$
\begin{align*}
\nabla_{X} \xi & =\beta[X-\eta(X) \xi] \tag{4}\\
\left(\nabla_{X} \eta\right)(Y) & =\beta[g(X, Y)-\eta(X) \eta(Y)] \tag{5}
\end{align*}
$$

where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g, then M is called Lorentzian β-Kenmotsu mnifold.
Further, on an Lorentzian β-Kenmotsu manifold M the following relations hold ([1], [2])

$$
\begin{align*}
\eta(R(X, Y) Z) & =\beta^{2}[g(X, Z) \eta(Y)-g(Y, Z) \eta(X)] \tag{6}\\
R(\xi, X) Y & =\beta^{2}(\eta(Y) X-g(X, Y) \xi) \tag{7}\\
R(X, Y) \xi & =\beta^{2}(\eta(X) Y-\eta(Y) X) \tag{8}\\
S(X, \xi) & =-(n-1) \beta^{2} \eta(X) \tag{9}\\
Q \xi & =-(n-1) \beta^{2} \xi \tag{10}\\
S(\xi, \xi) & =(n-1) \beta^{2} \tag{11}
\end{align*}
$$

The pseudo projective curvature tensor on a Riemannian manifold is given by [12]

$$
\begin{align*}
\widetilde{P}(X, Y) Z= & a R(X, Y) Z+b[S(Y, Z) X-S(X, Z) Y] \tag{12}\\
& \frac{r}{n}\left[\frac{a}{n-1}+b\right][g(Y, Z) X-g(X, Z) Y]
\end{align*}
$$

. where a and b constants such that $a, b \neq 0$.
3. Lorentzian β-Kenmotsu Manifold satisfying $R(X, Y) \cdot \widetilde{P}=0$

From (6),(12) and (9) we have

$$
\begin{align*}
\eta(\widetilde{P}(X, Y) Z)= & a \beta^{2}[g(X, Z) \eta(Y)-g(Y, Z) \eta(X)] \tag{13}\\
& +b[S(Y, Z) \eta(X)-S(X, Z) \eta(Y)] \\
& -\frac{r}{n}\left[\frac{a}{n-1}+b\right][g(Y, Z) \eta(X)-g(X, Z) \eta(Y)]
\end{align*}
$$

Putting $Z=\xi$ in (13) we get

$$
\begin{equation*}
\eta(\widetilde{P}(X, Y) \xi)=0 \tag{14}
\end{equation*}
$$

Again taking $X=\xi$ in (13), we have

$$
\begin{aligned}
\eta(\widetilde{P}(\xi, Y) Z)= & {\left[\frac{r}{n}\left(\frac{a}{n-1}+b\right)+a \beta^{2}\right][g(Y, Z)+\eta(Y) \eta(Z)] } \\
& -b S(Y, Z)+(n-1) b \beta^{2} \eta(Y) \eta(Z)
\end{aligned}
$$

Now,

$$
\begin{aligned}
(R(X, Y) \cdot \widetilde{P})(U, V) Z= & R(X, Y) \widetilde{P}(U, V) Z-\widetilde{P}(R(X, Y) U, V) Z \\
& -\widetilde{P}(U, R(X, Y) V) Z-\widetilde{P}(U, V) R(X, Y) Z
\end{aligned}
$$

Let $R(X, Y) \cdot \widetilde{P}=0$, then we have

$$
\begin{align*}
& R(X, Y) \cdot \widetilde{P}(U, V) Z-\widetilde{P}(R(X, Y) U, V) Z \tag{16}\\
& -\widetilde{P}(U, R(X, Y) V) Z-\widetilde{P}(U, V) R(X, Y) Z=0
\end{align*}
$$

Therefore,

$$
\begin{align*}
& g[R(\xi, Y) \widetilde{P}(U, V) Z, \xi]-g[\widetilde{P}(R(\xi, Y) U, V) Z, \xi] \tag{17}\\
& -g[\widetilde{P}(U, R(\xi, Y) V) Z, \xi]-g[\widetilde{P}(U, V) R(\xi, Y) Z, \xi]=0
\end{align*}
$$

From this it follows that

$$
\begin{align*}
\widetilde{P}(U, V, Z, Y) & +\eta(Y) \eta(\widetilde{P}(U, V) Z)-\eta(U) \eta(\widetilde{P}(Y, V) Z) \tag{18}\\
& +g(U, Y) \eta(\widetilde{P}(\xi, V) Z)-\eta(V) \eta(\widetilde{P}(U, Y) Z) \\
& +g(Y, V) \eta(\widetilde{P}(U, \xi) Z)-\eta(Z) \eta(\widetilde{P}(U, V) Y)=0 .
\end{align*}
$$

where $\widetilde{P}(U, V, Z, Y)=g(\widetilde{P}(U, V) Z, Y)$.
Putting $Y=U$ in (18), we get

$$
\begin{align*}
\widetilde{P}(U, V, Z, U) & +g(U, U) \eta(\widetilde{P}(\xi, V) Z)+g(U, V) \eta(\widetilde{P}(U, \xi) Z) \tag{19}\\
& -\eta(V) \eta(\widetilde{P}(U, U) Z)-\eta(Z) \eta(\widetilde{P}(U, V) U)=0
\end{align*}
$$

Let $\left\{e_{i}\right\}, i=1,2, \ldots, n$ be an orthonormal basis of the tangent space at any point. Then the sum for $1 \leq i \leq n$ of the relation (19) for $U=e_{i}$ yields

$$
\begin{equation*}
\eta(P(\xi, V) Z)=(a-b)\left[\frac{r}{n(n-1)}+\beta^{2}\right] \eta(V) \eta(Z) \tag{20}
\end{equation*}
$$

From (15) and (20) we have

$$
\begin{align*}
S(V, Z)= & {\left[\frac{a}{b} \beta^{2}+\frac{r}{n}\left(\frac{a}{b(n-1)}+1\right)\right] g(V, Z) } \tag{21}\\
& +\left[\frac{a}{b} \beta^{2}+\frac{r}{n}\left(\frac{a}{b(n-1)}+1\right)+(n-1) \beta^{2}\right. \\
& \left.-\frac{(a-b)}{b}\left(\frac{r}{n(n-1)}+\beta^{2}\right)\right] \eta(V) \eta(Z) .
\end{align*}
$$

Taking $Z=\xi$ in (21), then using (1) and (9) we obtain

$$
\begin{equation*}
r=-n(n-1) \beta^{2} \tag{22}
\end{equation*}
$$

Now using (13), (14), (21) and (22) in (18) we get

$$
\begin{equation*}
\widetilde{P}(U, V, Z, Y)=0 \tag{23}
\end{equation*}
$$

From (23) it follows that

$$
\begin{equation*}
P(U, V) Z=0 . \tag{24}
\end{equation*}
$$

Therefore the Lorentzian β-Kenmotsu manifold is pseudo projectively flat. Hence we can state

Theorem 3.1. If in an Lorentzian β-Kenmotsu manifold $M n>1$ the relation $R(X, Y) \cdot \widetilde{P}=0$ holds, then the manifold is pseudo projectively flat.

4. Pseudo projectively flat Lorentzian β-Kenmotsu Manifold

Suppose that $P(X, Y) Z=0$. Then from (12), we have

$$
\begin{equation*}
R(X, Y) Z=\frac{1}{n-1}[S(Y, Z) X-S(X, Z) Y] \tag{25}
\end{equation*}
$$

From (25), we have

$$
\begin{align*}
R(X, Y, Z, W)= & -\frac{b}{a}[S(Y, Z) g(X, W)-S(X, Z) g(Y, Z)] \\
& +\frac{r}{n}\left[\frac{1}{n-1}+\frac{b}{a}\right][g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \tag{26}
\end{align*}
$$

where $R(X, Y, Z, W)=g(R(X, Y) Z, W)$.
Putting $W=\xi$ in (26), we get

$$
\begin{align*}
\eta(R(X, Y) Z)= & -\frac{b}{a}[S(Y, Z) \eta(X)-S(X, Z) \eta(Y)] \tag{28}\\
& +\frac{r}{n}\left[\frac{1}{n-1}+\frac{b}{a}\right][g(Y, Z) \eta(X)-g(X, Z) \eta(Y)]
\end{align*}
$$

Again taking $X=\xi$ in (28), and using (1),(6) and (9), we get

$$
\begin{align*}
S(Y, Z)= & {\left[\frac{r}{n}\left(\frac{a}{b(n-1)}+1\right)+\frac{a}{b} \beta^{2}\right] g(Y, Z) } \tag{29}\\
& +\left[\frac{r}{n}\left(\frac{a}{b(n-1)}+1\right)+(n-1) \beta^{2}+\frac{a}{b} \beta^{2}\right] \eta(Y) \eta(Z) \tag{30}
\end{align*}
$$

Therefore, the manifold is η-Einstein.
From (29), it follows that

$$
\begin{equation*}
r=-n(n-1) \beta^{2} . \tag{31}
\end{equation*}
$$

Hence we can state
Theorem 4.1. A Pseudo projectively flat Lorentzian β-Kenmotsu manifold $M n>1$ is an η-Einstein manifold.

Thus from Theorems 3.1 and 4.1, we conclude
Theorem 4.2. A Lorentzian β-Kenmotsu manifold M satisfying $R(X, Y) \cdot \widetilde{P}=0$ is an η-Einstein manifold and also a manifold of negative curvature $-n(n-1) \beta^{2}$.

5. Pseudo projectively recurrent Lorentzian β-Kenmotsu Manifold

A non-flat Riemannian manifold M is said to be pseudo projectively recurrent if the pseudo-projective curvature tensor \widetilde{P} satisfies the condition $\nabla \widetilde{P}=A \otimes \widetilde{P}$, where A is an everywhere non-zero 1-form. We now define a function f on M by $f^{2}=g(\widetilde{P}, \widetilde{P})$, where the metric g is extended to the inner product between the tensor fields in the standard fashion.

Then we know that $f(Y f)=f^{2} A(Y)$. So from this we have

$$
\begin{equation*}
Y f=f A(Y) \quad(\text { becausef } \neq 0) \tag{32}
\end{equation*}
$$

From (32) we have

$$
X(Y f)=\frac{1}{f}(X f)(Y f)+(X A(Y)) f
$$

Hence

$$
X(Y f)-Y(X f)=\{X A(Y)-Y A(X)\} f
$$

Therefore we get

$$
\left(\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}\right) f=\{X A(Y)-Y A(X)-A([X, Y])\} f .
$$

Since the left hand side of the above equation is identically zero and $f \neq 0$ on M by our assumption. We obtain

$$
\begin{equation*}
d A(X, Y)=0 \tag{33}
\end{equation*}
$$

that is the 1 -form A is closed.
Now, from $\left(\nabla_{X} \widetilde{P}\right)(U, V) Z=A(X) \widetilde{P}(U, V) Z$, we get

$$
\left(\nabla_{U} \nabla_{V} \widetilde{P}\right)(X, Y) Z=\{U A(V)+A(U) A(V)\} \widetilde{P}(X, Y) Z
$$

Hence from (33), we get

$$
\begin{equation*}
(R(X, Y) \cdot \widetilde{P})(U, V) Z=[2 d A(X, Y)] \widetilde{P}(U, V) Z=0 \tag{34}
\end{equation*}
$$

Therefore, for a pseudo projectively recurrent manifold, we have

$$
\begin{equation*}
R(X, Y) \widetilde{P}=0 \text { for all } X, Y \tag{35}
\end{equation*}
$$

Thus, we can state the following:

Theorem 5.1. A pseudo projectively recurrent Lorentzian β-Kenmotsu manifold M is an η-Einstein manifold.

Since for a pseudo projectively symmetric Lorentzian β-Kenmotsu manifold M, $(n>1)$. we have $\left(\nabla_{U} \widetilde{P}\right)(X, Y) Z=0$ which implies $R(X, Y) . \widetilde{P}=0$. We can state the following:

Lemma 5.1. A pseudo projectively symmetric Lorentzian β-Kenmotsu manifold M, $(n>1)$ is an η-Einstein manifold.

6. Some transformation in Lorentzian β-Kenmotsu Manifold

We now consider a transformation μ which transform a Lorentzian β-Kenmotsu structure (ϕ, ξ, η, g) into another Lorentzian β-Kenmotsu structure $(\bar{\phi}, \bar{\xi}, \bar{\eta}, \bar{g})$. We denote by the notation 'bar' the geometric objects which are transformed by the transformation μ.

We first suppose that in a Lorentzian β-Kenmotsu manifold the Riemannian curvature tensor remains invariant with respect to the transformation μ.

Thus we have

$$
\begin{equation*}
\bar{R}(X, Y) Z=R(X, Y) Z \tag{36}
\end{equation*}
$$

for all X, Y, Z.
This gives, $\eta(\bar{R}(X, Y) Z)=\eta(R(X, Y) Z)$, and hence by virtue of (6) we get

$$
\begin{equation*}
\eta(\bar{R}(X, Y) Z)=\beta^{2}[g(X, Z) \eta(Y)-g(Y, Z) \eta(X) \tag{37}
\end{equation*}
$$

Putting $Y=\bar{\xi}$ in (37) and then using (7) we obtain

$$
\begin{equation*}
\eta(\bar{\xi}) g(X, Z)-\eta(X) g(\bar{\xi}, Z)=\eta(\bar{\xi}) \bar{g}(X, Z)-\bar{\eta}(Z) \eta(X) . \tag{38}
\end{equation*}
$$

Interchanging X and Z

$$
\begin{equation*}
\eta(\bar{\xi}) g(X, Z)-\eta(X) g(\bar{\xi}, X)=\eta(\bar{\xi}) \bar{g}(X, Z)-\bar{\eta}(X) \eta(Z) . \tag{39}
\end{equation*}
$$

Substracting (39) from (38) we obtain

$$
\begin{equation*}
\eta(Z) g(\bar{\xi}, X)-\eta(X) g(\bar{\xi}, Z)=\bar{\eta}(X) \eta(Z)-\bar{\eta}(Z) \eta(X) \tag{40}
\end{equation*}
$$

Putting $Z=\xi$ in (40) we obtain by using (7)

$$
\begin{equation*}
-g(\bar{\xi}, X)-g(\bar{\xi}, \xi) \eta(X)=-\bar{\eta}(X)-\bar{\eta}(\xi) \eta(X) \tag{41}
\end{equation*}
$$

Also from (36) we have

$$
\bar{S}(X, Y)=S(X, Y)
$$

and hence

$$
\bar{S}(\xi, \bar{\xi})=S(\xi, \xi)
$$

This gives by virtue of (9) that

$$
\begin{equation*}
\bar{\eta}(\xi)=\eta(\bar{\xi}) \tag{42}
\end{equation*}
$$

Using (42) in (41) and since $\eta(\bar{\xi})=g(\bar{\xi}, \xi)$ we get

$$
\begin{equation*}
\bar{\eta}(X)=g(\bar{\xi}, X) \tag{43}
\end{equation*}
$$

By virtue of (43) we get from (39) that

$$
[g(X, Z)-\bar{g}(X, Z)] \eta(\bar{\xi})
$$

This implies

$$
g(X, Z)=\bar{g}(X, Z)
$$

Hence we can state the following:
Theorem 6.1. In a Lorentzian β-Kenmotsu manifold the transformation μ which leaves the curvature tensor invariant and $\eta(\bar{\xi}) \neq 0$.

Definition 6.1. A vector field V on a contact manifold with contact form η is said to be an infinitesimal contact transformation [13] if V satisfies

$$
\begin{equation*}
\left(£_{V} \eta\right) X=\sigma \eta(X) \tag{44}
\end{equation*}
$$

for a scalar function σ, where $£_{v}$ denotes the Lie differentiation with respect to V. Especially, if σ vanishes identically, then it is called an infinitesimal strict contact transformation [13]

Let us now suppose that in a Lorentzian β-Kenmotsu manifold, the infinitesimal contact transformation leaves Ricci tensor invariant. Then we have

$$
\left(£_{V} S\right)(X, Y)=0
$$

which gives

$$
\begin{equation*}
\left(£_{V} S\right)(X, \xi)=0 \tag{45}
\end{equation*}
$$

Now,

$$
\begin{equation*}
\left(£_{V} S\right)(X, \xi)=£_{V} S(X, \xi)-S\left(£_{V} X, \xi\right)-S\left(X, £_{V} \xi\right) \tag{46}
\end{equation*}
$$

By virtue of (9) and (45) we get from (46) that

$$
\begin{equation*}
-(n-1) \beta^{2}\left(£_{V} \eta\right)(X)-S\left(X, £_{V} \xi\right)=0 \tag{47}
\end{equation*}
$$

Using (44) in (47) we obtain

$$
\begin{equation*}
S\left(X, £_{V} \xi\right)=-(n-1) \beta^{2} \sigma \eta(X) \tag{48}
\end{equation*}
$$

Putting $X=\xi$ in (48) and then using (9), we get

$$
\begin{equation*}
\eta\left(£_{V} \xi\right)=-\sigma \tag{49}
\end{equation*}
$$

Again putting $X=\xi$ in (44), we have

$$
\left(£_{V} \eta\right)(\xi)=-\sigma
$$

that is,

$$
\begin{equation*}
£_{V}(\eta(\xi))-\eta\left(£_{V} \xi\right)=\sigma . \tag{50}
\end{equation*}
$$

By virtue of (49) and (50) we get]

$$
\sigma=0
$$

Thus we can state the following:
Theorem 6.2. In a Lorentzian β-Kenmotsu manifold, the infinitesimal contact transformation which leaves the Ricci tensor invariant is an infinitesimal strict contact transformation.

References

[1] C.S. Bagewadi and E. Girish Kumar, Note on Trans-Sasakian manifolds, Tensor.N.S., 65(1)(2004), 80- 88.
[2] D.G. Prakasha ,C.S. Bagewadi and N.S. Basavarajappa, On Lorentzian β-Kenmotsu manifolds, Int.Journal of Math.,2(19)(2008), 919-927.
[3] D.E. Blair, Contact manifolds in Riemannian geometry, Lectures Notes in Mathematics, Springer-Verlag, Berlin, 509(1976), 146.
[4] D.E. Blair and J.A. Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publications Matematiques, 34(1990), 199- 207.
[5] S. Dragomir and L. Ornea, Locally conformal Kaehler geometry, Progress in Mathematics 155, Birkhauser Boston, Inc.,Boston,MA,1998.
[6] A. Gray and L.M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl.,123(4)(1980),35-58.
[7] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math.J.,24(1972), 93-103.
[8] J.C. Marrero, The local structure of trans-Sasakian manifolds, Ann.Mat.Pura Appl.,162(4)(1992),77-86.
[9] J.C. Marrero and D. Chinea, On trans-Sasakian manifolds, Proceedings of the XIVth SpanishPortuguese Conference on Mathematics, Vol. I-III(Spanish)(Puerto de la Cruz, 1989),655659, Univ. La Laguna, La Laguna, 1990.
[10] R.S. Mishra, Almost contact metric manifolds, Monograph 1, Tensor Society of India, Lucknow,(1991).
[11] J.A. Oubina, New classes of contact metric structures, Publ.Math.Debrecen, 32(3- 4)(1985), 187-193.
[12] B. Prasad, On pseudo projective curvature tensor on a Riemannian manifold, Bull. Calcutta Math. Soc. 94(3) (2002), 163166.
[13] S. Sasaki, Almost contact manifolds, Lecture Notes Tohoku Univ. Vol. 1, (1965).
[14] S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tohoku Math. J, 21(1969), 21-38.
[15] M.M. Tripathi, Trans-Sasakian manifolds are generalized quasi-Sasakian, Nepali Math.Sci.Rep., 18(1-2)(1999-2000), 11-14.
*Department of Mathematics,
SBM Jain College of Engineering,
Jakkasandra, Bangalore, INDIA.
E-mail address: nsb_sbmjce@yahoo.co.in
**Department of Mathematics and Computer Science
Kuvempu University, Jnana Sahyadri-577 451,
Shimoga, Karnataka, INDIA.
***Department of Mathematics,
PES Institute of technology and management,
SAGARA Road,SHIMOGA, INDIA.

[^0]: Abstract. The object of the present paper is to study Lorentzian β-Kenmotsu manifolds satisfying certain conditions.

 2000 Mathematics Subject Classification. 53C05; 53C20; 53C25; 53D15.
 Key words and phrases. Trans-Sasakian manifold, β-Kenmotsu manifold, Lorentzian β-Kenmotsu manifold.

