
Annals of the University of Craiova, Math. Comp. Sci. Ser.
Volume 35, 2008, Pages 149–170
ISSN: 1223-6934

An Extension of Inheritance Knowledge Bases and Computational
Properties of their Answer Functions

C Pı̂  N Ţ̆̆

A. In this paper a model of knowledge representation using the inheritance is proposed. In com-
parison with other models which use the inheritance mechanism, our model is endowed with the multiple
inheritance and includes a parameter for each attribute value. This parameter specifies the extension treated
in this paper. Several particular cases are exemplified. In particular the uncertain knowledge can be rep-
resented by this method. The concepts of interrogation, deduction and answer mapping are defined. The
computational properties of the answer mapping are studied. We give a necessary and sufficient condition for
the case when an infinite number of steps are performed by the answer mapping. The last section contains
several open problems in connection with the subject treated in this paper.

2000 Mathematics Subject Classification. 68T30.
Key words and phrases. Inheritance, attribute, object, slot, strict partial order, interrogation, answer
mapping, uncertainty, computability, decidability.

1. Introduction

Various aspects of the inheritance mechanism were studied. The language DLP is a knowl-
edge representation language, which extends disjunctive logic programming (with strong
negation) by inheritance ([4]). The inheritance of business rules in the medical insurance
domain was studied in [9]. A natural model-theoretic semantics for inheritance in frame-
based knowledge bases, which supports inference by inheritance as well as inference via
rules was treated in [14]. The implications of the lattice theory to characterize the features
of the answer mapping in knowledge systems based on inheritance were described in [10],
[11] and [12]. An interrogation by voice of an inheritance based knowledge system is given
in [13].

The objectives of this paper can be described as follows:
(1) A model of knowledge representation using the inheritance is proposed. In comparison

with other models which use the inheritance mechanism, our model is endowed with the
following features:
• The multiple inheritance is allowed for the computation of an attribute value.
• The value of an attribute can specify some parameter such that our representation

includes the uncertain knowledge (fuzzy and probabilistic) or this parameter can
identify a risk factor if this value is selected. In the last case it is not difficult to
obtain a minimum risk or a maximum risk study for a given knowledge base.

• In our model a given attribute can be inherited from more that one object. In this
case a choice function is introduced to define some choice strategy and this func-
tion selects only one attribute from the set of all inherited attributes. Moreover,
this function can specify a new attribute value which is obtained by means of the

Received: 19 December 2008.

149

150 CLAUDIU POPÎRLAN, NICOLAE ŢĂNDĂREANU

selected values. In this manner the value of an attribute can be the inherited value,
but can be a modified value also.

• An object can specify several values for a given attribute. In this case an object
can inherit some of them or can obtain a new value by means of these values.

(2) The answer mapping is defined and its mathematical properties are studied. The main
problem is connected by the computations of the values of this mapping in a finite num-
ber of steps. We prove that this is a decidable problem. This study is based on a necessary
and sufficient condition for the case when an infinite number of steps are performed.

The results obtained in this paper allow to develop several research problems in the future:
(1) The decomposition of an inheritance knowledge base into disjoint components such each

component is also an inheritance knowledge base. Each component can be uploaded on
a work station in an network architecture. The interrogation can be performed ”locally”
on each station. The great knowledge bases can use such decomposition to improve the
running time.

(2) We can use the mobile agents to perform the tasks of an inheritance based knowledge
system: to interrogate, erase, insert and update a component and so on.

The paper is organized as follows. Section 2 contains a few results concerning the algebra
of binary relations. In Section 3 the concepts of objects and inheritance are defined in an
intuitive manner. Section 4 contains the concepts of inheritance knowledge base and accepted
knowledge base. In Section 5 we explain what is an interrogation of an inheritance knowledge
base. In Section 6 we define the mapping Valattr which computes the value of an attribute for a
given object. In Section 7 we study the finiteness of the computations for the mapping Valattr

and we give a necessary and sufficient condition for the infiniteness of the computations for
this mapping. This study allows to treat a decidable problem in Section 8. In Section 9 we
specify the classic case of the inheritance knowledge bases and we show that this is a simple
particular case of the representation treated in the present paper. The last section, Section 10,
contains the conclusions of our study and several ideas to develop this research line.

2. Prerequisites

In this section we recall the main mathematical concepts which are used in this paper.
A binary relation on the set X is a subset ρ ⊆ X × X. The transitive closure of ρ is the

least binary relation r on X such that ρ ⊆ r and r is transitive. In other words, if ρ denotes the
transitive closure of ρ then the following two conditions are satisfied:
(1) ρ ⊆ ρ
(2) If ρ ⊆ r ⊆ X × X is a transitive relation then ρ ⊆ r.

The diagonal of X is the binary relation

∆X = {(x, x) | x ∈ X}
A binary relation ρ is a strict partial order on X if the following conditions are satisfied:
(1) ∆X ∩ ρ = ∅
(2) (x, y) ∈ ρ =⇒ (y, x) < ρ for every x, y ∈ X
(3) (x, y) ∈ ρ, (y, z) ∈ ρ =⇒ (x, z) ∈ ρ for every x, y, z ∈ X

Comment 2.1. The definition given above is the classical definition of a strict partial order
([8]). In fact, the second condition is a consequence of the other two conditions. Really, if
by contrary we assume that (x, y) ∈ ρ and (y, x) ∈ ρ for some x, y ∈ X then by transitivity we
obtain (x, x) ∈ ρ and this property shows that ∆X ∩ ρ , ∅.

The powers of the relation ρ are defined recursively as follows:

INHERITANCE KNOWLEDGE BASES 151

{
ρ1 = ρ
ρn+1 = ρn ◦ ρ, n ≥ 0

where ◦ is the usual product operation between binary relations,

ρ1 ◦ ρ2 = {(x, y) ∈ X × X | ∃z ∈ X : (x, z) ∈ ρ1, (z, y) ∈ ρ2}
The product operation is an associative one:

(ρ1 ◦ ρ2) ◦ ρ3 = ρ1 ◦ (ρ2 ◦ ρ3)

for every binary relations ρ1, ρ2 and ρ3 over X. As a consequence, for the powers of a binary
relation ρ we have

ρp ◦ ρq = ρp+q

An element x ∈ X is a minimal element with respect to ρ if

{y ∈ X | (y, x) ∈ ρ, y , x} = ∅
Notation 2.1. The set of all minimal elements of the set X with respect to ρ is denoted by
Minρ(X).

There is a graphical method to represent a binary relation ρ. In the most cases this rep-
resentation gives an intuitive image of the properties (the symmetry, the reflexivity, the anti-
symmetry, the transitivity etc) of the corresponding relation. To obtain this representation we
draw a rectangle for each element of X and we write the name of the element in this rectangle.
Then, we draw an arc from x to y if (x, y) ∈ ρ.

3. Objects and inheritance

The concepts of object and inheritance are the main concepts used in this paper. We briefly
describe these concepts in this section.

In our vision an object is characterized by:
• The name of the object; it identifies uniquely the object.
• A finite set of symbolic names. Each of them designates another object that is named a

parent of the object. A given object may contain zero or more parents.
• A finite set of slots; a slot is an ordered pair of the form (attribute, value), where attribute

is the symbolic name of some feature and the value is its corresponding value.
The objects are virtually linked by the relation parent-child. If p is a parent of the object ob
then ob is a child of p. A child has proper features and can inherit other features from its
parents. Each feature of an object is given by an attribute. An attribute can specify some
immediate value (for example the height, the color, the weight etc) or can identify the name
of a method or procedure that computes the value of the attribute. Moreover, we suppose
that some parameter is assigned to each value of an attribute. This parameter establishes the
”greatness” of the corresponding value. We shall detail this aspect in this section.

Let us suppose we search the value V of some attribute A of the object F. Two cases are
possible:
(1) The description of F contains at least one slot of the form (A,V, p) or (A, P, p), where V

is an immediate value, P is the name of a procedure and p is a parameter associated to
(A,V). We denote by S lot(F) the set of all these slots. Intuitively we suppose that we
have a choice strategy given by a mapping Choice such that Choice(S lot(F)) = (A,T, p)
is the selected slot. If T = V then the value of A is V and p is the parameter associated
to (A,V). If T = P then the value V is returned by the procedure P for some values of
its arguments and p is the parameter associated to this value.

152 CLAUDIU POPÎRLAN, NICOLAE ŢĂNDĂREANU

(2) The description of F does not contain any slot such that its first component is A. In this
case the attribute value is obtained by means of some parent of F. In other words the
corresponding attribute is inherited from its parents. This situation is iterated and this
means that if each of these parents does not contain the corresponding attribute then we
search it for the parents of the parents and so on.

We consider the following sets:
• Lob j is the set of the object names. Each element of Lob j can designate some object.
• Lattr is the language of all attribute names.
• Vdir is the set of all direct values of an attribute.
• Lproc is the language of all procedure names.
• Param is a set of parameters.

Definition 3.1. A slot is an element of the set Lattr × (Vdir ∪ Lproc) × Param. An object is an
element of the set

Lob j × 2Lob j × 2Lattr×(Vdir∪Lproc)×Param

It follows that an object is described by three components:
• The first component gives the object name.
• Every element of the second component is a ”direct” parent of this object.
• The last component gives the slots of the object.

4. Inheritance knowledge bases

In this section we introduce the concepts of inheritance knowledge base and accepted
knowledge base.

We consider a subset K0 ⊆ Lob j × 2Lob j × 2Lattr×(Vdir∪Lproc)×Param. If x = (m, P,Q) ∈ K0 is an
object then m determines uniquely the object x and we denote by N(x) = m the name of x.
For this reason an object is denoted by x = (N(x), Px,Qx).

Definition 4.1. An inheritance knowledge base is a pair K = (Ob j(K), ρK), where
(1) Ob j(K) ⊆ Lob j × 2Lob j × 2Lattr×(Vdir∪Lproc)×Param is a finite set of elements named the objects

of K, such that if x = (N(x), P1,Q1) ∈ Ob j(K), y = (N(y), P2,Q2) ∈ Ob j(K) and
N(x) = N(y) then P1 = P2 and Q1 = Q2.

(2) ρK ⊆ Ob j(K) × Ob j(K) is the relation generated by K, which is defined as follows:

(x, y) ∈ ρK ⇐⇒ N(x) ∈ Py

(3) ρi
K ∩ ρ j

K = ∅ for i , j

Remark 4.1. We denote by Proc(K) the set of all procedure names appearing in Ob j(K).
We suppose that the set of procedure names and the set of object names of K are two disjoint
sets. We denote by Attr(K) the set of all attributes a ∈ Lattr such that there is an object in
Ob j(K) which contains the attribute a.

Based on the first condition from Definition 4.1 an inheritance knowledge base K can not
contain simultaneously the following information:

(table, { f urniture, }, {(color, green, 10)})
(table, { f urniture}, {(weight, 20, 40)})

In this case K contains the object
(table, { f urniture}, {(color, green, 10), (weight, 20, 40)})

The third condition is imposed to avoid a situation presented in Figure 1, where ob3 can be
interpreted as the father and the grandfather of the same object ob6. In this example we have
ρ1

K ∩ ρ2
K , ∅.

INHERITANCE KNOWLEDGE BASES 153

ob6

ob5

ob3 ob4

ob2ob1

?

? ?

-

-

¾

F 1. An example of inheritance

table

f urniture ob ject

- ¾

F 2. A multiple inheritance

Remark 4.2. Let us suppose we have the following objects:
(table, { f urniture, ob ject}, {(color, green, 10)})
(f urniture, {}, {(weight, 20, 10)})
(ob ject, {}, {(weight, 30, 50)})

The inheritance is shown in Figure 2. If this is the case then the attribute weight for the object
table can be inherited both from furniture and object. If the ”maximum” strategy is used to
select the attribute values then the value of the attribute weight for the object table is 30.

Definition 4.2. If (y, x) ∈ ρs
K for some s ≥ 1 then y is a parent of order s for x.

Notation 4.1. Let ob = (x, Px,Qx) be an arbitrary object. For an arbitrary attribute name
a ∈ Lattr we write a � ob (or a � x) if Qx contains a slot (a, v, p) for some v ∈ Vdir∪Lproc.

Consider an arbitrary object ob. An intuitive aspect of the inheritance can be presented as
follows. The attribute a1 ∈ Lattr can be inherited for ob from the object ob1 if the following
conditions are satisfied:
(1) a1 6� ob and a1 � ob1;
(2) ob1 is a parent of order k + 1 for ob (k ≥ 0) and there is no parent ob2 of order j ≤ k for

ob such that a1 � ob2.
If there are r parents (r ≥ 2) b1, . . ., br of order k + 1 such that a1 � bi for i ∈ {1, . . . , r} then
the choice strategy is used to select one of them.

154 CLAUDIU POPÎRLAN, NICOLAE ŢĂNDĂREANU

(table, 70, 20)

s4

s1

s5

s2

s3

(chair, 20, 15)
(table, 50, 30)

? ?

- ¾

(water, 5, 8)
(wine, 7, 30)
(bread, 1, 4)

(chair, 30, 40)

(pencil, 2, 10)
(eraser, 1, 4)

F 3. The knowledge base of Example 4.2

Example 4.1. Let us consider the following objects:
(n1, {}, {(a1, v1, p1)})
(n2, {}, {(a1, v2, p2)})
(n3, {n1}, {(b1, q1, p3)})
(n4, {n1, n2}, {(b2, q2, p3)})
(n5, {n3}, {(c1, q3, p4)})
(n6, {n4}, {(c2, q4, p5)})

We observe that n1 and n2 are parents of order 2 for n6. Moreover, we have the following
properties:

c2 � n6, b1 � n3;
a1 can be inherited for n6 both from n1 and n2;
a1 can be inherited for n5 only from n1.

Example 4.2. Let us consider the shops s1, . . . , s5. A client can buy from each shop the
products specified in Figure 3: chair, table, pencil, eraser, water, wine and bread. If an
attribute is not specified for some shop si, this attribute can be inherited from the nearest
parents of si. The objects s4 and s5 are parents of order 2 for s3. The second component of
an attribute is the cost of the product specified as the first component. Suppose we use the
”maximum” strategy for parameters (this is a natural choice if the parameter specifies the
quality of the product). In this case the value of the attribute chair for s3 is 30.

Definition 4.3.
The relation inhK =

⋃
n≥1 ρ

n
K is named the inheritance relation generated by K.

Proposition 4.1. The relation inhK is the transitive closure of the relation ρK .

Proof. Let us verify that inhK is transitive. Suppose that (x, y) ∈ inhK and (y, z) ∈ inhK .
There are p ≥ 1 and q ≥ 1 such that (x, y) ∈ ρp

K and (y, z) ∈ ρq
K . But (x, z) ∈ ρp

K ◦ ρq
K = ρ

p+q
K ⊆

inhK . It follows that inhK is a transitive relation. Let us prove that inhK is the least transitive
relation that contains ρK . From its definition we have ρK ⊆ inhK . Suppose that
• θ ⊆ Ob j(K) × Ob j(K)
• ρK ⊆ θ
• θ is a transitive relation

INHERITANCE KNOWLEDGE BASES 155

Let us verify that ρp
K ⊆ θ for every p ≥ 1. For p = 1 this sentence is true. Suppose that the

sentence is true for p. We have

ρ
p+1
K = ρ

p
K ◦ ρK ⊆ θ ◦ θ

But θ ◦ θ ⊆ θ because θ is transitive. As a consequence we obtain ρp+1
K ⊆ θ and therefore

inhK =
⋃

q≥1 ρ
q
K ⊆ θ.

Definition 4.4. Let K be an inheritance knowledge base. An element x ∈ Ob j(K) is a useless
object if {y | (x, y) ∈ ρK} ∪ {y | (y, x) ∈ ρK} = ∅. We denote by Useless(K) the set of all useless
objects from K.

Proposition 4.2. If x ∈ Ob j(K) is a useless object then {y | (x, y) ∈ inhK} ∪ {y | (y, x) ∈
inhK} = ∅.

Proof. Suppose by contrary that {y | (x, y) ∈ inhK} ∪ {y | (y, x) ∈ inhK} , ∅. In order
to make a choice we suppose that there is y ∈ Ob j(K) such that (x, y) ∈ inhK . Taking into
consideration the definition of inhK it follows that there is a natural number m ≥ 1 such that
(x, y) ∈ ρm

K . Using the definition of ρm
K we deduce that there are y1, . . . , ym ∈ Ob j(K) such that

(x, y1) ∈ ρK , (yi, yi+1) ∈ ρK for i = 1, . . . ,m and ym+1 = y. It follows that (x, y1) ∈ ρK , which
is not possible by our assumption.

The previous proposition shows that an useless object can not inherit attributes and can
not send attributes to other objects.

Definition 4.5. An inheritance knowledge base K is an accepted base if the following condi-
tions are fulfilled:

Useless(K) = ∅ (1)

MininhK (Ob j(K)) , ∅ (2)

inhK is a strict partial order (3)

Proposition 4.3. MininhK (Ob j(K)) = MinρK (Ob j(K))

Proof. Take an element x ∈ MininhK (Ob j(K)). There is no element y ∈ Ob j(K) such
that(y, x) ∈ inhK . Suppose that x < MinρK (Ob j(K)). There is z ∈ Ob j(K) such that (z, x) ∈
ρK . But ρK ⊆ inhK and therefore (z, x) ∈ inhK . By our assumption this is not possible
because in this case x is not a minimal element with respect to inhK . Conversely, suppose
that x ∈ MinρK (Ob j(K)). Suppose that x < MininhK (Ob j(K)). There is z ∈ Ob j(K) such that
(z, x) ∈ inhK . It follows that there are y1, . . . , ym ∈ Ob j(K) such that y1 = z, ym = x and
(yi, yi+1) ∈ ρK for i ∈ {1, . . . ,m− 1}. It follows that x is not a minimal element with respect to
ρK because (ym−1, x) ∈ ρK .

As a consequence the condition (2) can be replaced by the following condition

MinρK (Ob j(K)) , ∅
The relation inhK gives a mathematical representation of the main relation between the

objects of an inheritance knowledge base. We relieve the following aspects:
(1) An object (x, Px,Qx) of K is a free of parents object if Px = ∅. Obviously an object of K

is a minimal element with respect to ρK if and only if it is a free of parents object. The
equation (2) requires for an accepted base to have at least one free of parents object.

(2) In particular, the condition (3) specifies the natural conditions given in the following
sentences:
- an object can not be its parent: x < Px for every x ∈ Ob j(K)

156 CLAUDIU POPÎRLAN, NICOLAE ŢĂNDĂREANU

ob6

ob5

ob3 ob4

ob2ob1

?

? ?

- ¾

¾

F 4. An example of inheritance

- if x ∈ Py then y < Px and more generally, if x is a parent of some order for y then
y can not be a parent for x. To exemplify such a situation we consider the inheritance
represented in Figure 4. In this case ob4 is a parent of order 1 for ob5 and ob5 is a parent
of order 2 for ob4.

Remark 4.3. Frequently we are interested to compute all the parents (of any order) for a
given object of an inheritance knowledge base. The relation inhK generated by an inheritance
knowledge base allows to compute these parents because the parents of x ∈ Ob j(K) is the set
{y ∈ Ob j(K) | (y, x) ∈ inhK}.

In what concerns the computation of the relation inhK we have the property stated in the
next proposition.

Proposition 4.4. Denote θn =
⋃n

p=1 ρ
p
K for every n ≥ 1. There is s ≥ 1 such that θ1 ⊂ . . . ⊂

θs = θs+1 and inhK = θs.

Proof. We have θp+1 = θp ∪ ρp+1
K and θp ⊆ 2Ob j(K)×Ob j(K). The last set is a finite one

therefore there is s ≥ 1 such that θ1 ⊂ . . . ⊂ θs = θs+1. From θs+1 = θs and θs+1 = θs ∪ ρs+1
K

we deduce that θs ∪ ρs+1
K = θs. This property shows that ρs+1

K ⊆ θs.
Let us verify by induction on t that ρs+t

K ⊆ θs for every t ≥ 1. For t = 1 the property is
true as we have seen. Suppose that ρs+t

K ⊆ θs. We have ρs+t+1
K = ρs+t

K ◦ ρK ⊆ θs ◦ ρK . But
θs ◦ ρK = (ρ1

K ∪ . . . ∪ ρs
K) ◦ ρK = ρ2

K ∪ . . . ∪ ρs+1
K ⊆ ρ1

K ∪ ρ2
K ∪ . . . ∪ ρs+1

K = θs+1 = θs.
Now, based on the definition of inhK we obtain

inhK = θs ∪
⋃

i≥1

ρs+i
K = θs

because ρs+i
K ⊆ θs for every i ≥ 1. Thus the proposition is proved.

Remark 4.4. In the remainder of this paper by a ”knowledge base” we understand an ac-
cepted inheritance knowledge base.

5. Interrogation of an inheritance knowledge base

The interrogation process and the corresponding answers are main operations for every
knowledge base system. This is due to the fact that every communication interface between

INHERITANCE KNOWLEDGE BASES 157

user and system takes into consideration both the interrogation process and the answer to
an interrogation. The initial step is given by interrogation. The final step is given by the
answer to an interrogation. Between these steps there are a lot of other steps which take into
consideration the deduction process.

In this section we define the concepts of interrogation and answer to an interrogation and
we specify some aspects connected by these concepts.

As we have seen the knowledge representation based on inheritance encapsulates the fea-
tures of an object into some entity that becomes an element of a knowledge base. These
features are represented by attributes. An attribute can designate a specific value of an at-
tribute or can specify the name of a procedure that can compute the value of the correspond-
ing attribute. An entity of a knowledge base includes also the information concerning the
inheritance. It follows that there are two main problems connected by the interrogation of a
knowledge base:
• Obtain the objects that can cooperate to obtain some property of a given object.
• Find the value of an attribute for a given object.
We consider an accepted knowledge base K and we recall that the inheritance relation

generated by K is inhK =
⋃

p≥1 ρ
p
K . For every (x, a) ∈ Ob j(K) × Attr(K) and p ≥ 1 we

consider the set

Parentp
K(x, a) = { y ∈ Ob j(K) | (y, x) ∈ ρp

K , a � y } (4)

of all parents of order p for x that contain the attribute a.

Definition 5.1. The order of the attribute a1 with respect to x ∈ Ob j(K) is defined as follows:

ordx(a1) =



min{p | Parentp
K(x, a1) , ∅} if

⋃
p≥1 Parentp

K(x, a1) , ∅

0 if a1 � x

unde f ined otherwise

Intuitively, if ordx(a1) is defined and ordx(a1) = s for some s ≥ 1 then the set Parents
K(x, a1)

gives the nearest parents of x which contain the attribute a1. If ordx(a1) = 0 then the attribute
a1 can be taken just from the object x.

As we have seen the value of an attribute can be the value given by a procedure. We stip-
ulate here the following assumptions concerning an arbitrary procedure name p ∈ Proc(K):
• The procedure p has the formal arguments specified in a vector Arg(p) = (b1, . . . , br),

where b1, . . . , br ∈ Attr(K).
• In order to call the procedure p we use some vector (v1, . . . , vr) of actual arguments,

where each vi is the value of the attribute bi. This means that vi ∈ Vdir × Param.
• We denote by p(v1, . . . , vr) the value returned by p for the actual arguments v1, . . . , vr.
• We shall suppose that p is given by a correct algorithm. Particularly This means that no

running error can appear if v1, . . . , vr belong to the domain of p (for example division by
zero, overflow or underflow operation etc).

• As we specified above the value of an actual argument is the value of an attribute. Two
cases are possible:

- At the time of procedure call the value of the attribute bi is unknown. This case
is encountered when there is no sufficient information to compute the value of
the corresponding attribute, but if we update the knowledge base then this value
can be computed. In this case we consider the value of the actual parameter vi =

unknown, without any parameter.
- The value of the actual argument can not be computed. This case is treated in a

separate section of this paper, where we develop the computability aspects. We

158 CLAUDIU POPÎRLAN, NICOLAE ŢĂNDĂREANU

suppose that in this case we have vi = error, if bi is the attribute whose value can
not be computed. No parameter is associated to the value error.

• We suppose that:
- If vi ∈ Vdir × Param for i = 1, . . . , r then p(v1, . . . , vr) ∈ Vdir × Param.
- If there is i ∈ {1, . . . , r} such that vi = unknown and v j , error for every j , i then

p(v1, . . . , vr) = unknown.
- If there is i ∈ {1, . . . , r} such that vi = error then p(v1, . . . , vr) = error.

Definition 5.2. An interrogation of a knowledge base K is an element of the set Ob j(K) ×
Attr(K). The answer of an interrogation (x, a1) is the value of the attribute a1 for x ∈ Ob j(K).

As we shall see the answer can not be computed for any interrogation. Intuitively, the
value error of an interrogation shows that the value of the attribute can not be computed. In
the next paragraph we details this aspect.

6. The value of an attribute

In this section we define the mapping

Valattr : Ob j(K) × Attr(K) −→ (Vdir × Param) ∪ {unknown, error}
which computes the value Valattr(x, a1) of the attribute a1 for x.

For a given pair (x, a1) ∈ Ob j(K) × Attr(K) we define:

Attr0
K(x, a1) = {(v, p) | (a1, v, p) ∈ Qx}

and for s ≥ 1

Attrs
K(x, a1) = {(v, p) | y ∈ Parents

K(x, a1), (a1, v, p) ∈ Qy}
Intuitively, Attrs

K(x, a1) specifies all values of the attribute a1 for x and their parameters, which
are contained by the parents of order s.

We consider a mapping

Choice : 2(Vdir∪Proc(K))×Param −→ (Vdir ∪ Proc(K)) × Param

This mapping is used to choose or to obtain some attribute value from a set which contains
several attribute values.

Example 6.1. For example, if we denote U = {(vi, pi)}ni=1 ⊆ (Vdir ∪ Proc(K)) × Param then
we can take

Choice(U) =


(v j, p j) if 2 ∗ p j >

∑n
i=1 pi

(
∑n

i=1 vi/n,
∑n

i=1 pi/n) otherwise

Remark 6.1. We observe that the mapping Choice can be used not only to select some at-
tribute value from a given set of attribute values, but also it can specify a new attribute value
and/or a new parameter obtained by means of the corresponding values.

We define the mapping h : Ob j(K) × Attr(K) −→ ((Vdir ∪ Proc(K)) × Param) ∪ {no} by

h(x, a1) =


Choice(Attrs

K(x, a1)) if ord(x, a1) = s ≥ 0

no otherwise

Intuitively h(x, a1) , no specifies the following entities:
- the value of a1 for x or a method by means of which the value of a1 for x can be obtained
- the parameter of this value

The value h(x, a1) = no shows that no parent of x contains a slot of the form (a1, v1, p1) with
respect to the attribute a1.

INHERITANCE KNOWLEDGE BASES 159

(a2, 70, 20)

ob1

ob3

ob2

ob4

ob5

(a1, 20, 15)
(a1, 50, 30)

? ?

- ¾

(b1, 5, 8)
(b2, 7, 30)
(b3, 1, 4)

(a1, 30, 40)

(a3, 2, 10)
(a4, 1, 4)

F 5. The case given in Example 6.2

Example 6.2. Let us consider the case presented in Figure 5. We remark that we have two
slots for the same attribute a1 given in the definition of the object ob1. We obtain:
• ordob5 (a1) = 2
• h(ob5, a1) = Choice({(20, 15), (50, 30), (30, 40)})

If we take the function Choice from Example 6.1 then we obtain
h(ob5, a1) = (100/3, 85/3)

Let us consider that the knowledge base specified in Figure 5 contains also the object ob6 =

(N(ob6), {N(ob4)}, {(a5, 10, 20))}. In this case we obtain h(ob5, a5) = no.

We consider a mapping ad j : Param × Param −→ Param. This mapping establishes a
”matching rule” for parameters. For example,

ad j(q1, q2) = (q1 + q2)/2

or
ad j(q1, q2) = max{q1, q2}

combines 2 parameters to obtain a new value of parameter. The first expression gives the
”average rule” and the second gives the ”maximum rule”.

Definition 6.1. We define the mapping

Valattr : Ob j(K) × Attr(K) −→ (Vdir × Param) ∪ {unknown, error}
as follows:
• If h(x, a1) = (v1, q1) and v1 ∈ Vdir then Valattr(x, a1) = (v1, q1).
• If h(x, a1) = (p1, q1) and p1 ∈ Proc(K) then we consider the following two cases:

(1) If Arg(p1) = (b1, . . . , br) and Valattr(x, b1) = (v1, q1), . . ., Valattr(x, br) = (vr, qr)
are elements of Vdir × Param then

Valattr(x, a1) = (u, q) (5)

where p1(Valattr(x, b1), . . . ,Valattr(x, br)) = (u, s) and q = ad j(q1, s).
(2) Otherwise Valattr(x, a1) = error.

• If h(x, a1) = no then Valattr(x, a1) = unknown.

160 CLAUDIU POPÎRLAN, NICOLAE ŢĂNDĂREANU

F 6. A part of a knowledge base

Remark 6.2. We observe that the mapping Valattr is a recursive one. The equation (5) shows
that Valattr(x, a1) is computed by means of the values Valattr(x, b1), . . . ,Valattr(x, br).

Definition 6.2. Let K be an accepted knowledge base and (x, a) ∈ Ob j(K) × Attr(K). We
write

K ` (x, a)
if and only if Valattr(x, a) ∈ (Vdir × Param) ∪ {unknown}

Let us consider a part of a knowledge base K represented in Figure 6. We suppose that
p1, p2 ∈ Proc(K). We remark that Attr1

K(f1, s1) = {(7, 2), (p1, 2), (p2, 4)} and therefore we
have here an example by which the value of an attribute can be a direct value or can be com-
puted by two procedures. We have ord f1 (s1) = 1 and h(f1, a1) = Choice(Attr1

K(f1, s1)). If we
use the maximum strategy for parameters then Valattr(f 1, s1) is computed by the procedure
p2.

Remark 6.3. Various features can be specified by means of an attribute. In the most cases an
attribute of an object specifies some feature of the corresponding object. Sometimes several
distinguished aspects can be relieved by the inheritance representation. Let us take the fol-
lowing example: Peter and Helen look at television set, where they see a soccer player. Peter
believes that the height of the player is 172cm, but Helen thinks that the height is 180cm. We
can use the certainty factors to represent this knowledge piece. Suppose that we take the cer-
tainty factors from the real interval [0, 100]. Taking into consideration the uncertainty, Peter
believes that the height of the player is 172cm with certainty factor 70. Helen believes that
the height is 180 with certainty factor 50. These aspects can be represented by considering
the following objects:

(Peter, {}, {(height, 172, 70)})
(Helen, {}, {(height, 180, 50)})
(player, {Peter,Helen}, {})

Let us suppose that Choice({(v1, q1), . . . , (vr, qr)}) = (v1 + . . . + vr)/r, (q1 + . . . + qr)/r. We
obtain Valattr(player, height) = (176, 60). We remark that the attribute height of the ob-
ject Peter specifies the height observed by Peter. Similar we have the attribute height of
the object Helen. An inheritance based knowledge system contains several components.
One of them refers to the communication between user and system. This component sends
to the user the correct message after the computation of the value Valattr. For example,
Valattr(Peter, height) = (172, 70). As a consequence the system sends the message ”Peter
observed that the player’s height is 172 with certainty factor 70” instead of ”The height of
Peter is 172 with certainty factor 70”.

As we can observe from Definition 6.1 there are two central problems:
- the computation of the entity h(x, a1);
- the characterization of the case ”error” for the mapping Valattr; this problem is treated in

the next section.

INHERITANCE KNOWLEDGE BASES 161

In order to compute the value h(x, a1) we use the set Parents
K(x, a1). The next proposition

can be used to compute this set by a simple method.

Proposition 6.1. Let us consider (x, a1) ∈ Ob j(K) × Attr(K). The sequences {S i}i≥0 and
{Qi}i≥1 defined by S 0 = {x},


S i+1 = {y | (y, q) ∈ ρ1

K , q ∈ S i}

Qi+1 = {q ∈ S i+1 | a1 � q}
for every i ≥ 0, satisfy the following properties:
(1) There is n0 ≥ 0 such that S i , ∅ for every i ≤ n0 and S i = ∅ for every i ≥ n0 + 1.
(2) For every i ≥ 0 we have S i+1 = {y | (y, x) ∈ ρi+1

K } and Qi+1 = Parenti+1
K (x, a1).

Proof. We verify by induction on i ≥ 0 that

S i+1 = {y | (y, x) ∈ ρi+1
K } (6)

For i = 0 the property is obtained directly from the definition of S 1. Suppose the property is
true for i. From the definition of S i+2 we have

S i+2 = {y | (y, q) ∈ ρ1
K , q ∈ S i+1} (7)

Take y ∈ S i+2. There is q ∈ S i+1 such that (y, q) ∈ ρ1
K . By the inductive assumption we have

(q, x) ∈ ρi+1
K , therefore (y, x) ∈ ρ1

K ◦ ρi+1
K = ρi+2

K . Thus we have

S i+2 ⊆ {y | (y, x) ∈ ρi+2
K }

In order to prove the converse inclusion we take an arbitrary element y such that (y, x) ∈ ρi+2
K .

But ρi+2
K = ρ1

K ◦ ρi+1
K . It follows that there is q such that (y, q) ∈ ρ1

K and (q, x) ∈ ρi+1
K . By the

inductive assumption we have q ∈ S i+1. From (7) we obtain y ∈ S i+2 and thus

S i+2 ⊇ {y | (y, x) ∈ ρi+2
K }

Now the relation Qi+1 = Parenti+1
K (x, a1) is obviously true if we take into consideration (4),

(6) and the definition of S i+1.
We observe that S i = ∅ for some i ≥ 1. By contrary, suppose that S i , ∅ for every i ≥ 1.
Because S i ⊆ Ob j(K) and Ob j(K) is a finite set we deduce that there are i ≥ 1 and m ≥ 1
such that S i ∩ S i+m , ∅. Using (6) we deduce that ρi

K ∩ ρi+m
K , ∅, which is not possible in

virtue of Definition 4.1. Thus we can take n1 the least natural number i for which S i = ∅ and
then n0 = n1 − 1. Now it is obvious from definition that S i = S i+1 for every i ≥ n0 + 1 and
the proposition is proved.

Remark 6.4. Based on Proposition 6.1 it is not difficult to compute the set Parentn
K(x, a1) for

n ≥ 1 because Parentn
K(x, a1) = Qn. Really, the last element of the sequence S 0, S 1, Q1, . . .,

S n, Qn is the set Parentn
K(x, a1).

7. The error value of Valattr

In this section we study the case Valattr(x, a1) = error in Definition 6.1. More precisely
we give a necessary and sufficient condition to obtain this value.

Notation 7.1. If (x, a) ∈ Ob j(K) × Attr(K) then we write (x, a) ∈ CK(proc) to specify that
the value of the attribute a for x is computed by some procedure.

Consider an element (x, a) ∈ Ob j(K)×Attr(K) such that h(x, a) is defined, h(x, a) = (p, q),
where p ∈ Proc(K). Shortly we denote

(x, a) ∈ CK(proc)

162 CLAUDIU POPÎRLAN, NICOLAE ŢĂNDĂREANU

to specify that the value of the attribute a for x is computed by a procedure. The procedure p
uses some formal arguments, which are attribute names. As we specified in a previous section
we considered the vector (b1, . . . , br) of these attributes and we denoted Arg(p) = (b1, . . . , br).
In order to relieve the use of these attributes for the computation of Valattr(x, a) we denote also
arg(x, a) = Arg(p). In other words, if the value of the attribute a ∈ Attr(K) for x ∈ Ob j(K)
is computed by a procedure then arg(x, a) gives the vector of the attributes whose values for
x are passed to this procedure as actual arguments. Simply we write b v arg(x, a) if b is a
component of the vector arg(x, a).

Remark 7.1. From Definition 6.1 we have the following two cases:
(1) If (x, a) < CK(proc) then Valattr(x, a) ∈ (Vdir × Param) ∪ {unknown}.
(2) If (x, a) ∈ CK(proc) then Valattr(x, a) ∈ (Vdir × Param) ∪ {error}.

Definition 7.1. We define the mapping F : CK(proc) −→ 2Attr(K) as follows

F(x, a) = {b ∈ Attr(K) | (x, b) ∈ CK(proc), b v arg(x, a)}
This definition shows that F(x, a) gives the set of attribute names whose values are com-

puted by procedures and their values are used to compute the value of a for x. For example,
if arg(x, a) = (b, c, b) then F(x, a) = {b, c}.
Definition 7.2. If (x, a) ∈ CK(proc) then we write a ⇒x b if and only if b ∈ F(x, a). The
transitive closure of this relation is denoted by ⇒+

x . We denote [a]x = {b | a ⇒+
x b}. The

binary relation ⇒+
x is named derivation. We denote a ⇒n

x b if there are b0, b1, . . ., bn such
that b0 = a, bn = b and bi ⇒ bi+1 for every i ∈ {0, . . . , n − 1}.
Proposition 7.1. The following properties are satisfied:
(1) If c ∈ [b]x and b ∈ [a]x then c ∈ [a]x.
(2) [a]x =

⋃
n≥1 Z(x,a)

n , where the sequence {Z(x,a)
n }n≥0 is recursively defined as follows:



Z(x,a)
0 = {a}

Z(x,a)
n+1 = {b | ∃t ∈ Z(x,a)

n , t ⇒x b}, n ≥ 0
(8)

(3) [a]x =
⋃

n≥1 W (x,a)
n , where the sequence {W (x,a)

n }n≥0 is defined as follows:


W (x,a)
0 = {a}

W (x,a)
n+1 = {b | a⇒n+1

x b}, n ≥ 0
(9)

Proof. If c ∈ [b]x then there is a derivation b ⇒+
x c. Similarly, if b ∈ [a]x then there is a

derivation a ⇒+
x b. But the relation⇒+

x is transitive, therefore a ⇒+
x c. Thus the first part of

the proposition is proved.
In order to prove the second part we prove first that for every n ≥ 1

Z(x,a)
n = {b | a⇒n

x b} (10)

We verify (10) by induction on n. For n = 1 from (8) we obtain:

Z(x,a)
1 = {b | a⇒x b}

and thus (10) is true for n = 1. Suppose that (10) is true for some natural number n. From (8)
we obtain

Z(x,a)
n+1 = {b | ∃t ∈ Zx

n , t ⇒x b}
The following sentences are equivalent:
(1) b ∈ Z(x,a)

n+1

INHERITANCE KNOWLEDGE BASES 163

(2) there is t ∈ Zx
n such that t ⇒x b

(3) there is a derivation a⇒x t such that t ⇒x b
(4) there is a derivation a⇒n+1

x b
therefore (10) is true for n + 1.
From (10) and (9) we have Z(x,a)

n = W (x,a)
n for every n ≥ 0.

Let us verify that [a]x =
⋃

n≥1 Z(x,a)
n . Take b ∈ [a]x. From Definition 7.2 we deduce that there

is a natural number n such that a ⇒n
x b. By (10) we have b ∈ Z(x,a)

n . Thus [a]x ⊆ ⋃
n≥1 Z(x,a)

n .
The converse implication is immediate. It follows that [a]x =

⋃
n≥1 Z(x,a)

n . Now the relation
[a]x =

⋃
n≥1 W (x,a)

n is also proved because Z(x,a)
n = W (x,a)

n for every n ≥ 1.

Proposition 7.2. The sequence {Z(x,a)
n }n≥0 satisfies one and only one of the following two

conditions:
(i) There is k ≥ 0 such that Z(x,a)

i , ∅ for i ∈ {0, . . . , k} and Z(x,a)
i = ∅ for i ≥ k + 1.

(ii) Z(x,a)
n , ∅ for every n ≥ 0.

Proof. Obviously either Z(x,a)
n , ∅ for every n ≥ 0 or there is p ≥ 1 such that Z(x,a)

p = ∅.
If the second case is encountered then denote by s the least p satisfying this property. From
(8) we deduce that Z(x,a)

s+1 = ∅ and by induction on m we can verify that Z(x,a)
s+m = Z(x,a)

s = ∅.

Proposition 7.3. If there is b ∈ ⋃
n≥0 Z(x,a)

n such that b ∈ [b]x then Z(x,a)
n , ∅ for every n ≥ 0.

Proof. Suppose that there is k ≥ 0 such that b ∈ Z(x,a)
k and b ∈ [b]x. By (8) we have

[b]x =
⋃

n≥1 Y (x,b)
n , where



Y (x,b)
0 = {b}

Y (x,b)
n+1 =

⋃
t∈Y (x,b)

n
F(x, t), n ≥ 0

We prove by induction on s ≥ 0 that

Y (x,b)
s ⊆ Z(x,a)

k+s (11)

Really, we have:
• Y (x,b)

0 ⊆ Z(x,a)
k because Y (x,b)

0 = {b} and b ∈ Z(x,a)
k .

• Suppose that Y (x,b)
s ⊆ Z(x,a)

k+s . But

Y (x,b)
s+1 =

⋃

t∈Y (x,b)
s

F(x, t) (12)

and
Z(x,a)

k+s+1 =
⋃

t∈Z(x,a)
k+s

F(x, t) (13)

By the inductive assumption we have Y (x,b)
s ⊆ Z(x,a)

k+s therefore from (12) and (13) we
deduce Y (x,b)

s+1 ⊆ Z(x,a)
k+s+1.

From b ∈ [b]x and [b]x =
⋃

n≥1 Y (x,b)
n we deduce that there is p ≥ 1 such that b ∈ Y (x,b)

p . Using
(11) we deduce

b ∈ Y (x,b)
p ⊆ Z(x,a)

k+p (14)

Based on (14) and the definition of Y (x,b)
0 = {b} we can write

Y (x,b)
p = Y (x,b)

0 ∪ U(x,b)
p = {b} ∪ U(x,b)

p (15)

164 CLAUDIU POPÎRLAN, NICOLAE ŢĂNDĂREANU

where U(x,b)
p = Y (x,b)

p \ {b}.
If we define the sequence {U(x,b)

n+1 }n≥p by the relation

U(x,b)
n+1 =

⋃

z∈U(x,b)
n

F(x, z) (16)

then we observe that based on (12) we obtain

Y (x,b)
p+1 =

⋃

t∈Y (x,b)
p

F(x, t)

and using (15) and (16) we have

Y (x,b)
p+1 = F(x, b) ∪

⋃

z∈U(x,b)
p

F(x, z) = Y (x,b)
1 ∪ U(x,b)

p+1

therefore
Y (x,b)

p+1 = Y (x,b)
1 ∪ U(x,b)

p+1 (17)

We observe that

Y (x,b)
p+2 =

⋃

z∈Y (x,b)
p+1

F(x, z) =
⋃

z∈Y (x,b)
1

F(x, z) ∪
⋃

z∈U(x,b)
p+1

F(x, z) = Y (x,b)
2 ∪ U(x,b)

p+2

therefore
Y (x,b)

p+2 = Y (x,b)
2 ∪ U(x,b)

p+2 (18)

By induction on r ≥ 0 we verify now that

Y (x,b)
p+r = Y (x,b)

r ∪ U(x,b)
p+r (19)

The relation (19) is true for r ∈ {0, 1, 2} as we have seen in (15), (17) and (18). Suppose that
(19) is true for r = s. Using (17) we obtain

Y (x,b)
p+s+1 =

⋃

z∈Y (x,b)
p+s

F(x, z) =
⋃

z∈Y (x,b)
s

F(x, z) ∪
⋃

z∈U(x,b)
p+s

F(x, z) = Y (x,b)
s+1 ∪ U(x,b)

p+s+1

and thus (19) is true for r = s + 1.
From (19) we obtain

Y (x,b)
r ⊆ Y (x,b)

p+r (20)
for every r ≥ 0. Applying (20) for r = p, 2p, . . . , we obtain

Y (x,b)
p ⊆ Y (x,b)

2p ⊆ . . . ⊆ Y (x,b)
mp ⊆ . . .

for every natural number m ≥ 1. From b ∈ Y (x,b)
p and (11) we deduce that b ∈ Y (x,b)

mp for
every m ≥ 1. Using (11) we obtain b ∈ Z(x,a)

k+mp for every m ≥ 1 therefore Z(x,b)
k+mp , ∅ for every

m ≥ 1. Applying Proposition 7.2 we obtain Z(x,b)
n , ∅ for every n ≥ 0. Thus the proposition

is proved.

Proposition 7.4. If Z(x,a)
n , ∅ for every n ≥ 0 then there is b ∈ ⋃

n≥0 Z(x,a)
n such that b ∈ [b]x.

Proof. Suppose that Z(x,a)
n , ∅ for every n ≥ 0. By an a-chain we understand a finite

or infinite sequence (a, y1, y2, . . .) such that y1 ∈ F(x, a) and yi+1 ∈ F(x, yi) for every i ≥ 1.
Equivalently we can say that an a-chain (a, y1, y2, . . .) is given by a sequence of derivation

a⇒x y1 ⇒x y2 ⇒x . . .

Moreover, if we have such a chain then yi ∈ Z(x,a)
n . For a finite a-chain (a, y1, . . . , ys) we say

that the length of this sequence is s.
We consider the set of all a-chains and we prove now that there is an infinite a-chain. By

INHERITANCE KNOWLEDGE BASES 165

contrary, suppose that every a-chain is finite and denote by k the maximal length. Because
Z(x,a)

n , ∅ for every n ≥ 0 it follows that Z(x,a)
k+1 , ∅ and choose an element zk+1 ∈ Z(x,a)

k+1 . But
Z(x,a)

k+1 =
⋃

t∈Z(x,a)
k

F(x, t). It follows that there is zk ∈ Z(x,a)
k such that zk+1 ∈ F(x, zk). We reiterate

this property and we find a sequence (z1, . . . , zk+1) such that z1 ∈ Z(x,a)
1 and zi+1 ∈ F(x, zi) for

every i ∈ {1, . . . , k}. But Z(x,a)
1 = F(x, a) and z1 ∈ Z(x,a)

1 therefore (a, z1, . . . , zk+1) is an a-chain.
We obtained an a-chain of length k + 1, which is not possible.
It follows that there is an infinite a-chain (a, y1, y2, . . .). Suppose that Attr(K) contains r
elements, r ≥ 1. Denote y0 = a. The sequence y0, y1, . . ., yr includes r + 1 elements from
Attr(K). There are i, j ∈ {0, . . . , r} such that i < j and yi = y j.
By induction on m we verify now that ym+1 ∈ [ym]x for m ∈ {0, . . . , r − 1}. Really, ym+1 ∈
F(x, ym) and [ym]x =

⋃
n≥1 V (x,a)

n , where


V (x,a)
0 = {ym}

V (x,a)
n+1 =

⋃
t∈V (x,a)

n
F(x, t), n ≥ 0

It follows that ym+1 ∈ V1(x, a)x ⊆ [ym]x. Thus the sequence y0, y1, . . ., yr satisfies the property
ym+1 ∈ [ym]x for every m ∈ {0, . . . , r − 1}. By Proposition 7.1 we know that if z ∈ [u]x and
u ∈ [v]x then z ∈ [v]x. It follows that yi+1 ∈ [yi], yi+2 ∈ [yi+1]x, . . ., y j ∈ [y j−1]x, therefore
y j ∈ [yi]x. But y j = yi, yi ∈ Z(x,a)

n and yi ∈ [yi]x. The proposition is proved.

Proposition 7.5. The following sentences are equivalent:
(i) Z(x,a)

n , ∅ for every n ≥ 0.
(ii) There is b ∈ ⋃

n≥0 Z(x,a)
n such that b ∈ [b]x.

Proof. Immediate from Proposition 7.4 and Proposition 7.5.

Proposition 7.6. For every n ≥ 1 the following property is satisfied: if there is cn ∈ Z(x,a1)
n

such that Valattr(x, cn) = error then there is cn−1 ∈ Z(x,a1)
n−1 such that Valattr(x, cn−1) = error.

Proof. If cn ∈ Z(x,a1)
n then there is t ∈ Z(x,a1)

n−1 such that t ⇒x cn. The value Valattr(x, t)
is the value returned by some procedure p such that the procedure call contains the actual
argument Valattr(x, cn). This value is error, therefore by the assumptions described in the last
part of Section 5 we obtain Valattr(x, t) = error. Take cn−1 = t and the proposition is proved.

Proposition 7.7. If c ∈ Z(x,a1)
i and Valattr(x, c) = error then Z(x,c)

1 , ∅ and there is d ∈ Z(x,c)
1

such that Valattr(x, d) = error.

Proof. Suppose by contrary that Z(x,c)
1 = ∅. From the definition of Z(x,c)

1 we deduce that
(x, c) < CK(proc). Applying Remark 7.1 we deduce that Valattr(x, c) ∈ (Vdir × Param) ∪
{unknown}, which is not true. Thus the assumption Z(x,c)

1 = ∅ is false. Let us prove that
there is d ∈ Z(x,c)

1 such that Valattr(x, d) = error. By contrary we suppose that for every
d ∈ Z(x,c)

1 we have Valattr(x, d) ∈ (Vdir × Param) ∪ {unknown}. The value Valattr(x, c) is the
value returned by a procedure call whose actual arguments are the values Valattr(x, d) for all
d ∈ Z(x,c)

1 . These values belong to (Vdir × Param) ∪ {unknown} and thus the corresponding
procedure returns a value from (Vdir × Param) ∪ {unknown}. In other words Valattr(x, c) ∈
(Vdir × Param) ∪ {unknown}, which is not true. This shows that the property Valattr(x, d) ∈
(Vdir × Param) ∪ {unknown} for all d ∈ Z(x,c)

1 is false and the proposition is proved.

Proposition 7.8. If c ∈ Z(x,a1)
i and Valattr(x, c) = error then Z(x,a1)

i+1 , ∅ and there is d ∈ Z(x,a1)
i+1

such that Valattr(x, d) = error.

166 CLAUDIU POPÎRLAN, NICOLAE ŢĂNDĂREANU

Proof. Really, Z(x,c)
1 ⊆ Z(x,a1)

i+1 and the proposition is obtained from Proposition 7.7.

Corollary 7.1. If Valattr(x, a1) = error then Z(x,a1)
n , ∅ for ever n ≥ 0.

Proof. We have a1 ∈ Z(x,a1)
0 and Valattr(x, a1) = error. We apply now Proposition 7.8 for

i = 0, 1,

Proposition 7.9. Valattr(x, a1) = error if and only if there is b ∈ {a1} ∪ [a1]x such that
b ∈ [b]x.

Proof. Suppose that there is b ∈ {a1} ∪ [a1]x such that b ∈ [b]x. In order to compute
Valattr(x, b) we use Valattr(x, c) for every c ∈ [b]x. In particular the value Valattr(x, b) is used
because b ∈ [b]x. By Definition 6.1 we deduce that Valattr(x, b) = error because Valattr(x, b)
can not be computed. It remains to prove that Valattr(x, a1) = error.We have two cases:
(1) If b = a1 then Valattr(x, a1) = error because Valattr(x, b) = error.
(2) If b ∈ [a1]x then in order to compute Valattr(x, a1) all values Valattr(x, c) for c ∈ [a1]x

are used. Particularly we use the value Valattr(x, b) = error. But b ∈ [a1]x =
⋃

n≥1 Z(x,a1)
n

and thus there is n ≥ 1 such that b ∈ Z(x,a1)
n . We apply Proposition 7.6 and we deduce that

there is c0 ∈ Z(x,a1)
0 such that Valattr(x, c0) = error. But Z(x,a1)

0 = {a1} therefore c0 = a1.
It follows that Valattr(x, a1) = error.

Suppose now that Valattr(x, a1) = error. From Corollary 7.1 we have Z(x,a1)
n , ∅. We ap-

ply Proposition 7.5 and we deduce that there is b ∈ ⋃
n≥0 Z(x,a1)

n such that b ∈ [b]x. But⋃
n≥0 Z(x,a1)

n = {a1} ∪ [a1]x and thus the proposition is proved.

8. A problem of decidability

Decidability is a term appeared first time in mathematical logic, automata theory and for-
mal languages ([3]). A problem is decidable if there exists an effective procedure, i.e., an
algorithm which solves the problem. If no such procedure exists, then the problem is un-
decidable. As a general reference to decidability and undecidability can be obtained from
[7]. Basic undecidable problems include: the halting problem for Turing machines, the Post
Correspondence Problem ([6]) and Hilbert’s Tenth problem. In the same domain of undecid-
ability we mention the equivalence problem of integer weighted finite automata ([5]).

We studied in the previous section several computational properties of the mapping Valattr.
In this section we study the following problem: decide whether or not Valattr(x, a1) = error.
As we have seen in the previous section Valattr(x, a1) = error if and only if the computation
of Valattr(x, a1) requires an infinite number of steps. In what follows by the error-problem we
understand the decision YES or NO in the computation of the value error for Valattr. Equiva-
lently this problem can be stated as follows: decide whether or not the value Valattr(x, a) can
be computed in a finite number of steps.

Proposition 8.1. The error-problem for Vattr is decidable.

Proof. In other words we have to prove that there is an algorithm to decide if Valattr(x, a1)
can be computed in a finite many steps. The following algorithm is based on the results treated
in the previous section. The algorithm gives the output YES if the computations requires a
finite number of steps and NO in the other case.

Error-problem algorithm
Input: an arbitrary element (x, a1) ∈ Ob j(X) × Attr(K)
If (x, a1) < CK(proc) then output YES.
If (x, a1) ∈ CK(proc) then

- If there is b ∈ {a1} ∪ [a1]x such that b ∈ [b]x then output NO

INHERITANCE KNOWLEDGE BASES 167

F 7. An example of knowledge base

- Otherwise output YES
End of algorithm.

Remark 8.1. In order to finalize our conclusion concerning the termination of this algorithm
we observe that for every a ∈ Attr(K) the set [a]x is a finite set because [a]x ⊆ Attr(K) and
Attr(K) is finite.

Example 8.1. Let us consider the inheritance knowledge base K represented in Figure 7. We
relieve the following aspects:
• Ob j(K) = { f 1, . . . , f 7};
• Proc(K) = {p1, p2, p3, p4};
• Param is the set of all natural numbers;
• Arg(p1) = (s1, c1), Arg(p2) = (d1, s1), Arg(p3) = (c1, s2), Arg(p4) = (g1)

We obtain the following computations:
• F(f 7, c2) = {c1}; F(f 7, c1) = {d1}; F(f 7, d1) = {g1}; F(f 7, g1) = {c1};
• c2⇒ f 7 c1; c1⇒ f 7 d1; d1⇒ f 7 g1; g1⇒ f 7 c1;
• Z(f 7,c2)

0 = {c2}; Z(f 7,c2)
1 = {c1}; Z(f 7,c2)

2 = {d1}; Z(f 7,c2)
3 = {g1}; Z(f 7,c2)

4 = {c1} = Z(f 7,c2)
1 ;

• Z(f 7,c2)
n , ∅ for every n ≥ 0

• [c2] f 7 =
⋃

n≥1 Z(f 7,c2)
n = {c1, d1, g1}

• [c1] f 7 = {d1, g1, c1}
It follows that Valattr(f 7, c2) = error because c1 ∈ [c2] f 7 and c1 ∈ [c1] f 7.

9. The classical case

The classical case of the inheritance representation does not contain the use of parame-
ters as in the present paper. As a consequence, the classical representation includes several
features in comparison with the representation presented in this paper:

168 CLAUDIU POPÎRLAN, NICOLAE ŢĂNDĂREANU

• Valattr(x, a) ∈ Vdir ∪ {unknown, error}
• A slot is an element of the set Lattr × (Vdir ∪ Lproc).
• If (a, v1) and (b, v2) are slots for some object then a , b.
• For every pair (x, a) ∈ Ob j(K) × Attr(K) there is at most one parent of x that contains

the attribute a. It follows that the set Attrs
K(x, a) contains at most one element.

• The mapping Choice is not used.
• The mapping ad j is not used because the set Param is not used.
• The mapping Valattr becomes the following function:

Valattr : Ob j(K) × Attr(K) −→ Vdir ∪ {unknown, error}
• If h(x, a1) = v1 and v1 ∈ Vdir then Valattr(x, a1) = v1.
• If h(x, a1) = p1 and p1 ∈ Proc(K) then we consider the following two cases:

(1) If Arg(p1) = (b1, . . . , br) and Valattr(x, b1), . . ., Valattr(x, br) are elements of
Vdir then Valattr(x, a1) = p1(Valattr(x, b1), . . . ,Valattr(x, br))

(2) Otherwise Valattr(x, a1) = error.
• If h(x, a1) = no then Valattr(x, a1) = unknown.

10. Conclusions and future work

In this paper we introduced an extension of the classical knowledge bases which use the
inheritance mechanism. The multiple inheritance is allowed an every attribute value can
specify a parameter. Special features of an attribute can be defined by these parameters:
the quality of a product, the uncertainty of the attribute, the risk etc. The initial value of
an attribute includes parameters and during the valuation process some rule of combination
can be used for the case when several attribute values are inherited. The interrogation of
such a knowledge base is defined and the computational properties of the answer function
are studied. This function is a recursive one. An necessary and sufficient condition for the
detection the case of an infinite number of steps in the valuation process of this function is
given.

The parameter assigned to an attribute value can specify some feature of this value. We
can relieve the following particular cases for these parameters:
• Fuzzy case.

A certainty factor is neither a probability nor a truth value. A certainty factor is used to
express how accurate, truthful, or reliable a person judges an attribute to be. In this case
each pi defines the certainty factor of the knowledge (ai, vi). In other words, the value
pi is the certainty factor for the attribute ai to have value vi. We consider that a certainty
factor is a value from the real interval [a, b].

• Probabilistic case. The conditions imposed in this case can be written as follows:
- p ∈ [0, 1] for every p ∈ Param
- If s = ordx(a) and W(x, a) = {p ∈ Param | ∃(v, p) ∈ Attrs

K(x, a)} then for every
(x, a) ∈ Ob j(K) × Attr(K)

∑

p∈W(x,a)

p = 1

• Risk case.
In this case the values (ai, pi, qi) specifies the risk factor qi to choose the value pi for
attribute ai. Various strategy can be chosen: minimum risk, maximum risk or a combi-
nation min-max is also possible depending on the application.

INHERITANCE KNOWLEDGE BASES 169

A database can be thought as a particular knowledge base. Hence many subjects treated
for knowledge bases are extensions of the corresponding problems for databases. The con-
cepts and the results presented in this paper were suggested by similar problems treated in
the domain of data bases. For example, an interesting problem for data bases is developed
in [2]: the communication of a client program with a database server through a query lan-
guage. Starting with the problem of communication between two computers to interrogate a
data base we treat in a forthcoming paper the problem of decomposability of an inheritance
knowledge base into several disjoint components such that each component can be uploaded
on a work station and the computations can be locally performed. This means that if an object
belongs to some component then the answer mapping can be computed only be the knowl-
edge contained in the corresponding component. We intend to imply the use of the mobile
agents for this computation. More precisely, we are interested to study the decomposition of
an inheritance knowledge base into several components such that:

- each component allows to compute the attribute values of its objects such that no other
component is used in this process; two distinct component are disjoint;

- each component can be uploaded on a work station of a computer network, where the
computations are performed by an agent which is a slave agent;

- a master agent controls ([1]) the whole computation, is connected by the slave agents
and communicates with these entities to satisfy the interrogation of the knowledge base.
We are interested also to model the distributive computations based on the inheritance mech-
anism.

References

[1] Baumann Joachim - Mobile Agents: Control Algorithms, Lecture Notes in Computer Science 1658,
Springer, 2000

[2] Bielecki M., Bussche J.V. - Database Interrogation Using Conjunctive Queries, Lecture Notes in Computer
Science, Volume 2572, 259-269, 2002

[3] Davis Martin - Computability and Unsolvability, McGraw-Hill Book Company, Inc, New York, 1958
[4] Francesco Buccafurri, Wolfgang Faber, Nicola Leone - Disjunctive logic programs with inheritance, Procs.

of ICLP-99, MIT Press, 79-93, 1999
[5] V. Halava and T. Harju - Undecidability in Integer Weighted Finite Automata, Fund. Inf. 34 189-200, 1999.
[6] T. Harju and J. Karhumki - Morphisms. In: G. Rozenberg and A. Salomaa (eds.), Handbook of Formal

Languages Vol. 1, Springer, 439-510, 1997.
[7] G. Rozenberg and A. Salomaa - Cornerstones of Undecidability, Prentice Hall, 1994.
[8] S.Rudeanu - Lattice Functions and Equations, Springer, Discrete Mathematics and Theoretical Computer

Science, 2001
[9] Leora Morgenstern - Inheritance comes of age: Applying non monotonic techniques to problems in industry,

Artificial Intelligence, 103, 237-271, 1998
[10] N. Ţăndăreanu - Lattices of Labelled Ordered Trees (I), Annals of the University of Craiova, Mathematics

and Computer Science Series, Vol. XXVIII, 29-39, 2001
[11] N. Ţăndăreanu - Lattices of Labelled Ordered Trees (II), Annals of the University of Craiova, Mathematics

and Computer Science Series, Vol. Vol. XXIX, 137-144, 2002
[12] N. Ţăndăreanu - Inheritance-based knowledge systems and their answer functions computation using lattice

theory, Romanian Journal of Information Science and Technology, Vol.6, Numbers 1-2, 227-248, 2003
[13] N. Ţăndăreanu - Communication by Voice to Interrogate an Inheritance Based Knowledge System, Research

Notes in Artificial Intelligence and Digital Communications, Vol.107, 7th International Conference on Artifi-
cial Intelligence and Digital Communications, p.1-15, 2007

[14] Guizhen Yang and Michael Kifer - Well-Founded Optimism: Inheritance in Frame-Based Knowledge
Bases, Lecture Notes in Computer Science, in On the Move to Meaningful Internet Systems, Vol. 2519,
ISBN 978-3-540-00106-5, 1013-1032, 2008

(Claudiu Popirlan) D  I, U  C,
A.I. C S, N. 13, C RO-200585, R, T. & F: 40-251412673
E-mail address: popirlan@gmail.com

170 CLAUDIU POPÎRLAN, NICOLAE ŢĂNDĂREANU

(Nicolae Ţăndăreanu) D  I, U  C,
A.I. C S, N. 13, C RO-200585, R, T. & F: 40-251412673
E-mail address: ntand@rdslink.ro

