On a weaker form of ω-continuity

ERDAL EKICI, SAEID JAFARI, AND SEITHUTI P. MOSHOKOA

Abstract. In [5], Hdeib introduced and investigated a new type of continuity called ω-continuity. In [1], Al-Omari and Noorani have introduced the notion of almost weak ω-continuity. It is the objective of this paper to study almost weak ω-continuity and present some of its basic properties.

2010 Mathematics Subject Classification. Primary 54B05; Secondary 54C08.

Key words and phrases. ω-open set, condensation point, topology, weakly continuity.

1. Introduction

In this paper, a space will always mean a topological space on which no separation axioms assumed unless explicitly stated.

A subset A of a space (X, τ) is called ω-closed [4] if it contains all its condensation points. The complement of an ω-closed set is called ω-open, or equivalently, if for each $x \in A$ there exists an open set U containing x such that $|U \setminus A| \leq \aleph_0$ (see [8]). The family of all ω-open subsets of a space (X, τ), denoted by $\omegaO(X)$, forms a topology on X finer than τ.

ω-closure and ω-interior of a subset A of a space X, that were defined in an analogous manner to $cl(A)$ and $int(A)$, respectively, will be denoted by ω-$cl(A)$ and ω-$int(A)$, respectively.

Definition 1.1. A subset A is said to be
(1) regular open [9] if $A = int(cl(A))$,
(2) regular closed [9] if $A = cl(int(A))$,
(3) preopen [7] if $A \subset int(cl(A))$.

A point $x \in X$ is said to be in the θ-closure [10] of a subset A of X, denoted by θ-$cl(A)$, if $cl(G) \cap A \neq \emptyset$ for each open set G of X containing x. A subset A of a space X is called θ-closed if $A = \theta$-$cl(A)$. The complement of a θ-closed set is called θ-open.

Lemma 1.1. ([4]) Let A be a subset of a space X. Then
(1) A is ω-closed in X if and only if $A = \omega$-$cl(A)$.
(2) ω-$cl(X \setminus A) = X \setminus \omega$-$int(A)$.
(3) ω-$cl(A)$ is ω-closed in X.
(4) $x \in \omega$-$cl(A)$ if and only if $A \cap G \neq \emptyset$ for each ω-open set G containing x.

Definition 1.2. A function $f : X \to Y$ is said to be ω-continuous [5] if $f^{-1}(A) \in \omegaO(X)$ for each open set A of Y.

Received March 18, 2010. Revision received May 03, 2010.
2. Almost weakly \(\omega \)-continuous functions

Definition 2.1. A function \(f : X \to Y \) is said to be

(1) almost weakly \(\omega \)-continuous at \(x \in X \) [1] if for each open set \(A \) of \(Y \) containing \(f(x) \), there exists an \(\omega \)-open set \(B \) containing \(x \) such that \(f(B) \subset \text{cl}(A) \).

(2) almost weakly \(\omega \)-continuous [1] if for each \(x \in X \), \(f \) is almost weakly \(\omega \)-continuous at \(x \in X \).

Remark 2.1. (1) Every weakly continuous function is almost weakly \(\omega \)-continuous [1].

(2) Every \(\omega \)-continuous function is almost weakly \(\omega \)-continuous.

(3) None of the above implications is reversible as shown in the following example and in [1].

Example 2.1. Let \(X = \{a, b, c, d\} \) and \(\sigma = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}\} \). Consider the set of real numbers \(R \) with the standard topology \(\tau \). Then the function \(f : (R, \tau) \to (X, \sigma) \) defined by \(f(x) = \begin{cases} 1 & x \in R \setminus Q, \\ 0 & x \in Q \end{cases} \), where \(Q \) is the rational numbers is almost weakly \(\omega \)-continuous but it is not \(\omega \)-continuous.

Theorem 2.1. The following are equivalent for a function \(f : X \to Y \):

(1) \(f \) is almost weakly \(\omega \)-continuous,

(2) \(\omega\text{-cl}(f^{-1}(\text{int}(cl(A)))) \subset f^{-1}(\text{cl}(A)) \) for every subset \(A \) of \(Y \),

(3) \(\omega\text{-cl}(f^{-1}(\text{int}(K))) \subset f^{-1}(K) \) for every regular closed set \(K \) of \(Y \),

(4) \(\omega\text{-cl}(f^{-1}(B)) \subset f^{-1}(\text{cl}(B)) \) for every open set \(B \) of \(Y \),

(5) \(f^{-1}(B) \subset \omega\text{-int}(f^{-1}(\text{cl}(B))) \) for every open set \(B \) of \(Y \),

(6) \(\omega\text{-cl}(f^{-1}(B)) \subset f^{-1}(\text{cl}(B)) \) for each preopen set \(B \) of \(Y \),

(7) \(f^{-1}(B) \subset \omega\text{-int}(f^{-1}(\text{cl}(B))) \) for each preopen set \(B \) of \(Y \).

Proof.

(1) \(\Rightarrow \) (2) : Let \(A \subset Y \) and \(x \in X \setminus f^{-1}(\text{cl}(A)) \). We have \(f(x) \in Y \setminus \text{cl}(A) \). This implies that there exists an open set \(B \) containing \(f(x) \) such that \(B \cap A = \emptyset \). Also, \(\text{cl}(B) \cap \text{int}(\text{cl}(A)) = \emptyset \). Since \(f \) is almost weakly \(\omega \)-continuous, then there exists an \(\omega \)-open set \(S \) containing \(x \) such that \(f(S) \cap \text{cl}(B) = \emptyset \). We have \(S \cap f^{-1}(\text{int}(\text{cl}(A))) = \emptyset \) and hence \(x \in X \setminus \omega\text{-cl}(f^{-1}(\text{int}(\text{cl}(A)))) \). Thus, \(\omega\text{-cl}(f^{-1}(\text{int}(\text{cl}(A)))) \subset f^{-1}(\text{cl}(A)) \).

(2) \(\Rightarrow \) (3) : Let \(K \) be any regular closed set in \(Y \). We have

\[
\omega \text{-cl}(f^{-1}(\text{int}(K))) = \omega \text{-cl}(f^{-1}(\text{int}(\text{cl}(K)))) \subset f^{-1}(\text{cl}(\text{int}(K))) = f^{-1}(K).
\]

(3) \(\Rightarrow \) (4) : Let \(B \) be an open subset of \(Y \). Since \(\text{cl}(B) \) is regular closed in \(Y \), \(\omega\text{-cl}(f^{-1}(B)) \subset \omega\text{-cl}(f^{-1}(\text{cl}(B))) \subset f^{-1}(\text{cl}(B)) \).

(4) \(\Rightarrow \) (5) : Let \(B \) be any open set of \(Y \). Since \(Y \setminus \text{cl}(B) \) is open in \(Y \), by Lemma 1.1,

\[
X \setminus \omega \text{-int}(f^{-1}(\text{cl}(B))) = \omega \text{-cl}(f^{-1}(Y \setminus \text{cl}(B))) \subset f^{-1}(\text{cl}(Y \setminus \text{cl}(B))) \subset X \setminus f^{-1}(B).
\]

(5) \(\Rightarrow \) (1) : Let \(x \in X \) and \(B \) be any open subset of \(Y \) containing \(f(x) \). We have \(x \in f^{-1}(B) \subset \omega\text{-int}(f^{-1}(\text{cl}(B))) \). Take \(S = \omega\text{-int}(f^{-1}(\text{cl}(B))) \). This implies that \(f(S) \subset \text{cl}(B) \) and hence \(f \) is almost weakly \(\omega \)-continuous at \(x \in X \).

(1) \(\Rightarrow \) (6) : Let \(B \) be any preopen set of \(Y \) and \(x \in X \setminus f^{-1}(\text{cl}(B)) \). Then there exists an open set \(R \) containing \(f(x) \) such that \(R \cap B = \emptyset \). We have \(\text{cl}(R \cap B) = \emptyset \).
Since B is preopen, then
\[B \cap \text{cl}(R) \subset \text{int}(\text{cl}(B)) \cap \text{cl}(R) \subset \text{cl}(\text{int}(\text{cl}(B)) \cap R) \subset \text{cl}(\text{int}(\text{cl}(B)) \cap \text{cl}(B \cap R)) \subset \text{cl}(B \cap R) = \emptyset. \]

Since f is almost weakly ω-continuous and R is an open set containing $f(x)$, there exists an ω-open set S in X containing x such that $f(S) \subset \text{cl}(R)$. We have $f(S) \cap B = \emptyset$ and hence $S \cap f^{-1}(B) = \emptyset$. This implies that $x \in X \setminus \omega\text{-cl}(f^{-1}(B))$ and hence $\omega\text{-cl}(f^{-1}(B)) \subset f^{-1}(\text{cl}(B))$.

(6) \Rightarrow (7): Let B be any preopen set of Y. Since $Y \setminus \text{cl}(B)$ is open in Y, by Lemma 1.1,
\[X \setminus \omega\text{-int}(f^{-1}(\text{cl}(B))) = \omega\text{-cl}(f^{-1}(X \setminus \text{cl}(B))) \subset f^{-1}(\text{cl}(Y \setminus \text{cl}(B))) \subset X \setminus f^{-1}(B). \]

Thus, $f^{-1}(B) \subset \omega\text{-int}(f^{-1}(\text{cl}(B)))$.

(7) \Rightarrow (1): Let $x \in X$ and B any open set of Y containing $f(x)$. Then $x \in f^{-1}(B) \subset \omega\text{-int}(f^{-1}(\text{cl}(B)))$. Take $S = \omega\text{-int}(f^{-1}(\text{cl}(B)))$. Then $f(S) \subset \text{cl}(B)$ and hence f is almost weakly ω-continuous at x in X.

Definition 2.2. A function $f : X \to Y$ is said to be (ω, s)-open if $f(B) \in SO(Y)$ for every ω-open set B of X.

Definition 2.3. A function $f : X \to Y$ is said to be neatly weak ω-continuous if for each $x \in X$ and each open set A of X containing $f(x)$, there exists an ω-open set B containing x such that $\text{Int}(f(B)) \subset \text{cl}(A)$.

Theorem 2.2. If a function $f : X \to Y$ is neatly weak ω-continuous and (ω, s)-open, then f is almost weakly ω-continuous.

Proof. Let $x \in X$ and $A \in SO(Y, f(x))$. Since f is neatly weak ω-continuous, there exists an ω-open set B of X containing x such that $\text{Int}(f(B)) \subset \text{cl}(A)$. Since f is (ω, s)-open, then $f(B) \in SO(Y)$. This implies that $f(B) \subset \text{cl}(\text{Int}(f(B))) \subset \text{cl}(A)$. Therefore f is almost weakly ω-continuous.

Definition 2.4. A function $f : X \to Y$ is relatively weak ω-continuous if for each open set A of Y, the set $f^{-1}(A)$ is ω-open in the subspace $f^{-1}(\text{cl}(A))$.

Theorem 2.3. A function $f : X \to Y$ is ω-continuous if and only if f is almost weakly ω-continuous and relatively weak ω-continuous.

Proof. "Necessity". Obvious. "Sufficiency". Suppose that A is an open set of Y. Since f is relatively weak ω-continuous, there exists an ω-open set B of X such that $f^{-1}(A) = B \cap f^{-1}(\text{cl}(A))$. We have $f^{-1}(A) \subset \omega\text{-int}(f^{-1}(\text{cl}(A)))$. Therefore, $f^{-1}(A) = B \cap \omega\text{-int}(f^{-1}(\text{cl}(A)))$. This shows that $f^{-1}(A)$ is ω-open in X and hence f is ω-continuous.

Definition 2.5. A function $f : X \to Y$ is said to be (ω, p)-continuous if $f^{-1}(A) \in \omega\text{O}(X)$ for each preopen set A of Y.

Definition 2.6. A function $f : X \to Y$ is relatively weak ω-continuous if for each preopen set A of Y, the set $f^{-1}(A)$ is ω-open in the subspace $f^{-1}(\text{cl}(A))$.

Observe that relatively weak ω-continuous and relatively weak ω-continuous are equivalent with each other.
Theorem 2.4. A function \(f : X \to Y \) is \((\omega, p)\)-continuous if and only if \(f \) is almost weakly \(\omega \)-continuous and relatively weak \(\omega p \)-continuous.

Proof. Similar to the proof of Theorem 2.3.

Theorem 2.5. The following are equivalent for a function \(f : X \to Y \):

(1) \(f \) is almost weakly \(\omega \)-continuous,

(2) \(f(\omega \text{-cl}(A)) \subseteq \theta \text{-cl}(f(A)) \) for each subset \(A \) of \(X \),

(3) \(\omega \text{-cl}(f^{-1}(B)) \subseteq f^{-1}(\theta \text{-cl}(B)) \) for each subset \(B \) of \(Y \),

(4) \(\omega \text{-cl}(f^{-1}(\text{int}(\theta \text{-cl}(B)))) \subseteq f^{-1}(\theta \text{-cl}(B)) \) for every subset \(B \) of \(Y \).

Proof. (1) \(\Rightarrow \) (2) : Let \(A \subseteq X \) and \(x \in \omega \text{-cl}(A) \). Suppose that \(U \) is any open set of \(Y \) containing \(f(x) \). Then there exists an \(\omega \)-open set \(S \) containing \(x \) such that \(f(S) \subseteq \text{cl}(U) \). Since \(x \in \omega \text{-cl}(A) \), by Lemma 1.1, \(S \cap A \neq \emptyset \). Thus, \(\emptyset \neq f(S) \cap f(A) \subseteq \text{cl}(U) \cap f(A) \) and hence \(f(x) \in \theta \text{-cl}(f(A)) \). Thus, \(f(\omega \text{-cl}(A)) \subseteq \theta \text{-cl}(f(A)) \).

(2) \(\Rightarrow \) (3) : Let \(B \subseteq Y \). We have \(f(\omega \text{-cl}(f^{-1}(B))) \subseteq \theta \text{-cl}(B) \). Thus, \(\omega \text{-cl}(f^{-1}(B)) \subseteq f^{-1}(\theta \text{-cl}(B)) \).

(3) \(\Rightarrow \) (4) : Let \(B \subseteq Y \). Since \(\theta \text{-cl}(B) \) is closed in \(Y \), then

\[
\omega \text{-cl}(f^{-1}(\text{int}(\theta \text{-cl}(B)))) \subseteq f^{-1}(\theta \text{-cl}(\text{int}(\theta \text{-cl}(B)))) \\
= f^{-1}(\text{cl}(\text{int}(\theta \text{-cl}(B)))) \\
\subseteq f^{-1}(\theta \text{-cl}(B)),
\]

(5)

(4) \(\Rightarrow \) (1) : Let \(U \) be any open set of \(Y \). Then \(U \subseteq \text{int}(\text{cl}(U)) = \text{int}(\theta \text{-cl}(U)). \)

Thus,

\[
\omega \text{-cl}(f^{-1}(U)) \subseteq \omega \text{-cl}(f^{-1}(\text{int}(\theta \text{-cl}(U)))) \subseteq f^{-1}(\theta \text{-cl}(U)) = f^{-1}(\text{cl}(U)).
\]

(6)

By Theorem 2.1, \(f \) is almost weakly \(\omega \)-continuous.

Theorem 2.6. The following hold for a function \(f : X \to Y \):

(1) If \(f \) is almost weakly \(\omega \)-continuous, then \(f^{-1}(A) \) is \(\omega \)-closed in \(X \) for every \(\theta \)-closed set \(A \) of \(Y \).

(2) If \(f \) is almost weakly \(\omega \)-continuous, then \(f^{-1}(A) \) is \(\theta \)-open in \(X \) for every \(\theta \)-open set \(A \) of \(Y \).

(3) If \(f^{-1}(\theta \text{-cl}(A)) \) is \(\omega \)-closed in \(X \) for every subset \(A \) of \(Y \), then \(f \) is almost weakly \(\omega \)-continuous.

Proof. (1) and (2) follows from Theorem 2.5.

(3) Let \(A \subseteq Y \). Since \(f^{-1}(\theta \text{-cl}(A)) \) is \(\omega \)-closed in \(X \), then \(\omega \text{-cl}(f^{-1}(A)) \subseteq \omega \text{-cl}(f^{-1}(\theta \text{-cl}(A))) = f^{-1}(\theta \text{-cl}(A)) \). By Theorem 2.5, \(f \) is almost weakly \(\omega \)-continuous.

A space \(X \) is called p-space if countable intersections of open subsets are open.

Theorem 2.7. The following are equivalent for a function \(f : X \to Y \) where \(X \) is a p-space:

(1) \(f \) is almost weakly \(\omega \)-continuous,

(2) \(f \) is weakly continuous.

Proof. It follows from the fact that \(\tau = \omega O(X) \) [2].

Lemma 2.1. If \(f : X \to Y \) is almost weakly \(\omega \)-continuous and \(g : Y \to Z \) is continuous, then the composition \(g \circ f : X \to Z \) is almost weakly \(\omega \)-continuous.
Let \(A \) be an open set of \(Z \) containing \(g(f(x)) \). Then \(g^{-1}(A) \) is an open set of \(Y \) containing \(f(x) \). This implies that there exists an \(\omega \)-open set \(B \) containing \(x \) such that \(f(B) \subseteq \text{cl}(g^{-1}(A)) \). Since \(g \) is continuous, then \((gof)(B) \subseteq g(\text{cl}(g^{-1}(A))) \subseteq \text{cl}(A) \). Hence, \(gof \) is almost weakly \(\omega \)-continuous.

Theorem 2.8. Let \(\{A_i : i \in I\} \) be an \(\omega \)-open cover of a space \(X \). The following are equivalent for a function \(f : X \to Y \):

1. \(f \) is almost weakly \(\omega \)-continuous,
2. for each \(i \in I \), the restriction \(f_{A_i} : A_i \to Y \) is almost weakly \(\omega \)-continuous.

Proof. (1) \(\Rightarrow \) (2) : Let \(i \in I \) and \(A_i \) be an \(\omega \)-open set of \(X \). Suppose that \(x \in A_i \) and \(U \) is an open set of \(Y \) containing \(f_{A_i}(x) = f(x) \). Since \(f \) is almost weakly \(\omega \)-continuous, then there exists an \(\omega \)-open set \(B \) containing \(x \) such that \(f(B) \subseteq \text{cl}(U) \). On the other hand, \(B \cap A_i \) is \(\omega \)-open in \(A_i \) containing \(x \) and \(f_{A_i}(B \cap A_i) = f(B \cap A_i) \subseteq f(B) \subseteq \text{cl}(U) \). Thus, \(f_{A_i} \) is almost weakly \(\omega \)-continuous.

(2) \(\Rightarrow \) (1) : Let \(x \in X \) and \(U \) be an open set containing \(f(x) \). There exists \(i \in I \) such that \(x \in A_i \). Since \(f_{A_i} : A_i \to Y \) is almost weakly \(\omega \)-continuous, there exists an \(\omega \)-open set \(B \) in \(A_i \) containing \(x \) such that \(f_{A_i}(B) \subseteq \text{cl}(U) \). Since \(A_i \) is \(\omega \)-open in \(X \), then \(B \) is \(\omega \)-open in \(X \) containing \(x \) and \(f(B) \subseteq \text{cl}(U) \). Thus, \(f \) is almost weakly \(\omega \)-continuous.

Definition 2.7. A function \(f : X \to Y \) is said to be faintly \(\omega \)-continuous if for each \(x \in X \) and each \(\theta \)-open set \(V \) of \(Y \) containing \(f(x) \), there exists an \(\omega \)-open set \(U \) containing \(x \) such that \(f(U) \subseteq V \).

Theorem 2.9. Let \(f : X \to Y \) be a function. The following are equivalent:

1. \(f \) is faintly \(\omega \)-continuous,
2. \(f^{-1}(A) \) is \(\omega \)-open in \(X \) for every \(\theta \)-open set \(A \) of \(Y \),
3. \(f^{-1}(B) \) is \(\omega \)-closed in \(X \) for every \(\theta \)-closed set \(B \) of \(Y \).

Theorem 2.10. Let \(f : X \to Y \) be a function. If \(Y \) is regular, then the following are equivalent. Otherwise, the implications \((1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \) hold:

1. \(f \) is \(\omega \)-continuous,
2. \(f^{-1}(\text{cl}(A)) \) is \(\omega \)-closed in \(X \) for every subset \(A \) of \(Y \),
3. \(f \) is almost weakly \(\omega \)-continuous,
4. \(f \) is faintly \(\omega \)-continuous.

Proof. (1) \(\Rightarrow \) (2) : Let \(A \subseteq Y \). Since \(\theta \)-cl \((A) \) is closed, then \(f^{-1}(\theta \text{-cl}(A)) \) is \(\omega \)-closed in \(X \).

(2) \(\Rightarrow \) (3) : It follows from Theorem 2.6.

(3) \(\Rightarrow \) (4) : Let \(A \) be a \(\theta \)-closed subset of \(Y \). By Theorem 2.5, \(\omega \text{-cl}(f^{-1}(A)) \subseteq f^{-1}(\theta \text{-cl}(A)) = f^{-1}(A) \). Hence, \(f(A) \) is \(\omega \)-closed. Thus, \(f \) is faintly \(\omega \)-continuous.

Let \(Y \) be regular and let \(A \) be any open set of \(Y \). Since \(Y \) is regular, \(A \) is \(\theta \)-open in \(Y \). Since \(f \) is faintly \(\omega \)-continuous, then \(f^{-1}(A) \) is \(\omega \)-open in \(X \). Hence, \(f \) is \(\omega \)-continuous. Thus, the implication \((4) \Rightarrow (1) \) holds.

Theorem 2.11. The following properties equivalent for a function \(f : X \to Y \):

1. \(f : X \to Y \) is almost weakly \(\omega \)-continuous at \(x \in X \).
2. \(x \in \omega \text{-int}(f^{-1}(\text{cl}(A))) \) for each neighborhood \(A \) of \(f(x) \).

Proof. (1) \(\Rightarrow \) (2) : Let \(A \) be any neighborhood of \(f(x) \). There exists an \(\omega \)-open set \(B \) containing \(x \) such that \(f(B) \subseteq \text{cl}(A) \). We have \(B \subseteq f^{-1}(\text{cl}(A)) \). Since \(B \) is \(\omega \)-open, then \(x \in B \subseteq \omega \text{-int}(B) \subseteq \omega \text{-int}(f^{-1}(\text{cl}(A))) \).
Let $x \in \text{int}(f^{-1}(cl(A)))$ for each neighborhood A of $f(x)$. Take $U = \text{int}(f^{-1}(cl(A)))$. Then $f(U) \subset cl(A)$. Moreover, U is ω-open. Thus, f is almost weakly ω-continuous at $x \in X$.

Definition 2.8. A subset A is said to be ω-semi-open if there exists ω-open set U such that $U \subset A \subset cl(U)$.

Theorem 2.12. Let $f : X \to Y$ be almost weakly ω-continuous at $x \in X$. The following properties hold:

1. For each neighborhood A of $f(x)$ and each ω-neighborhood B of x, there exists a nonempty ω-open set $U \subset B$ such that $U \subset \omega-cl(f^{-1}(cl(A)))$.
2. For each neighborhood A of $f(x)$, there exists a ω-semi-open set B containing x such that $B \subset \omega-cl(f^{-1}(cl(A)))$.

Proof. (1) : Let A be any neighborhood of $f(x)$ and B be an open set of X containing x. Since $x \in \text{int}(f^{-1}(cl(A)))$, then $B \cap \text{int}(f^{-1}(cl(A))) \neq \emptyset$. Take $U = B \cap \text{int}(f^{-1}(cl(A)))$. Thus, U is a nonempty ω-open set and hence $U \subset B$ and $U \subset \omega-cl(f^{-1}(cl(A))) \subset \omega-cl(f^{-1}(cl(A)))$.

(2) : Suppose that (1) holds. Let B be ω-open containing x and A be any neighborhood of $f(x)$. There exists a nonempty ω-open set U_B such that $U_B \subset \omega-cl(f^{-1}(cl(A)))$. Take $U = \cup \{U_B : B \text{ is open in } X \text{ containing } x\}$. Then U is ω-open, $x \in \omega-cl(U)$ and $U \subset \omega-cl(f^{-1}(cl(A)))$. Take $S = U \cup \{x\}$. Then $U \subset S \subset \omega-cl(U)$. Thus, S is ω-semi-open set containing x and $S \subset \omega-cl(f^{-1}(cl(A)))$.

3. Further properties

Recall that a space is rim-compact [6] if it has a basis of open sets with compact boundaries. The graph of a function $f : X \to Y$, denoted by $G(f)$, is the subset $\{(x, f(x)) : x \in X\}$ of the product space $X \times Y$.

Theorem 3.1. Let $f : X \to Y$ be a function with the closed graph. If Y is a rim-compact space, then the following are equivalent:

1. f is almost weakly ω-continuous,
2. f is ω-continuous.

Proof. (2) \Rightarrow (1) : Obvious.

(1) \Rightarrow (2) : Let $x \in X$ and A be any open set of Y containing $f(x)$. Since Y is rim-compact, there exists an open set B of Y such that $x \in B \subset A$ and ∂B is compact. For each $y \in \partial B$, $(x, y) \in X \times Y \setminus G(f)$. This implies that there exist open sets $U_y \subset X$ and $V_y \subset Y$ such that $x \in U_y$, $y \in V_y$. Since $G(f)$ is closed, then $f(U_y) \cap V_y = \emptyset$. The family $\{V_y \subset \partial B : y \in \partial B\}$ is an open cover of ∂B. This implies that there exist a finite number of points of ∂B, say, y_1, y_2, ..., y_n such that $\partial B \subset \cup_{i=1}^n V_{y_i}$. Take $S = \cap\{U_{y_i}\}_{i=1}^n$ and $R = \cup\{V_{y_i}\}_{i=1}^n$. (7)

Then S and R are open sets such that $x \in S$, $\partial B \subset R$ and $f(S) \cap \partial B \subset f(S) \cap R = \emptyset$. Since f is almost weakly ω-continuous, there exists an ω-open set N containing x such that $f(N) \subset cl(B)$. Take $U = S \cap N$. Then, U is ω-open containing x, $f(U) \subset cl(B)$ and $f(U) \cap \partial B = \emptyset$. Thus, $f(U) \subset B \subset A$ and hence f is ω-continuous.

Theorem 3.2. Let $f : X \to Y$ be a function where Y is a rim-compact Hausdorff space. Then the following are equivalent:

1. f is ω-continuous,
Proof. (1) ⇒ (2) : Obvious.
(2) ⇒ (1) : Since a rim-compact Hausdorff space is regular, by Theorem 2.10, \(f \) is \(\omega \)-continuous.

Definition 3.1. ([1]) If a space \(X \) can not be written as the union of two nonempty disjoint \(\omega \)-open sets, then \(X \) is said to be \(\omega \)-connected.

Theorem 3.3. If \(f : X \to Y \) is an almost weakly \(\omega \)-continuous surjection and \(X \) is \(\omega \)-connected, then \(Y \) is connected.

Proof. Suppose that \(Y \) is not connected. Then there exist nonempty open sets \(A \) and \(B \) of \(Y \) such that \(Y = A \cup B \) and \(A \cap B = \emptyset \). This implies that \(A \) and \(B \) are clopen in \(Y \). By Theorem 2.1, \(f^{-1}(A) \subset \omega\text{-int}(f^{-1}(\text{cl}(A))) = \omega\text{-int}(f^{-1}(\text{cl}(A))) \). Hence \(f^{-1}(A) \) is \(\omega \)-open in \(X \). Similarly, \(f^{-1}(B) \) is \(\omega \)-open in \(X \). We have \(f^{-1}(A) \cap f^{-1}(B) = \emptyset \), \(X = f^{-1}(A) \cup f^{-1}(B) \). Also, \(f^{-1}(A) \) and \(f^{-1}(B) \) are nonempty. Thus, \(X \) is not \(\omega \)-connected.

Corollary 3.1. If \(f : X \to Y \) is a \(\omega \)-continuous surjection and \(X \) is \(\omega \)-connected, then \(Y \) is connected.

For a function \(f : X \to Y \), the graph function \(g : X \to X \times Y \) of \(f \) is defined by \(g(x) = (x, f(x)) \) for each \(x \in X \).

Theorem 3.4. The following are equivalent for a function \(f : X \to Y \):
(1) \(f \) is almost weakly \(\omega \)-continuous,
(2) the graph function \(g \) is almost weakly \(\omega \)-continuous.

Proof. (1) ⇒ (2) : Let \(f \) be almost weakly \(\omega \)-continuous and \(x \in X \). Suppose that \(A \) is an open set containing \(g(x) \). There exist open sets \(B \subset X \) and \(C \subset Y \) such that \(g(x) = (x, f(x)) \in B \times C \subset A \). Since \(f \) is almost weakly \(\omega \)-continuous, there exists \(\omega \)-open set \(D \) containing \(x \) such that \(f(D) \subset \text{cl}(C) \). Take \(S = B \cap D \). Then \(S \) is an \(\omega \)-open set containing \(x \) and \(g(S) \subset \text{cl}(A) \). Thus, \(g \) is almost weakly \(\omega \)-continuous.

(2) ⇒ (1) : Let \(g \) be almost weakly \(\omega \)-continuous and \(x \in X \) and \(A \) be an open set of \(X \) containing \(f(x) \). Then \(X \times A \) is an open set containing \(g(x) \). There then exists an \(\omega \)-open set \(B \) containing \(x \) such that \(g(B) \subset \text{cl}(X \times A) = X \times \text{cl}(A) \). Thus, \(f(B) \subset \text{cl}(A) \) and hence \(f \) is almost weakly \(\omega \)-continuous.

Theorem 3.5. If \(f, g : X \to Y \) is almost weakly \(\omega \)-continuous and \(Y \) is Urysohn, then the set \(A = \{x \in X : f(x) = g(x)\} \) is \(\omega \)-closed in \(X \).

Proof. Let \(x \in X \setminus A \). Then \(f(x) \neq g(x) \). Since \(Y \) is Urysohn, then there exist open sets \(S \) and \(R \) of \(Y \) such that \(f(x) \in S \) and \(g(x) \in R \) and \(\text{cl}(S) \cap \text{cl}(R) = \emptyset \). Since \(f \) is almost weakly \(\omega \)-continuous, there exists \(\omega \)-open set \(U \) in \(X \) containing \(x \) such that \(f(U) \subset \text{cl}(S) \). Since \(g \) is almost weakly \(\omega \)-continuous, there exists \(\omega \)-open set \(B \) of \(X \) containing \(x \) such that \(g(B) \subset \text{cl}(R) \). Take \(H = U \cap B \). Then \(H \) is \(\omega \)-open containing \(x \) and \(f(H) \cap g(H) \subset \text{cl}(S) \cap \text{cl}(R) = \emptyset \). Thus, \(H \cap A = \emptyset \) and hence \(A \) is \(\omega \)-closed in \(X \).

Theorem 3.6. Let \(f : X \to Y \) be an almost weakly \(\omega \)-continuous function and \(A \) be a \(\theta \)-closed set of \(X \times Y \). Then \(p(A \cap G(f)) \) is \(\omega \)-closed in \(X \) where \(p \) is the projection of \(X \times Y \) onto \(X \) and \(G(f) = \{(x, f(x)) : x \in X\} \).
Proof. Let \(x \in \text{cl}(p(A \cap G(f))) \). Suppose that \(U \) is an open set of \(X \) containing \(x \) and \(V \) is an open set of \(Y \) containing \(f(x) \). Since \(f \) is almost weakly \(\omega \)-continuous, by Theorem 2.1, \(x \in f^{-1}(V) \subseteq \omega\text{-int}(f^{-1}(\text{cl}(V))) \). We have \(U \cap \omega\text{-int}(f^{-1}(\text{cl}(V))) \) and \(x \in U \cap \omega\text{-int}(f^{-1}(\text{cl}(V))) \). Since \(x \in \text{cl}(p(A \cap G(f))) \), then \((U \cap \omega\text{-int}(f^{-1}(\text{cl}(V)))) \cap p(A \cap G(f)) \) contains a \(a \in X \). Then \((a, f(a)) \in A \) and \(f(a) \in \text{cl}(V) \). Therefore

\[
\emptyset \neq (U \times \text{cl}(V)) \cap A \subseteq \text{cl}(U \times V) \cap A
\]

and \((x, f(x)) \in \theta\text{-cl}(A) \). Since \(A \) is \(\theta \)-closed, \((x, f(x)) \in A \cap G(f) \) and \(x \in p(A \cap G(f)) \). Thus, \(p(A \cap G(f)) \) is \(\omega \)-closed in \(X \).

Corollary 3.2. If \(f : X \to Y \) has the \(\theta \)-closed graph and \(g : X \to Y \) is almost weakly \(\omega \)-continuous, then the set \(A = \{ x \in X : f(x) = g(x) \} \) is \(\omega \)-closed in \(X \).

Proof. Let \(G(f) \) be \(\theta \)-closed. We have \(p(G(f) \cap G(g)) = \{ x \in X : f(x) = g(x) \} \). By Theorem 3.6, \(A = \{ x \in X : f(x) = g(x) \} \) is \(\omega \)-closed in \(X \).

Theorem 3.7. If \(f : X \to Y \) is almost weakly \(\omega \)-continuous and \(Y \) is Hausdorff, then for each \((x, y) \notin G(f) \), there exist an \(\omega \)-open set \(A \subseteq X \) and an open set \(B \subseteq Y \) containing \(x \) and \(y \), respectively, such that \(f(A) \cap \text{int}(\text{cl}(B)) = \emptyset \).

Proof. Let \((x, y) \notin G(f) \). Then \(y \neq f(x) \). Since \(Y \) is Hausdorff, there exist disjoint open sets \(B \) and \(C \) containing \(y \) and \(f(x) \), respectively. Thus, \(\text{int}(\text{cl}(B)) \cap \text{cl}(C) = \emptyset \). Since \(f \) is almost weakly \(\omega \)-continuous, there exists an \(\omega \)-open set \(A \) containing \(x \) such that \(f(A) \subseteq \text{cl}(C) \). Hence, \(f(A) \cap \text{int}(\text{cl}(B)) = \emptyset \).

Definition 3.2. A subset \(S \) of a space \(X \) is said to be \(N \)-closed relative to \(X \) \([3]\) if for each cover \(\{ A_i : i \in I \} \) of \(S \) by open sets of \(X \), there exists a finite subfamily \(I_0 \subseteq I \) such that \(S \subseteq \bigcup_{i \in I_0} \text{cl}(A_i) \).

Theorem 3.8. Let \(f : X \to Y \) be a function. Suppose that for each \((x, y) \notin G(f) \), there exist an \(\omega \)-open set \(A \subseteq X \) and an open set \(B \subseteq Y \) containing \(x \) and \(y \), respectively, such that \(f(A) \cap \text{int}(\text{cl}(B)) = \emptyset \). Then inverse image of each \(N \)-closed set of \(Y \) is \(\omega \)-closed in \(X \).

Proof. Suppose that there exists a \(N \)-closed set \(S \subseteq Y \) such that \(f^{-1}(S) \) is not \(\omega \)-closed in \(X \). Then, there exists a point \(x \in \text{cl}(f^{-1}(S)) \setminus f^{-1}(S) \). Since \(f(x) \notin f^{-1}(S) \), then \((x, y) \notin G(f) \) for each \(y \in S \). This implies that there exist \(\omega \)-open sets \(A_y(x) \subseteq X \) and an open set \(B(y) \subseteq Y \) containing \(x \) and \(y \), respectively, such that \(f(A_y(x)) \cap \text{int}(\text{cl}(B(y))) = \emptyset \). The family \(\{ B(y) : y \in S \} \) is a cover of \(S \) by open sets of \(Y \). Since \(S \) is \(N \)-closed, there exist a finite number of points \(y_1, y_2, ..., y_n \) in \(S \) such that \(S \subseteq \bigcup_{i=1}^{n} \text{int}(\text{cl}(B(y_i))) \). Take \(A = \bigcap_{i=1}^{n} A_{y_i}(x) \). Then \(f(A) \subseteq S \). Since \(x \in \text{cl}(f^{-1}(S)) \), then \(f(A) \cap S = \emptyset \). This is a contradiction.

Corollary 3.3. Let \(Y \) be Hausdorff such that every closed set is \(N \)-closed. Then the following are equivalent:

1. \(f \) is \(\omega \)-continuous,
2. \(f \) is almost weakly \(\omega \)-continuous.

Let \(\{ X_i \}_{i \in I} \) and \(\{ Y_i \}_{i \in I} \) be any two families of topological spaces. The product space of \(\{ X_i \}_{i \in I} \) and \(\{ Y_i \}_{i \in I} \) is denoted by \(\prod X_i \) and \(\prod Y_i \), respectively. Let \(f_i : X_i \to Y_i \) be a function for each \(i \in I \). Let \(f : \prod X_i \to \prod Y_i \) be the product function defined as follows: \(f_i(x_i) = (f_i(x_i)) \) for each \((x_i) \in \prod X_i \). The projection of \(\prod X_i \) and \(\prod Y_i \) onto \(X_i \) and \(Y_i \), respectively is denoted by \(p_i \) and \(q_i \).
Theorem 3.9. If \(f_i : X_i \to Y_i \) is almost weakly \(\omega \)-continuous for each \(i \in I \), then a function \(f : \prod X_i \to \prod Y_i \) is almost weakly \(\omega \)-continuous.

Proof. Let \(x = (x_i) \in \prod X_i \). Suppose that \(A \) is an open set containing \(f(x) \). Then there exists an open set \(\prod B_i \) such that \(f(x) \in \prod_{i=1}^n B_i \times \prod_{i \neq j} Y_j \subset A \), where \(B_i \) is open in \(Y_i \). Since \(f_i \) is almost weakly \(\omega \)-continuous, there exists \(\omega \)-open sets \(S_i \) in \(X_i \) containing \(x_i \) such that \(f_i(S_i) \subset \text{cl}(B_i) \) for each \(i = 1, 2, \ldots, n \). Take \(S = \prod_{i=1}^n S_i \times \prod_{i \neq j} X_j \), then \(S \) is \(\omega \)-open in \(\prod X_i \) containing \(x \) and

\[
 f(S) \subset \prod_{i=1}^n f_i(S_i) \times \prod_{i \neq j} Y_j \subset \prod_{i=1}^n \text{cl}(B_i) \times \prod_{i \neq j} Y_j \subset \text{cl}(A). \tag{9}
\]

Thus, \(f \) is almost weakly \(\omega \)-continuous.

References

(Erdal Ekici) Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale / TURKEY
E-mail address: eekici@comu.edu.tr

(Saeid Jafari) College of Vestsjaelland South, Herrestraede 11, 4 200 Slagelse, DENMARK
E-mail address: jafari@stofanet.dk

(Seithuti P. Moshokoa) Department of Mathematical Sciences, University of South Africa, P. O. Box 392, Pretoria, 0003, SOUTH AFRICA
E-mail address: moshosp@unisa.ac.za