Localization of MTL - algebras

ANTONETA JEFLEA AND JUSTIN PARALESCU

Abstract. The aim of the present paper is to define the localization MTL - algebra of a MTL - algebra A with respect to a topology F on A. In the last part of the paper is proved that the maximal MTL - algebra of quotients (defined in [15]) and the MTL - algebra of fractions relative to an \land - closed system (defined in [3]) are MTL - algebras of localization.

2010 Mathematics Subject Classification. 18B35, 18C05, 06D72, 03G25.
Key words and phrases. MTL - algebra, BL - algebra, residuated lattice, topology, F - multiplier, strong F - multiplier, multiplier, MTL - algebra of fractions, maximal MTL - algebra of quotients, MTL - algebra of localization.

Basic Fuzzy logic (BL from now on) is the many-valued residuated logic introduced by Hájek in [10] to cope with the logic of continuous t-norms and their residua. Monoidal logic (ML from now on), is a logic whose algebraic counterpart is the class of residuated; MTL-algebras (see [9]) are algebraic structures for the Esteva-Godo monoidal t-norm based logic (MTL), a many-valued propositional calculus that formalizes the structure of the real unit interval $[0,1]$, induced by a left–continuous t-norm. MTL algebras were independently introduced in [6] under the name weak-BL algebras.

A remarkable construction in ring theory is the localization ring A_F associated with a Gabriel topology F on a ring A.

Using the model of localization ring, in [9], G. Georgescu defined for a bounded distributive lattice L the localization lattice L_F of L with respect to a topology F on L and prove that the maximal lattice of quotients for a distributive lattice is a lattice of localization (relative to the topology of regular ideals); analogous results we have for lattices of fractions of bounded distributive lattices relative to \land - closed systems.

The main aim of this paper is to develop a theory of localization for MTL - algebras. Since BL - algebras are particular classes of MTL - algebras, the results of this paper generalize a part of the results from [2] for BL - algebras. The main difference is that the axiom $x \odot (x \rightarrow y) = x \land y$ is not valid for MTL-algebras.

1. Definitions and preliminaries

Definition 1.1. A residuated lattice ([1], [18]) is an algebra $(A, \land, \lor, \odot, \rightarrow, 0, 1)$ of type $(2, 2, 2, 2, 0, 0)$ equipped with an order \leq satisfying the following:

(a_1) $(A, \land, \lor, 0, 1)$ is a bounded lattice relative to the order \leq;

(a_2) $(A, \odot, 1)$ is a commutative ordered monoid;

(a_3) (\odot, \rightarrow) is an adjoint pair, i.e. $z \leq x \rightarrow y$ if $x \odot z \leq y$ for every $x, y, z \in A$.

The class RL of residuated lattices is equational (see [11]).

For examples of residuated lattices see [3] and [18].
In what follows by A we denote the universe of a residuated lattice. For $x \in A$, we denote $x^* = x \to 0$ and $(x^*)^* = x^{**}$.

We review some rules of calculus for residuated lattices A used in this paper:

Theorem 1.1. ([1], [18]) Let $x, y, z \in A$. Then we have the following:

(c1) $1 \to x = x, x \to x = 1, y \leq x \to y, x \odot (x \to y) \leq y, x \to 1 = 1, 0 \to x = 1, x \odot 0 = 0$;

c2) $x \leq y$ iff $x \to y = 1$;

c3) $x \leq y$ implies $x \odot z \leq y \odot z, z \to x \leq z \to y$ and $y \to z \leq x \to z$;

c4) $x \to (y \to z) = (x \odot y) \to z = y \to (x \to z)$, so $(x \odot y)^* = x \to y^* = y \to x^*$;

c5) $x \odot x^* = 0$ and $x \odot y = 0$ iff $x \leq y^*$;

If A is a complete residuated lattice and $(y_i)_{i \in I}$ is a family of elements of A, then:

(c6) $x \odot \left(\bigvee_{i \in I} y_i \right) = \bigvee_{i \in I} (x \odot y_i)$;

(c7) $x \to \left(\bigwedge_{i \in I} y_i \right) = \bigwedge_{i \in I} (x \to y_i)$.

By $B(A)$ we denote the set of all complemented elements in the lattice $L(A) = (A, \land, \lor, 0, 1)$. Complements are generally not unique, unless the lattice is distributive; in the case of residuated lattices, however, although the underlying lattices need not be distributive, the complements are unique ([8]). Also, if b is the complement of a, then a is the complement of $b, b = a^*, a^2 = a$ and $a^{**} = a$ ([1], [3]). So, $B(A)$ is a Boolean subalgebra of A, called the Boolean center of A.

Theorem 1.2. ([3]) For $e \in A$ the following assertions are equivalent:

(i) $e \in B(A)$;

(ii) $e \lor e^* = 1$.

Theorem 1.3. ([3]) If $e, f \in B(A)$ and $x, y \in A$, then:

(c8) $e \odot x = e \land x$;

c9) $x \odot (x \to e) = e \land x, e \odot (e \to x) = e \land x$;

(c10) $e \odot (x \to y) = e \odot [(e \odot x) \to (e \odot y)]$;

(c11) $x \odot (e \to f) = x \odot [(x \odot e) \to (x \odot f)]$.

Definition 1.2. ([5], [6], [7]) A MTL-algebra is a residuated lattice satisfying the prelinearity equation:

(c12) $(x \to y) \lor (y \to x) = 1$.

The variety of MTL-algebras will be denoted by \mathbb{MTL}.

Proposition 1.1. ([5]) For a residuated lattice, the following conditions are equivalent:

(i) $A \in \mathbb{MTL}$;

(ii) A is a subdirect product of linearly ordered residuated lattices;

(iii) For every $x, y, z \in A$ we have:

(c13) $x \to (y \lor z) = (x \to y) \lor (x \to z)$;

(iv) For every $x, y, z \in A$ we have:

(c14) $(x \land y) \to z = (x \to z) \lor (y \to z)$.

Corollary 1.1. ([5]) Let $A \in \mathbb{MTL}$. Then for every $x, y, z \in A$ we have:

(c15) $(x \land y)^* = x^* \lor y^*$;

(c16) $x \odot (y \land z) = (x \odot y) \land (x \odot z)$;

(c17) $x \land (y \lor z) = (x \land y) \lor (x \land z)$;

(c18) $x \lor y = ((x \to y) \to y) \land ((y \to x) \to x)$.
Remark 1.1. From (c18) we deduce that a MTL-algebra is a semi-Boolean lattice (see [13]).

Remark 1.2. Every linearly ordered residuated lattice is a MTL-algebra. A MTL-algebra \(A \) is a BL-algebra iff in \(A \) is verified the divisibility condition: \(x \circ (x \rightarrow y) = x \land y \). So, BL-algebras are examples of MTL-algebras; for an example of MTL-algebra which is not BL-algebra consider the residuated lattice defined on the unit interval \(A = [0, 1] \), for all \(x, y \in A \), such that

\[
x \circ y = 0 \text{ if } x + y \leq \frac{1}{2} \text{ and } x \land y \text{ elsewhere,}
\]

\[
x \rightarrow y = 1 \text{ if } x \leq y \text{ and } \max \left\{ \frac{1}{2} - x, y \right\} \text{ elsewhere (see [18], p.16).}
\]

Let \(0 < y < x, x + y < \frac{1}{2} \). Then \(y < \frac{1}{2} - x \) and \(0 \neq y = x \land y \), but \(x \circ (x \rightarrow y) = x \circ (\frac{1}{2} - x) = 0 \). This residuated lattice is a chain, so is a MTL-algebra, but the divisibility condition not hold.

Definition 1.3. Let \((P, \leq) \) an ordered set. A nonempty subset \(I \) of \(P \) is called order ideal if, whenever \(x \in I, y \in P \) and \(y \leq x \), we have \(y \in I \); we denote by \(I(P) \) the set of all order ideals of \(P \).

For a MTL-algebra \(A \) we denote by \(\text{Id}(A) \) the set of all ideals of the lattice \(L(A) \).

Remark 1.3. Clearly, \(\text{Id}(A) \subseteq I(A) \) and if \(I_1, I_2 \subseteq I(A) \), then \(I_1 \cap I_2 \in I(A) \). Also, if \(I \in I(A) \), then \(0 \in I \).

2. Topologies on a MTL-algebra

Definition 2.1. A non-empty set \(F \) of elements \(I \subseteq I(A) \) will be called a topology on \(A \) if the following axioms hold:

\((a_1) \) If \(I_1 \in F, I_2 \subseteq I(A) \) and \(I_1 \subseteq I_2 \), then \(I_2 \in F \) (hence \(A \in F \));

\((a_5) \) If \(I_1, I_2 \in F \), then \(I_1 \cap I_2 \in F \).

Remark 2.1. 1. \(F \) is a topology on \(A \) iff \(F \) is a filter of the lattice of power set of \(A \); for this reason a topology on \(I(A) \) is usually called a Gabriel filter on \(I(A) \).

2. Clearly, if \(F \) is a topology on \(A \), then \((A, F \cup \{\emptyset\}) \) is a topological space.

Any intersection of topologies on \(A \) is a topology; so, the set \(T(A) \) of all topologies of \(A \) is a complete lattice with respect to inclusion.

Example 2.1. If \(I \in I(A) \), then the set \(F(I) = \{I' \in I(A) : I \subseteq I'\} \) is a topology on \(A \).

Remark 2.2. If in particular \(A = [0, 1] \) is the MTL-algebra from Remark 1.2, then \(I(A) = \{[0, x] : x \in A\} \). For \(x = 0 \), \(F(\{0\}) = I(A) \); for \(x \in (0, 1) \), \(F([0, x]) = \{[0, y] : x \leq y, y \in A\} \).

Definition 2.2. ([15]) A non-empty set \(I \subseteq A \) will be called regular if for every \(x, y \in A \) such that \(e \land x = e \land y \) for every \(e \in I \cap B(A) \), then \(x = y \).

Example 2.2. If we denote \(R(A) = \{I \subseteq A : I \text{ is a regular subset of } A\} \), then \(I(A) \cap R(A) \) is a topology on \(A \).

Remark 2.3. Clearly, if \(A = [0, 1] \) is the MTL-algebra from Remark 1.2, since \(B(A) = \{0, 1\} = L_2 \) then only \(I = A \) is a regular subset of \(A \) \((I = [0, x] \text{ with } x \neq 1 \) are non regular because contain 0 and for example we have \(0 \land a = 0 \land b \) for every \(a, b \in A \) and \(a \neq b \). So, in this case \(F = I(A) \cap R(A) = \{A\} \).
Example 2.3. A nonempty set $I \subseteq A$ will be called dense (see [9]) if for $x \in A$ such that $e \wedge x = 0$ for every $e \in I \cap B(A)$, then $x = 0$. If we denote by $D(A)$ the set of all dense subsets of A, then $R(A) \subseteq D(A)$ and $F = I(A) \cap D(A)$ is a topology on A.

Remark 2.4. As above, for MTL-algebra $A = [0, 1]$ from Remark 1.2, $D(A) = \{A\}$ (because $I \in D(A)$ if $1 \in I$).

Definition 2.3. ([3]) A subset $S \subseteq A$ is called \wedge-closed if $1 \in S$ and $x, y \in S$ implies $x \wedge y \in S$.

Example 2.4. For any \wedge-closed subset S of A, the set $F_S = \{I \in I(A) : I \cap S \cap B(A) \neq \emptyset\}$ is a topology on A.

Remark 2.5. In the case of MTL-algebra $A = [0, 1]$ from Remark 1.2, $S \subseteq [0, 1]$ is a \wedge-closed subset if $1 \in S$. Since $B(A) = \{0, 1\} = L_2$ then for $S \subseteq A$ a \wedge-closed system, $F_S = \{I \in I(A) : I \cap S \cap \{0, 1\} \neq \emptyset\}$.

1. If S is a \wedge-closed system of A such that $0 \in S$ we have $I \cap S \cap B(A) \neq \emptyset$ for every $I \in I(A)$, so $F_S = I(A)$.

2. If $0 \notin S$ then $F_S = \{A\}$ (because, if $I \in I(A)$ and $1 \in I$ implies $I = A$).

3. F-multipliers and localization MTL-algebras

Let F be a topology on a MTL-algebra A and we consider the relation θ_F of A defined in the following way: $(x, y) \in \theta_F$ there exists $I \in F$ such that $e \wedge x = e \wedge y$ for any $e \in I \cap B(A)$.

Lemma 3.1. θ_F is a congruence on A.

We shall denote by a/θ_F the congruence class of an element $a \in A$ and by $p_F : A \rightarrow A/\theta_F$ the canonical morphism of MTL-algebras.

Proposition 3.1. For $a \in A$, $a/\theta_F \in B(A/\theta_F)$ iff there exists $I \in F$ such that $a \vee a^* \geq e$ for every $e \in I \cap B(A)$. So, if $a \in B(A)$, then $a/\theta_F \in B(A/\theta_F)$.

Proof. Using Theorem 1.2, for $a \in A$, we have $a/\theta_F \in B(A/\theta_F) \Leftrightarrow a/\theta_F \vee (a/\theta_F)^* = 1/\theta_F \Leftrightarrow (a \vee a^*)/\theta_F = 1/\theta_F \Leftrightarrow$ there exist $I \in F$ such that $(a \vee a^*) \wedge e = 1 \wedge e = e$, for every $e \in I \cap B(A) \Leftrightarrow a \vee a^* \geq e$, for every $e \in I \cap B(A)$. If $a \in B(A)$, then for every $I \in F_0 = 1 = a \vee a^* \geq e$, for every $e \in I \cap B(A)$, hence $a/\theta_F \in B(A/\theta_F)$.

Corollary 3.1. If $F = I(A) \cap R(A)$, then for $a \in A$, $a \in B(A)$ iff $a/\theta_F \in B(A/\theta_F)$.

Definition 1.1. Let F be a topology on A. A F-multiplier is a mapping $f : I \rightarrow A/\theta_F$ where $I \in F$ and for every $x \in I$ and $e \in B(A)$ the following axioms are fulfilled:

1. $f(e \circ x) = e/\theta_F \wedge f(x) = e/\theta_F \circ f(x)$;
2. $f(e) \leq x/\theta_F$;
3. $x/\theta_F \circ (x/\theta_F \rightarrow f(x)) = f(x)$.

Remark 3.1. If A is a BL-algebra, then the axiom (3.3) is a consequence of (a7) (because in this case $x/\theta_F \circ (x/\theta_F \rightarrow f(x)) = x/\theta_F \wedge f(x)$, for every $x \in I$).

By $dom(f) \in F$ we denote the domain of f; if $dom(f) = A$, we called f total.

To simplify language, we will use F-multiplier instead partial F-multiplier, using total to indicate that the domain of a certain F-multiplier is A.

LOCALIZATION OF MTL-ALGEBRAS

113
If $F = \{ \mathcal{A} \}$, then θ_F is the identity congruence of A so a F– multiplier is a total multiplier in sense of [15], Definition 3, which verify the conditions M_1, M_2 and M_3.

The maps $0, 1 : A \to A/\theta_F$ defined by $0(x) = 0/\theta_F$ and $1(x) = x/\theta_F$ for every $x \in A$ are F– multipliers in the sense of Definition 3.1.

Also, for $a \in B(A)$, $f_0 : A \to A/\theta_F$ defined by $f_0(a)(x) = a/\theta_F \land x/\theta_F$ for every $x \in A$, is a F– multiplier. If $\text{dom}(f_0) = A$, we denote f_0 by $f_0 \circ \theta_F$; clearly, $f_0 \circ \theta_F = 0$.

We shall denote by $M(I, A/\theta_F)$ the set of all the F– multipliers having the domain $I \in F$ and $M(A/\theta_F) = \bigcup_{I \in F} M(I, A/\theta_F)$. If $I_1, I_2 \in F$, $I_1 \subseteq I_2$ we have a canonical mapping $\varphi_{I_1, I_2} : M(I_2, A/\theta_F) \to M(I_1, A/\theta_F)$ defined by $\varphi_{I_1, I_2}(f) = f|_{I_1}$ for $f \in M(I_2, A/\theta_F)$. Let us consider the directed system of sets

$\{\{M(I, A/\theta_F)\}_{I \in F}, \{\varphi_{I_1, I_2}\}_{I_1, I_2 \in F, I_1 \subseteq I_2}\}$

and denote by A_F the inductive limit (in the category of sets) $A_F = \lim_{I \in F} M(I, A/\theta_F)$. For any F– multiplier $f : I \to A/\theta_F$ we shall denote by (\widehat{f}) the equivalence class of f in A_F.

Remark 3.2. If $f_i : I_i \to A/\theta_F$, $i = 1, 2$, are F– multipliers, then $(I_1, f_1) = (I_2, f_2)$ (in A_F) if there exists $I \in F$, $I \subseteq I_1 \cap I_2$ such that $f_{1|I} = f_{2|I}$.

Proposition 3.2. If $I_1, I_2 \in F$ and $f_i \in M(I, A/\theta_F)$, $i = 1, 2$, then (c_{19}) $f_1(x) \circ [x/\theta_F \to f_2(x)] = f_2(x) \circ [x/\theta_F \to f_1(x)]$, for every $x \in I_1 \cap I_2$.

Proof. For $x \in I_1 \cap I_2$ we have $f_1(x) \circ [x/\theta_F \to f_2(x)] = x/\theta_F \circ (x/\theta_F \to f_1(x)) \circ (x/\theta_F \to f_2(x)) = [x/\theta_F \circ (x/\theta_F \to f_2(x))] \circ (x/\theta_F \to f_1(x)) = f_2(x) \circ [x/\theta_F \to f_1(x)]$.

Let $f_i : I_i \to A/\theta_F$, (with $I_i \in F$, $i = 1, 2$), F– multpliers. Let us consider the mappings $f_1 \land f_2, f_1 \lor f_2, f_1 \circ f_2, f_1 \to f_2 : I_1 \cap I_2 \to A/\theta_F$ defined by

$(f_1 \land f_2)(x) = f_1(x) \oplus f_2(x), (f_1 \lor f_2)(x) = f_1(x) \circ f_2(x), (f_1 \circ f_2)(x) = f_1(x) \circ f_2(x), (f_1 \to f_2)(x) = x/\theta_F \circ [f_1(x) \to f_2(x)],$

for any $x \in I_1 \cap I_2$, and let

$(I_1, f_1) \land (I_2, f_2) = (I_1 \cap I_2, f_1 \oplus f_2), (I_1, f_1) \lor (I_2, f_2) = (I_1 \cap I_2, f_1 \circ f_2),

(I_1, f_1) \circ (I_2, f_2) = (I_1 \cap I_2, f_1 \circ f_2), (I_1, f_1) \to (I_2, f_2) = (I_1 \cap I_2, f_1 \to f_2).$

Clearly, the definitions of the operations \land, \lor, \circ and \to on A_F are correct.

Lemma 3.2. $f_1 \land f_2 \in M(I_1 \cap I_2, A/\theta_F)$.

Proof. It is suffic to verify only a_8 (for a_6 and a_7, see [2]).

For every $x \in I_1 \cap I_2$ we have $x/\theta_F \circ [x/\theta_F \to (f_1 \land f_2)(x)] = x/\theta_F \circ (f_1(x) \land f_2(x)) = x/\theta_F \circ [(x/\theta_F \to f_1(x)) \land (x/\theta_F \to f_2(x))] = x/\theta_F \circ (x/\theta_F \to f_1(x)) \land (x/\theta_F \to f_2(x)) = (f_1(x) \land f_2(x)) = (f_1 \land f_2)(x)$, that is, $f_1 \land f_2 \in M(I_1 \cap I_2, A/\theta_F)$.

Lemma 3.3. $f_1 \lor f_2 \in M(I_1 \cap I_2, A/\theta_F)$.

Proof. The axioms a_6 and a_7 are verified as in the case of BL– algebras (see [2]). To verify a_8, let $x \in I_1 \cap I_2$. Then $x/\theta_F \circ [x/\theta_F \to (f_1 \lor f_2)(x)] = x/\theta_F \circ (f_1(x) \lor f_2(x)) = x/\theta_F \circ [(x/\theta_F \to f_1(x)) \lor (x/\theta_F \to f_2(x))] = x/\theta_F \circ [(x/\theta_F \to f_1(x)) \lor (x/\theta_F \to f_2(x))] = f_1(x) \lor f_2(x) = (f_1 \lor f_2)(x)$, that is, $f_1 \lor f_2 \in M(I_1 \cap I_2, A/\theta_F)$.

\[\square \]
Lemma 3.4. \(f_1 \odot f_2 \in M(I_1 \cap I_2, A/\theta_F) \).

Proof. By using \(c_{10} \), \(a_6 \) and \(a_7 \) are verified as in the case of \(BL \)-algebras (see [2]). For \(a_8 \) let \(x \in I_1 \cap I_2 \) and denote \(f = f_1 \odot f_2 \).

To prove the equality \(x/\theta_F \odot (x/\theta_F \multimap f(x)) = f(x) \) it is sufficient (using \(c_1 \)) to prove that \(f(x) \leq x/\theta_F \odot (x/\theta_F \multimap f(x)) \). We have \(f(x) = f_1(x) \odot (x/\theta_F \multimap f_2(x)) = x/\theta_F \odot (x/\theta_F \multimap f_1(x)) \odot (x/\theta_F \multimap f_2(x)) \) and \(x/\theta_F \odot (x/\theta_F \multimap f(x)) = x/\theta_F \odot (x/\theta_F \multimap f_1(x)) \odot (x/\theta_F \multimap f_2(x)) \).

So, to prove that \(f(x) \leq x/\theta_F \odot (x/\theta_F \multimap f(x)) \) it is sufficient to prove that \(x/\theta_F \odot (x/\theta_F \multimap f_1(x)) \odot (x/\theta_F \multimap f_2(x)) \leq x/\theta_F \odot (x/\theta_F \multimap f_1(x)) \odot (x/\theta_F \multimap f_2(x)) \). That is, \(\alpha \leq x/\theta_F \multimap (x/\theta_F \odot \alpha) \) (with \(\alpha \odot x/\theta_F \multimap f_1(x) \odot (x/\theta_F \multimap f_2(x)) \)), which is clearly, since \(\alpha \leq x/\theta_F \multimap (x/\theta_F \odot \alpha) \) (\(\alpha \odot x/\theta_F \multimap (x/\theta_F \odot \alpha) = 1 \)), that \(f_1 \odot f_2 \in M(I_1 \cap I_2, A/\theta_F) \). \(\square \)

Lemma 3.5. \(f_1 \rightarrow f_2 \in M(I_1 \cap I_2, A/\theta_F) \).

Proof. By using \(c_{10} \), \(a_6 \) and \(a_7 \) are verified as in the case of \(BL \)-algebras (see [2]). For \(a_8 \), let \(x \in I_1 \cap I_2 \) and denote \(f = f_1 \rightarrow f_2 \); then \(f(x) = x/\theta_F \multimap f_1(x) \odot f_2(x) \).

We have \(f_1(x) \odot f_2(x) \leq x/\theta_F \multimap f_1(x) \odot f_2(x) \), hence \(x/\theta_F \multimap f_1(x) \odot f_2(x) \leq f_1(x) \odot f_2(x) \). That is, \(f_1 \odot f_2 \leq f_3 \). Conversely, if \(f_1 \odot f_2 \leq f_3 \), we have \(f_1(x) \odot f_2(x) \leq f_3(x) \), for every \(x \in I_1 \cap I_2 \). Obviously \(f_1 \odot f_2 \leq f_3 \) if \(f_1 \odot f_2 \leq f_3 \) for all \(x \in I_1 \cap I_2 \). Since \(f \in M(I_1 \cap I_2, A/\theta_F) \) and \(f_1 \odot f_2 \leq f_3 \), we have \(f_1 \odot f_2 \leq f_3 \) if \(f_1 \odot f_2 \leq f_3 \) for all \(x \in I_1 \cap I_2 \). Obviously, \(x/\theta_F \multimap f_1(x) \leq f_3(x) \). That is, \(f_1 \odot f_2 \leq f_3 \) if \(f_1 \odot f_2 \leq f_3 \) for all \(x \in I_1 \cap I_2 \). Since \(f_1 \odot f_2 \leq f_3 \) if \(f_1 \odot f_2 \leq f_3 \), we deduce that \(f_1 \odot f_2 \leq f_3 \). Since the prelinarity equation \(c_{10} \) is proved as in the case of \(BL \)-algebras (see [2]) we deduce that \((A, \multimap, 0, 1) = (\widehat{A}, \widehat{0}, \widehat{1}) \) is a \(MTL \)-algebra. \(\square \)

Proposition 3.3. \((A_F, \land, \lor, \neg, 0, 1) = (\widehat{A}, \widehat{0}, \widehat{1}) \) is an \(MTL \)-algebra.

Proof. We verify the axioms of \(MTL \)-algebras.

(a1). Obviously \((A_F, \land, \lor, \neg, 0, 1) = (\widehat{A}, \widehat{0}, \widehat{1}) \) is a bounded lattice.

(a2). As in the case of \(BL \)-algebras (see [2]), by using \(c_{19} \) and \(a_8 \).

(a3). \(f_i \in M(I_1, A/\theta_F) \) where \(I_1 \in \mathcal{F}, i = 1, 2, 3 \).

Since \(f_1 \leq f_2 \rightarrow f_3 \) for \(x \in I_1 \cap I_2 \cap I_3 \), we have \(f_1(x) \leq (f_2 \rightarrow f_3)(x) \iff f_1(x) \leq x/\theta_F \multimap f_2(x) \). So, by \(c_3 \), \(f_1(x) \multimap x/\theta_F \multimap f_2(x) \leq f_1(x) \multimap f_2(x) \). That is, \(f_1 \odot f_2 \leq f_3 \). Conversely, if \(f_1 \odot f_2 \leq f_3 \), we have \(f_1(x) \multimap f_2(x) \leq f_3(x) \), for every \(x \in I_1 \cap I_2 \cap I_3 \). Obviously, \(x/\theta_F \multimap f_1(x) \leq f_3(x) \iff x/\theta_F \multimap (f_2 \rightarrow f_3)(x) \iff f_1(x) \leq (f_2 \rightarrow f_3)(x) \). That is, \(f_1 \odot f_2 \leq f_3 \) if \(f_1 \odot f_2 \leq f_3 \) for all \(x \in I_1 \cap I_2 \cap I_3 \). Since \(f_1 \odot f_2 \leq f_3 \), we deduce that \(f_1 \odot f_2 \leq f_3 \). Since the prelinarity equation \(c_{10} \) is proved as in the case of \(BL \)-algebras (see [2]) we deduce that \((A, \land, \lor, \neg, 0, 1) = (\widehat{A}, \widehat{0}, \widehat{1}) \) is a \(MTL \)-algebra. \(\square \)

Remark 3.3. \((M(A/\theta_F), \land, \lor, \neg, 0, 1) \) is a \(MTL \)-algebra.

Definition 3.2. The \(MTL \)-algebra \(A_F \) will be called the localization \(MTL \)-algebra of \(A \) with respect to the topology \(\mathcal{F} \).

Definition 3.3. ([5], [7]) A \(MTL \)-algebra \(A \) is called

(i) An \(IMTL \)-algebra (involutive \(MTL \)-algebra) if it satisfies the equation

\(x^{**} = x \);

(ii) a \(SMTL \)-algebra if it satisfies the equation

\((S) \ (x \land x^*) = 0; \)

(iii) a \(WNM \)-algebra (weak nilpotent minimum) if it satisfies the equation

\((W) \ (x \land y)^* \lor [(x \land y) \rightarrow (x \land y)] = 1; \)
(iv) a ΠSMTL-algebra if it is a SMTL-algebra satisfying the equation

$$(\Pi) \quad [z^* \circ ((x \circ z) \rightarrow (y \circ z))] \rightarrow (x \rightarrow y) = 1.$$
If f is a Boolean algebra. For example, if f is an algebra. Also, hence f is not a principal multiplier (because $f(1) = 1$). But f is not a Boolean algebra. Also, hence f is not a principal multiplier (because $f(1) = 1$).

Remark 3.4. If MTL-algebra $(A, \land, \lor, \to, 0, 1)$ is a BL-algebra (resp. an IMTL-algebra, a SMTL-algebra, a WNM-algebra, a ISMTL-algebra), then MTL-algebra $(M(A/\theta_f), \land, \lor, \to, 0, 1)$ is a BL-algebra (resp. an IMTL-algebra, a SMTL-algebra, a WNM-algebra, a ISMTL-algebra).

Remark 3.5. If MTL-algebra $(A, \land, \lor, \to, 0, 1)$ is a BL-algebra in [2] will be called $(A, \land, \lor, \to, 0, 1)$ the localization BL-algebra of A with respect to the topology F.

Lemma 3.6. Let the map $v_F : B(A) \to A_F$ defined by $v_F(a) = (A, \overline{a})$ for every $a \in B(A)$. Then:

(i) v_F is a morphism of MTL-algebras;
(ii) For $a \in B(A)$, $(A, \overline{a}) \in B(A_F)$;
(iii) $v_F(B(A)) \in B(A_F)$.

Proof. (i), (iii). As in the case of BL-algebras (see [2]), (ii). For $a \in B(A)$ we have $a \lor a^* = 1$, hence $(a \land x) \lor (x \lor (a \land x))^* \cong (a \land x) \lor (x \lor (a \land x))^* \cong (a \land x) \lor (x \lor (a \land x))^* \cong (a \land x) \lor (x \lor (a \land x))^*$.

4. Applications

In the following we describe the localization MTL-algebra A_F in some special instances.

1. If $I \in I(A)$, and F is the topology $F(I) = \{I' \in I(A) : I \subseteq I'\}$ (see Example 2.1), then A_F is isomorphic with $M(I, A/\theta_f)$ and $v_F : B(A) \to A_F$ is defined by $v_F(a) = (A, \overline{a})$ for every $a \in B(A)$.

If I is a regular subset of A, then θ_f is the identity, hence A_F is isomorphic with $M(I, A)$ (see [15], Definition 3, conditions M_1, M_2 and M_3), which in generally is not a Boolean algebra. For example, if $I = A = [0, 1]$ is the Lukasiewicz structure (see [18]) then A_F is not a Boolean algebra (see [2]).

Remark 4.1. If consider MTL-algebra $A = [0, 1]$ from Remark 1.2, then

1. If $I = \{0\}$, then $F(\{0\}) = I(A)$ (see Remark 2.2), so $A_F \cong M(I, A/\theta_f) = M(\{0\}, A/\theta_f) = 0$.
2. If $I = A$, then $F(A) = \{A\}$ and θ_f is the identity, hence A_F is isomorphic with $M(I, A/\theta_f)$. Since $B(A) = L_2 = \{0, 1\}$, then $f \in M(A, A)$ iff $f(x) \leq x$ for every $x \in A$. So, $f(0) = 0$. For $x \geq 1$ if we denote $f(x) = y$, then $y \leq x$ and we deduce that $x \lor (x \rightarrow f(x)) = x \lor (x \rightarrow y) = x \lor \max(\frac{1}{2} - x, y) = x \lor y = x \lor y = f(x)$, so for $x \geq 1$ if $f \in M(A, A)$ and $f(x) \leq y$. If consider $f \in A_F = M(A, A)$ such that $f(\frac{1}{2}) = \frac{1}{2}$, then $(f \lor f')(\frac{1}{2}) = f(\frac{1}{2}) \lor f'(\frac{1}{2}) = \frac{1}{2} \lor (\frac{1}{2} \lor \frac{1}{2}) = \frac{1}{2} \lor \frac{1}{2} = \frac{1}{2}$. Hence f is not a Boolean element in A_F (hence in this case A_F is not a Boolean algebra).
3. If $I = [0, x]$ with $x \neq 0, 1$, $\mathcal{F}(I) = \{[0, a] : x \leq a, a \in (0, 1]\}$. Since $0 \in [0, a], a \neq 1$ and $0 \wedge x = 0 \wedge y$, then $(x, y) \in \theta_\mathcal{F}$ for every $x, y \in A$, hence in this case $A_\mathcal{F} \approx M(I, 0) = 0$.

2. **Main remark.** To obtain the maximal MTL-algebra of quotients $Q(A)$ as a localization relative to a topology \mathcal{F} we have to develop another theory of multipliers (meaning we add new axioms for \mathcal{F}-multipliers).

Definition 4.1. Let \mathcal{F} be a topology on A. A strong - \mathcal{F}- multiplier is a mapping $f : I \to A/\theta_\mathcal{F}$ (where $I \in \mathcal{F}$) which verifies the axioms a_6, a_7 and a_8 (see Definition 3.1) and

\[(a_9) \quad f(e) = B(A/\theta_\mathcal{F}); \]

\[(a_{10}) \quad (x/\theta_\mathcal{F}) \wedge f(e) = (e/\theta_\mathcal{F}) \wedge f(x), \text{ for every } e \in I \cap B(A) \text{ and } x \in I.\]

Remark 4.2. If $(\wedge, \vee, \circ, \to, 0, 1)$ is a MTL-algebra, the maps $0, 1 : A \to A/\theta_\mathcal{F}$ defined by $0(x) = 0/\theta_\mathcal{F}$ and $1(x) = x/\theta_\mathcal{F}$ for every $x \in A$ are strong - \mathcal{F}- multipliers. We recall that if $f_1 : I_1 \to A/\theta_\mathcal{F}$, $f_2 : I_2 \to A/\theta_\mathcal{F}$ defined by $f_1(x) = f_1(x), f_2(x) = f_2(x)$, then $f_1 \wedge f_2$ is a strong - \mathcal{F}- multiplier if $f_1 \wedge f_2 : I_1 \cap I_2 \to A/\theta_\mathcal{F}$ defined by $f_1 \wedge f_2(x) = f_1(x) \wedge f_2(x) \in A/\theta_\mathcal{F}$ and $(f_1 \wedge f_2)(x) = (f_1(x) \wedge f_2(x))$. For any $x \in I_1 \cap I_2$ are \mathcal{F}-multipliers.

If f_1, f_2 are strong - \mathcal{F}- multipliers then the multipliers $f_1 \wedge f_2, f_1 \vee f_2, f_1 \circ f_2, f_1 \to f_2$ are also strong - \mathcal{F}- multipliers (the proof is as in the case of BL-algebras, see [2]).

Remark 4.3. Analogous as in the case of \mathcal{F}- multipliers if we work with strong-\mathcal{F}- multipliers we obtain a MTL-subalgebra of $A_\mathcal{F}$ denoted by $s - A_\mathcal{F}$ which will be called the strong-localization MTL-algebra of A with respect to the topology \mathcal{F}.

So, if $\mathcal{F} = I(A) \cap R(A)$ is the topology of regular ideals, then $\theta_\mathcal{F}$ is the identity congruence of A and we obtain the definition for multipliers on A, so

$$s - A_\mathcal{F} = \lim_{I \in \mathcal{F}} (s - M(I, A)),$$

where $s - M(I, A)$ is the set of strong multipliers of A having the domain I (see [15], Definition 3, conditions $M_1 - M_5$).

In this situation we obtain:

Proposition 4.1. In the case $\mathcal{F} = I(A) \cap R(A)$, $A_\mathcal{F}$ is exactly the maximal MTL-algebra $Q(A)$ of quotients of A (introduced in [15]) which is a Boolean algebra (for the proof, see [14] Proposition 0.12, p.194, for the case of BL-algebras). If MTL-algebra A is a BL-algebra, $A_\mathcal{F}$ is exactly the maximal BL-algebra $Q(A)$ of quotients of A.

Remark 4.4. If consider in particular MTL-algebra $A = [0, 1]$ from Remark 1.2, then $\mathcal{F} = \{\}$, hence $A_\mathcal{F} \approx s - M(A, A)$. Consider $f \in s - M(A, A)$. Clearly, $f(0) = 0$ and $f(1) \in \{0, 1\}$. If $f(1) = 0$, then for every $x \in A$, $x \wedge f(1) = 0 \wedge f(1) = f(x) \Leftrightarrow f(x) = 0 \Rightarrow f = 0$. If $f(1) = 1$ then from a_{10}, $f(x) = x \in 1(x)$, hence $f = 1$. So, in this case $s - A_\mathcal{F} \approx s - M(A, A) = L_2$.

3. Denoting by \mathcal{D} the topology of dense ordered ideals of A, then (since $R(A) \subseteq D(A)$) there exists a morphism of MTL-algebras $\alpha : Q(A) \to s - A_\mathcal{D}$ such that the diagram

$$
\begin{array}{ccc}
B(A) & \xrightarrow{\pi_\mathcal{D}} & Q(A) \\
\downarrow v_\mathcal{D} \quad & & \uparrow \alpha \\
s - A_\mathcal{D}
\end{array}
$$

is commutative (i.e. $\alpha \circ \tau^{-1} = \nu_{D}$). Indeed, if $[f, I] \in Q(A)$ (with $I \in I(A) \cap R(A)$ and $f : I \rightarrow A$ a strong multiplier in the sense of [15]) we denote by f_{D} the strong - D–multiplier $f_{D} : I \rightarrow A/\theta_{D}$ defined by $f_{D}(x) = f(x)/\theta_{D}$ for every $x \in I$. Thus, α is defined by $\alpha([f, I]) = [f_{D}, I]$.

4. Let $S \subseteq A$ a \wedge–closed system of MTL–algebra A. Consider the following congruence on $A : (x, y) \in \theta_{S} \Leftrightarrow$ there exists $e \in S \cap B(A)$ such that $x \wedge e = y \wedge e$ (see [3]). $A[S] = A/\theta_{S}$ is called in [3] the MTL-algebra of fractions of A relative to the \wedge–closed system S.

As in the case of BL–algebras we obtain the following result:

Proposition 4.2. If F_{S} is the topology associated with a \wedge–closed system $S \subseteq A$, then the MTL-algebra $s - A_{F_{S}}$ is isomorphic with $B(A[S])$.

Remark 4.5. In the proof of Proposition 4.2 the axiom α_{10} is not necessarily.

Remark 4.6. If A is MTL–algebra $A = [0, 1]$, from Remark 1.2, since $B(A) = \{0, 1\} = L_{2}$ then for $S \subseteq A$ a \wedge–closed system, $F_{S} = \{I \in I(A) : I \cap S \cap \{0, 1\} \neq \emptyset\}$ and $s - A_{F_{S}}$ is isomorphic with $B(A[S])$:

1. If S is a \wedge–closed systems of A such that $0 \in S$, then $F_{S} = I(A)$ (see Remark 2.5) and $s - A_{F_{S}} = s - A_{I(A)} \approx B(A[S]) = B(0) = \emptyset$.
2. If $0 \notin S$, $F_{S} = A$ (see Remark 2.5) and $s - A_{F_{S}} = s - A_{A} \approx B(A[S]) = B(A) = \{0, 1\} = L_{2}$.

Concluding remarks

Since in particular a MTL–algebra is a BL–algebra we obtain a part of the results about localization of BL–algebras (see [2]), so we deduce that the main results of this paper are generalization of the analogous result relative to BL–algebras from [2].

We use in the construction of localization MTL–algebra A_{F} the Boolean center $B(A)$ of MTL–algebra A; as a consequence of this fact, $s - A_{F}$ is a Boolean algebra in some particular cases.

A very interesting subject for future research would be a treatment of the localization for MTL algabras or residuated lattices without use the Boolean center.

References

(Antoneta Jeflea, Justin Paralescu) Faculty of Bookkeeping Financial Management, University Spiru Haret, 32-34, Unirii st., Constantza, Romania, Department of Mathematics, University of Craiova, 13 A.I. Cuza Street, Craiova, 200585, Romania

E-mail address: antojeflea@yahoo.com, paralescu_iustin@yahoo.com