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1. Introduction

Let (H,{-,-)) be an inner product space over the real or complex numbers field K.
The following inequality is well known in literature as the Schwarz inequality

[zl Tyl = [(z, y)| for any 2,y € H. (1)

The equality case holds in (1) if and only if there exists a constant A € K such that
T = A\y.
In 1985 the author [4] (see also [19]) established the following refinement of (1):

]l lyll = (2, y) = (2, €) (e, y)| + [(z, €) (e, )| = [z, y)]| (2)

for any x,y,e € H with |le|| = 1.
Using the triangle inequality for modulus we have

[{z,y) = (2,€) (e, 9)| = [(z, ) (e, 9)] = [(z,v)]
and by (2) we get

[(z,y) — (z,€) (e, )] + [{x, €) (e, )]
2[{z, e) (e, )] = [{z, )],

which implies the Buzano inequality [2]

)l lyll - =
2

%[chll 1yl + [z, 9] = [(z, ) (e, 9)] 3)

that holds for any x,y,e € H with |le| = 1.
In [5], the author has proved the following Griiss’ type inequality in real or complex
inner product spaces.
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Theorem 1.1. Let (H,{(-,-)) be an inner product space over K and e € H, |le|]| = 1.
If 0,v,®,T are real or complex numbers and x,y are vectors in H such that the
conditions

Re(®Pe — z,2 — pe) > 0 and Re(Te —y,y —ve) >0 (4)
hold, then we have the inequality
1
(@, 9) = (z,e) {es ) < 7 1@ =l T =] (5)

The constant % 18 best possible in the sense that it cannot be replaced by a smaller
quantity.

For other Schwarz, Buzano and Griiss related inequalities in inner product spaces,
see [1]-[3], [4]-[13], [17]-[20], [22]-[29], and the monographs [14], [15] and [16].
2. Main Results

The following results hold:

Theorem 2.1. Let (H,{(-,-)) be an inner product space over the real or complex
numbers field K. If x,y,e, f € H with |le|| = || f]| = 1, then

Izl lyll = [(z, e) (f,9)] = (@, y) — (z.€) le,y) — (2, [) (f, ) + (z.€) {f.9) (e, /)] . (6)
Proof. Using Schwarz inequality we have
lz — (@, e) el lly = (w, £) FII* > [z = (e) e,y = (y, ) I (7

for any x,y,e, f € H with |le| = ||f|| = 1.
Since

lz = (@ e)ell® = 21> = (= e}, lly = (. £) FIIP = llyl? = [y, )
and
<Z‘— <x,e>e,y— <yaf>f> = <$7y> - <$7€> <e’y> - <$,f> <f’y>+ <$,6> <f7y> <€7f>7
then by (7) we get
(1 = 1z ) (Iwl> = 1w )P (8)

> |(@,y) — (z.¢) (e.y) = (@, f) {foy) + (z,€) (f.9) (e, )]

for any z,y,e, f € H with |le|| = ||f|| = 1.
Using the elementary inequality

(ac —bd)* > (a®> = 0%) (¢ — d?)

that holds for any real numbers a,b, c,d € R, we have

(el = Kz, ) I, HD* > (2l = 1w ) (el = 16w, D) (9)

for any x,y,e, f € H with |le| = ||f|| = 1.
By Schwarz inequality for the pairs (z,¢e) and (y, f) we have
Izl = [z, e)| and |lyll = [(y, f)I,

which shows that
2yl = [z, e)| [y, £)| >0,
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for any z,y, e, f € H with |e|| = ||f|| = 1.
Making use of (8) and (9) we get

(Ll llyll = I, )l I{ys /) (10)
> (2, y) — (@, e) {e,y) = (2, f) (fr9) + (@, e) (f,9) (e, )]
and by taking the square root in (10) we get the desired result. O

Corollary 2.2. With the assumptions of Theorem 2.1 and if e L f, i.e. {e, f) =0,
then we have the inequality

lzlHlyll = (2, e} {(f,9)| = K@,y) — (. e) (e, y) — (@, f) (f,m)]- (11)
Remark 2.1. From the inequality (11) we have
[yl = [z, y) — (z,e) (e, y) — (z, ) ()| + [z, e) (f,9)] (12)

> [(z,y) — (z,€) {e,y) — (z, ) (f, ) £ (z. €) {f, )]
By the triangle inequality we also have
‘<$,y> - <{E,6> <67y> - <£L',f> <f7y>| > ‘<{E,6> <67y> + <‘T7f> <f7y>| - |<£L’,y>|
and by the first inequality in (14) we get
2yl = [(z, e) (e, v) + (=, F) (f, )| = [z, )] + (2, e) (£, )]

which implies

[zl Yl + [z, v)] [(z, e} e, y) + (2, ) (f,0)| + [z, €) (£, )] (13)
[(z, ) {e,y) + (., [) (f,9) + (z,€) (£, 9)]

for any z,y,e, f € H with |le]| = ||f||=1and e L f.

2
>

Corollary 2.3. With the assumptions of Theorem 2.1 we have
Izl lyll = [{z, e} (f, ) (1= Ke, /D) = Ko, y) = (@) (e, y) = (., f) (fy)] - (14)

and

Izl lyll + Kz, y) — (@, e) (e, y) — (. f) {(fs )] = Kz, e) (f, ) (e, /)l +1). (15)
Indeed, by the triangle inequality we have

|<$,y> - <.§U,€> <€,y> - <$, f> <f’ y> + <$,6> <f7y> <67f>|
> [z, y) — (2,e) {e.y) — (2, ) (f;9)| = [z, €) {f, ) (e, )]
and by (6) we get (14).
By the triangle inequality we also have
[(z,y) = (x,e) (e, y) — (. ) (fry) + (x,€) (f,y) (e, )]
= [z, e) (f,y) (e, /)| = [z, y) — (2, €) (e, ) — (&, [) (£, 9)]
and by (6) we get (15).
Remark 2.2. With the assumptions of Theorem 2.1 and if |{e, f)| = 1, then we have
Il lyll = [z, y) = (2, ) (e, y) = (., ) {f,9)] (16)

and

% WzlHyll + [z, y) =z, e) (e, y) = (=, F) (fr0)l] = [z, e) {f,9)] - (17)
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If we take f = e in (16) and (17), then we get the inequalities
lz[Hlyll = [(z,y) — 2 (z,€) (e, y)]| (18)

and
% vl + Kz, y) — 2 (@, ) (e, n)]] = [z, ) (e, )] (19)

for any x,y,e € H with |le|]| = 1.
Using the triangle inequality we have

[(z,y) = 2(z,€) (e, )| = 2[(x, €) (e, )| = [(2, )]
and by (18) we get
Izl = [(z,y) — 2(z, ) (e, y)| = 2{z, €) (e, )| — [(z,y)] - (20)
The inequality between the first and last term in (20) is equivalent to Buzano’s in-
equality (3).
The following lemma holds, see [6]:

Lemma 2.4. Let a,z, A be vectors in the inner product space (H, (-,-)) over K with
a# A. Then

Re(A—z,x—a) >0 (21)
if and only if

A 1
Hx” HS"A“" (22)
2 2
Proof. Define

_a+A 2

2

1
I :=Re(A -z, —a) and Iy := 1 1A —a|® - Hx

A simple calculation shows that
I = I, = Re[(z,a) + (4,z)] — Re (4, a) — ||z|*
and thus, obviously, I; > 0 iff Is > 0 showing the required equivalence. O
The following corollary is obvious:

Corollary 2.5. Let z,e € H with |le]| =1 and §, A € K with 6 # A. Then

Re (Ae — z,2 — de) > 0 (23)
iff
I+ A 1
—— e < = |A-4]. 24
ot s .

2
%|A—a\,where a,z,A € C. If H=R, and A > a then a < z < A if and only if

|z — A < 5 (A-a).

Remark 2.3. If H = C, then Re[(A — ) (Z —a)] > 0 if and only if |z — “+A| <

The following lemma is of interest [6].

Lemma 2.6. Let x,e € H with |e|]| = 1. Then one has the following representation

2 2 . 2
— — — > 0.
11" = [(z, e)|” = inf [lz = Ae]” 2 0 (25)
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Proof. Observe, for any A € K, that
(2= e, = (@) e) = lall* = (@, &)* = A[{e,) = {e,) ]
= [lz|* = (. e)*.
Using Schwarz’s inequality, we have
[l21? = 12, &))" = Iz~ de.2— (@€} ) < e = Aell* 2 — () e
= o = Xel® |]* = {z,e)*| ,

giving the bound
lz]* = {2, e)* < flz = Ael®,  A€K. (26)
Taking the infimum in (26) over A € K, we deduce

2 2 _ . 2
- < inf ||z — Ae||”.
l2[” = [z, e)|” < inf [lz = Ae]
Since, for Ag = (z,¢€), we get ||z — Xoe|® = ||lz||* — |(z,e)|*, then the representation
(25) is proved. O
The following result also holds:

Theorem 2.7. Let (H,(-,-)) be an inner product space over K and e, f € H,|le|| =
IfIl = 1. If o, 7, ®,T are real or complex numbers and x,y are vectors in H such that
the conditions

Re(®e —z,7 —pe) 20, Re(T'f —y,y —7f) 20 (27)
hold, or, equivalently, the following assumptions
o+ @ 1 Y4 T 1
- e <512 =l |ly———S—f|[<5 =] (28)

are valid, then one has the inequality

(z,y) = (,e) (e, y) — (&, ) (fr9) + (2, €) {f,9) e, )] < i (@ — @[T =~].  (29)

Proof. Using the inequality (8) and Lemma 2.6 we have

|<xay> - <LE,6> <67y> - <1'7f> <f7y> + <I76> <f7y> <€7f>‘2 (30)
2 2 2 2 . 2. 2
< - —_— = _— J—
< (el = 1@.&)) (Il = . ) = inf lle = Aell® i [ly = |
2 2
e+ v+ T 1 21 2
<lw— 2= SR ]| T S |
< [lo- £52e e IS L LT
which is equivalent to the desired inequality (29). U

Corollary 2.8. With the assumptions of Theorem 2.7 and if e L f, then we have the
simpler inequality

[(z,y) — (z,e) {e,y) — (=, F) {f,9)] < i | — ][I =] (31)

Remark 2.4. If we take f = e in Theorem 2.7, then we get the result from Theorem
1.1.
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3. Applications

Consider the Hilbert space C™ endowed with the inner product (-, -) p" C'xC"—-C
defined by

n
<X7 y>p = ijmjij
j=1

where p = (p1,...,pn) is a probability distribution, i.e. p; > 0, j € {1,...,n} with
> j—1pj =1and
X = (‘Tla -.-,In) y Y = (y17 ayn) eC".
Assume that e = (eq, ..., e,) , f =(f1, ..., fn) € C" with

2 2
D pilel’ =D pilfilF =1 (32)
j=1 j=1

Then for any x = (21, ...,%,), ¥ = (Y1, ---,Yn) € C™ we have the inequality
1/2 1/2

n n n n
2 2 — _
> )l > pilujl — 1> pjwie > pifiv; (33)
j=1 j=1 j=1 j=1
n n n
> ijxj?j - ijxjéj ijej?j
j=1 j=1 j=1

=D piily Do pifidy + Y piwies > pifiv; D _pieif|-
= =1 =1 i=1 =1
Moreover, if e = (e1, ...,epn) , £ =(f1,..., fn) € C™ satisfy the additional condition
ijej?j =0, (34)

then from (33) we get
1/2 1/2

n n n n
2 2 — —
> pjlal > vyl — > vz > pily; (35)
j=1 j=1 j=1 j=1
n n n n n
2 ijxj?j - ijxjéj ijej?j - ijxjfj ijfjgj :
j=1 j=1 j=1 j=1 j=1

If we denote by C(0, 1) the unit circle of radius 1 in C, namely C(0,1) = {z € C||z| = 1},
then for e = (e1, ..., e,) ., £ =(f1,..., fn) € C" withe;, f; € C(0,1) for any j € {1,...,n}
we have that the condition (32) holds true and therefore the inequality (33) is valid.

If we consider the nonnegative weights w; > 0,5 € {1,...,n} with W,, = >"_ wy >
0 and if we assume that

1 — N 1 <« 5
w2 wilesl” = 5 D wilfiF =1 (36)
”j:1 n j=1
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then by (33) we get

1/2 1/2

1 « 9 1 « 9 1 & I _
szj |25 szj |y - szﬁjejﬁzwjijj (37)
=1 =1 ni=1 ni—1
1
2 sz]xjy] Zw]x]ej ijejy]
1 I _ 1 — I - I —
g 2w Fg D il g w2 wifilig X wieks|.

Let f(2) = Yo anz" be a power series with nonnegative coefficients and conver-
gent on the open disk D (0, R) with R > 0 or R = occ.

The most important power series with nonnegative coefficients that can be used to
illustrate the above results are:

o0 oo

exp (z) = Z %z", Z , 2€ D(0,1), (38)

=1
= 2" z2€ D(0,1), coshz = ——2%" zeC,
Z 2 G
. - 1 2n+1
Sll’th:z%mZ s z e C.

Other important examples of functions as power series representations with nonneg-
ative coeflicients are:

1, (1+= e
-1 = " D (0,1 39
s (1) S gy se DO, (39)
o~ L(n+3)
-1 2 2n+1
sin (z):g —— 2 , z€D(0,1),
|
—Vm(2n+1)nl
— 1
tanh™' (2) = E 5 122"*1, z€ D(0,1),
n—
n=1

2F1 (mﬁ,*y,z) :Zr(n+a)1—\(égl;—(i)+f(}/)) n7a7ﬁ7’y>07 ZED(O71)a

where I' is Gamma function.

Proposition 3.1. Let f(2) = Y., anz" be a power series with nonnegative coeffi-
cients and convergent on the open disk D (0, R) with R >0 or R=o00. If0 < p < R,



274 S.S. DRAGOMIR

w,v € C(0,1) and z,y € C with p|z|>,p |y|2 < R then we have the inequality

o\ 1/2 o\ 1/2
£ (plaf’) fell)\ ’f(m’u) f(pvy)‘
f(p) f(p) f®) [
< ‘f (pry) _ [ (pow) f (puy) _ f(pav) f (poy) | [ (p20) f (pvy) f (puv)
- f)  F) f)  f(p) f) f) F)
Proof. If u,v € C (0,1) then for any n > 0 we have u™,v™ € C (0,1). Observe that for

any m > 1 we have that

Snganp” [P Y anp™ 0P Y anp”

Do anD" Do anD" Dm0 @np"
Using the inequality (37) we have

1/2 m T T P
<zz“:oanpn|x|2"> (zL o @np" |y“> ’zn o anp” (20)" 0 anp™ (v7)"

. (40)

Z:In:() anpn Z;n:() anp n 0 a’np Zn:O Clnp
(41)
’ Zn 0¢ anp” (27)" _ Z::O anp” (2w)" Zgzo anp” (ug)"
> n—p nP" Do anD" Dm0 @nD"
n <_ D omep @np” (0)" n D omeo anp” (x0)" 3500 anp” (uv)n) Do anp" (v7)" ’
E?:() anp” Z?:() anp™ Z?:() anp” Z:?:o anp™
Since all the series whose partial sums are involved in inequality (41) are convergent,
then by letting m — oo in (41) we get the desired result (40). O

Remark 3.1. The inequality (40) can provide some particular inequalities of interest.
For instance, if we take f (z) = exp (z), z € C, then we get

exp 5

p <|x—|—|y| — 1)] — |exp [p (zT + vy — 2)]| (42)
> Jexp[p (27 — D] = exp[p (a7 + uf — 2)] — exp [p (a7 + v — 2)
+exp [p (2T + vy + uv — 3)]|

for any p > 0,u,v € C(0,1) and =,y € C.
If we take u = v = 1, then from (42) we get

exp [p (w - 1)] ~lewp(e+7 -2 (43)

> lexp [p (27 — 1)] —exp[p (= + 7 — 2)]|

for any p > 0 and z,y € C.
Moreover, if we take in (43) x =7 = z € C, then we get

exp [p (|z\2 — 1)} —lexp[2p(z —1)]| > |exp [p (22 — 1)] —exp[2p(z — 1)” (44)

for any p > 0 and z € C.



SOME INEQUALITIES IN INNER PRODUCT SPACES 275

Consider L? [a,b] the Hilbert space of all complex valued functions f with
f | (t)|]? dt < co. The inner product is given by

= [ roata
Assume that h, k € L? [a,b] with

/|h )2 dt = /|k )2 dt = 1. (45)

For instance, if h (t) = mp( ),k (t) = \/ﬁgp( ) with p(¢),¢(t) € C(0,1) for

almost any t € [a,b], then h,k € L?[a,b] and the condition (45) is satisfied.

Proposition 3.2. Assume that h,k € L [a,b] with the property (45). Then for any
f,g € L?[a,b] we have the inequality
/ k(t

(ﬁuuwmyﬂ<fguﬂw>
T @t - /f /h
—/a f(t)mdt/a k(t)mdt—k/a f(t)mdt/a k(t)g(t)dt/abh(t)k(t)dt .

The proof follows by Theorem 2.1 for the inner product (-, ), .

(46)

Remark 3.2. If p(t),¢(t) € C(0,1) for almost any ¢ € [a,b], then we have the
following inequalities for integral means

<¢¥/ﬂﬂmwﬁ2( /Ng|dQ2 (47)
|5 [ 10w
—a/f tii/f ti/

/ ft dt— cp (t) g (t)dt

b
/f w——/ gty [ (o) p0dr
for any f,g € L? [a,

a, 0]
If we take p (t) = 1, ¢ (t) = sgn (t — “E2) , ¢ € [a,b], then p(t), ¢ (t) € C(0,1) for
almost any ¢ € [a, b] and since

/abp@w:/absgn(t_“;b>dt:o,

so (t) g (t)dt

b—a

)
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then we get from (47)

for

1/2 1/2

bia/ablf(t)lzdt b_la/ablg(t)lzdt (48)
bia/abf(t)dtb_lafabsgnGa;rb>g(t)dt
> _a/f dt——/f dt—/ﬁdt

a+b 1 b a+b\——=
—m asgn(t— 5 )f(t)dtb_a/a sgn(t— 5 )g(t)dt

any f,g € L?[a,b].

On making use of Theorem 2.7 one can state similar discrete and integral inequal-

ities. However the details are not presented here.
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