
Algorithms

Rogério Brito
rbrito@ime.usp.br∗

16 March 2005

Contents
1 Introduction 2

2 The algorithmic Environment 2
2.1 The Simple Statement . 2
2.2 The if-then-else Construct . 3
2.3 The for Loop . 3
2.4 The while Loop . 4
2.5 The repeat-until Loop . 4
2.6 The Infinite Loop . 5
2.7 The Precondition . 5
2.8 The Postcondition . 6
2.9 Returning Values . 6
2.10 Printing Messages . 6
2.11 Comments . 7
2.12 An Example . 7
2.13 Options . 8
2.14 Customization . 8

3 The algorithm Environment 9
3.1 General . 9
3.2 Options . 11
3.3 Customization . 11

List of Algorithms
1 Calculate y = xn . 10

∗Sincere thanks go to the original maintainer of this package, Peter Williams, and for being
kind enough to allow me to continue with his quite useful work.

1

1 Introduction
This package provides two environments, algorithmic and algorithm, which
are designed to be used together but may be used separately. The algorithmic
environment provides an environment for describing algorithms and the algorithm
environment provides a “float” wrapper for algorithms (implemented using algorithmic
or some other method at the author’s option). The reason that two environ-
ments are provided is to allow the author maximum flexibility.

This work may be distributed and/or modified under the conditions of the
GNU Lesser General Public License as published by the Free Software Founda-
tion (see the file COPYING included in this package). This package (currently)
consists of three files: algorithm.sty, algorithmic.sty and algorithms.tex
(the source of this document).

2 The algorithmic Environment
Within an algorithmic a number of commands for typesetting popular algo-
rithmic constructs are available. In general, the commands provided can be
arbitrarily nested to describe quite complex algorithms. An optional argument
to the \begin{algorithmic} statement can be used to turn on line numbering
by giving a positive integer indicating the required frequency of line number-
ing. For example, \begin{algorithmic}[5] would cause every fifth line to be
numbered.

2.1 The Simple Statement
The simple statement takes the form

\STATE <text>

and is used for simple statements, e.g.

\begin{algorithmic}
\STATE $S \leftarrow 0$
\end{algorithmic}

would produce
S ← 0

and with line numbering selected for every line using

\begin{algorithmic}[1]
\STATE $S \leftarrow 0$
\end{algorithmic}

would produce
1: S ← 0

2

For users of earlier versions of algorithmic this construct is a cause of an
incompatibility. In the earlier version, instead of starting simple statements
with the \STATE command, simple statements were entered as free text and
terminated with \\ command. Unfortunately, this simpler method failed to
survive the modifications necessary for statement numbering. However, the \\
command can still be used to force a line break within a simple statement.

2.2 The if-then-else Construct
The if-then-else construct takes the forms.

\IF{<condition>} <text> \ENDIF
\IF{<condition>} <text1> \ELSE <text2> \ENDIF
\IF{<condition1>} <text1> \ELSIF{<condition2>} <text2> \ELSE <text3> \ENDIF

In the third of these forms there is no limit placed on the number of \ELSIF{<C>}
that may be used. For example,

\begin{algorithmic}
\IF{some condition is true}
\STATE do some processing
\ELSIF{some other condition is true}
\STATE do some different processing
\ELSIF{some even more bizarre condition is met}
\STATE do something else
\ELSE
\STATE do the default actions
\ENDIF
\end{algorithmic}

would produce
if some condition is true then

do some processing
else if some other condition is true then

do some different processing
else if some even more bizarre condition is met then

do something else
else

do the default actions
end if

with appropriate indentations.

2.3 The for Loop
The for loop takes the forms.

\FOR{<condition>} <text> \ENDFOR
\FORALL{<condition>} <text> \ENDFOR

3

For example,

\begin{algorithmic}
\FOR{$i=0$ to 10}
\STATE carry out some processing
\ENDFOR
\end{algorithmic}

produces
for i = 0 to 10 do

carry out some processing
end for

and

\begin{algorithmic}[1]
\FORALL{i such that $0\leq i\leq 10$}
\STATE carry out some processing
\ENDFOR
\end{algorithmic}

produces
1: for all i such that 0 ≤ i ≤ 10 do
2: carry out some processing
3: end for

2.4 The while Loop
The while loop takes the form.

\WHILE{<condition>} <text> \ENDWHILE

For example,

\begin{algorithmic}
\WHILE{some condition holds}
\STATE carry out some processing
\ENDWHILE
\end{algorithmic}

produces
while some condition holds do

carry out some processing
end while

2.5 The repeat-until Loop
The repeat-until loop takes the form.

\REPEAT <text> \UNTIL{<condition>}

4

For example,

\begin{algorithmic}
\REPEAT
\STATE carry out some processing
\UNTIL{some condition is met}
\end{algorithmic}

produces
repeat

carry out some processing
until some condition is met

2.6 The Infinite Loop
The infinite loop takes the form.

\LOOP <text> \ENDLOOP

For example,

\begin{algorithmic}
\LOOP
\STATE this processing will be repeated forever
\ENDLOOP
\end{algorithmic}

produces
loop

this processing will be repeated forever
end loop

2.7 The Precondition
The precondition (that must be met if an algorithm is to correctly execute)
takes the form.

\REQUIRE <text>

For example,

\begin{algorithmic}
\REQUIRE $x \neq 0$ and $n \geq 0$
\end{algorithmic}

produces
Require: x 6= 0 and n ≥ 0

5

2.8 The Postcondition
The postcondition (that must be met after an algorithm has correctly executed)
takes the form.

\ENSURE <text>

For example,

\begin{algorithmic}
\ENSURE $x \neq 0$ and $n \geq 0$
\end{algorithmic}

produces
Ensure: x 6= 0 and n ≥ 0

2.9 Returning Values
The algorithmic environment offers a special statement for explicitly returning
values in algorithms. It has the syntax:

\RETURN <text>

For example,

\begin{algorithmic}
\RETURN $(x+y)/2$
\end{algorithmic}

produces
return (x + y)/2

2.10 Printing Messages
Another feature of the algorithmic environment is that it currently provides
a standard way of printing values (which is an operation used enough to merit
its own keyword). It has the syntax:

\PRINT <text>

For example,

\begin{algorithmic}
\PRINT \texttt{‘‘Hello, World!’’}
\end{algorithmic}

produces
print ‘‘Hello, World!’’

6

2.11 Comments
Comments may be inserted at most points in an algorithm using the form.

\COMMENT{<text>}

For example,

\begin{algorithmic}
\STATE do something \COMMENT{this is a comment}
\end{algorithmic}

produces
do something {this is a comment}

Because the mechanisms used to build the various algorithmic structures make
it difficult to use the above mechanism for placing comments at the end of
the first line of a construct, the commands \IF, \ELSIF, \ELSE, \WHILE, \FOR,
\FORALL, \REPEAT and \LOOP all take an optional argument which will be treated
as a comment to be placed at the end of the line on which they appear. For
example,

repeat {this is comment number one}
if condition one is met then {this is comment number two}

do something
else if condition two is met then {this is comment number three}

do something else
else {this is comment number four}

do nothing
end if

until hell freezes over

2.12 An Example
The following example demonstrates the use of the algorithmic environment
to describe a complete algorithm. The following input

\begin{algorithmic}
\REQUIRE $n \geq 0$
\ENSURE $y = x^n$
\STATE $y \Leftarrow 1$
\STATE $X \Leftarrow x$
\STATE $N \Leftarrow n$
\WHILE{$N \neq 0$}
\IF{N is even}
\STATE $X \Leftarrow X \times X$
\STATE $N \Leftarrow N / 2$
\ELSE[N is odd]
\STATE $y \Leftarrow y \times X$
\STATE $N \Leftarrow N - 1$

7

\ENDIF
\ENDWHILE
\end{algorithmic}

will produce
Require: n ≥ 0
Ensure: y = xn

y ⇐ 1
X ⇐ x
N ⇐ n
while N 6= 0 do

if N is even then
X ⇐ X ×X
N ⇐ N/2

else {N is odd}
y ⇐ y ×X
N ⇐ N − 1

end if
end while

which is an algorithm for finding the value of a number taken to a non-negative
power.

2.13 Options
There is a single option, noend that may be invoked when the algorithmic
package is loaded. With this option invoked the end statements are omitted in
the output. This allows space to be saved in the output document when this is
an issue.

2.14 Customization
In order to facilitate the use of this package with foreign languages, all of the
words in the output are produced via redefinable macro commands. The default
definitions of these macros are:

\newcommand{\algorithmicrequire}{\textbf{Require:}}
\newcommand{\algorithmicensure}{\textbf{Ensure:}}
\newcommand{\algorithmicend}{\textbf{end}}
\newcommand{\algorithmicif}{\textbf{if}}
\newcommand{\algorithmicthen}{\textbf{then}}
\newcommand{\algorithmicelse}{\textbf{else}}
\newcommand{\algorithmicelsif}{\algorithmicelse\ \algorithmicif}
\newcommand{\algorithmicendif}{\algorithmicend\ \algorithmicif}
\newcommand{\algorithmicfor}{\textbf{for}}
\newcommand{\algorithmicforall}{\textbf{for all}}
\newcommand{\algorithmicdo}{\textbf{do}}

8

\newcommand{\algorithmicendfor}{\algorithmicend\ \algorithmicfor}
\newcommand{\algorithmicwhile}{\textbf{while}}
\newcommand{\algorithmicendwhile}{\algorithmicend\ \algorithmicwhile}
\newcommand{\algorithmicloop}{\textbf{loop}}
\newcommand{\algorithmicendloop}{\algorithmicend\ \algorithmicloop}
\newcommand{\algorithmicrepeat}{\textbf{repeat}}
\newcommand{\algorithmicuntil}{\textbf{until}}
\newcommand{\algorithmicprint}{\textbf{print}}
\newcommand{\algorithmicreturn}{\textbf{return}}

In addition, the formatting of comments is implemented via a single argu-
ment command macro which may also be redefined. The default definition is

\newcommand{\algorithmiccomment}[1]{\{#1\}}

and another option that may be interesting for users familiar with C-like lan-
guages is to redefine the comments to be

\renewcommand{\algorithmiccomment}[1]{//#1}

Comments produced this way would be like this:
i← i + 1 //Increments i

This second way to present comments may become the default in a future version
of the package.

3 The algorithm Environment

3.1 General
When placed within the text without being encapsulated in a floating envi-

ronment algorithmic environments may be split over a page boundary greatly
detracting from their appearance. In addition, it is useful to have algorithms
numbered for reference and for lists of algorithms to be appended to the list of
contents. The algorithm environment is meant to address these concerns by
providing a floating environment for algorithms. For example, the input text

\begin{algorithm}
\caption{Calculate $y = x^n$}
\label{alg1}
\begin{algorithmic}
\REQUIRE $n \geq 0 \vee x \neq 0$
\ENSURE $y = x^n$
\STATE $y \Leftarrow 1$
\IF{$n < 0$}
\STATE $X \Leftarrow 1 / x$
\STATE $N \Leftarrow -n$
\ELSE

9

Algorithm 1 Calculate y = xn

Require: n ≥ 0 ∨ x 6= 0
Ensure: y = xn

y ⇐ 1
if n < 0 then

X ⇐ 1/x
N ⇐ −n

else
X ⇐ x
N ⇐ n

end if
while N 6= 0 do

if N is even then
X ⇐ X ×X
N ⇐ N/2

else //N is odd
y ⇐ y ×X
N ⇐ N − 1

end if
end while

\STATE $X \Leftarrow x$
\STATE $N \Leftarrow n$
\ENDIF
\WHILE{$N \neq 0$}
\IF{N is even}
\STATE $X \Leftarrow X \times X$
\STATE $N \Leftarrow N / 2$
\ELSE[N is odd]
\STATE $y \Leftarrow y \times X$
\STATE $N \Leftarrow N - 1$
\ENDIF
\ENDWHILE
\end{algorithmic}
\end{algorithm}

produces Algorithm 1 which is a slightly modified version of the earlier algorithm
for determining the value of a number taken to an integer power. In this case,
provided the power may be negative provided the number is not zero.

The command \listofalgorithms may be used to produce a list of algo-
rithms as part of the table contents as shown at the beginning of this document.
An auxiliary file with a suffix of .loa is produced when this feature is used.

10

3.2 Options
The appearance of the typeset algorithm may be changed by use of the options:
plain, boxed or ruled during the loading of the algorithm package. The
default option is ruled.

The numbering of algorithms can be influenced by providing the name of
the document component within which numbering should be recommenced.
The legal values for this option are: part, chapter, section, subsection,
subsubsection or nothing. The default value is nothing which causes algo-
rithms to be numbered sequentially throughout the document.

3.3 Customization
In order to facilitate the use of this package with foreign languages, methods
have been provided to facilitate the necessary modifications.

The title used in the caption within algorithm environment can be set by
use of the standard \floatname command which is provided as part of the
float package which was used to implement this package. For example,

\floatname{algorithm}{Procedure}

would cause Procedure to be used instead of Algorithm within the caption
of algorithms.

In a manner analogous to that available for the built in floating environments,
the heading used for the list of algorithms may be changed by redefining the
command listalgorithmname. The default definition for this command is

\newcommand{\listalgorithmname}{List of Algorithms}

11

