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Abstract In this paper, we consider an initial boundary value problem of m-Laplacian parabolic

equation arising in various physical models. We tackle this problem at three different initial energy

levels. For the sub-critical initial energy, we obtain the blow-up result and estimate the lower and upper

bounds of the blow-up time. For the critical initial energy, we show the global existence, asymptotic

behavior, finite time blow-up and the lower bound of the blow-up time. For the sup-critical initial

energy, we prove the finite time blow-up and estimate the lower and upper bounds of the blow-up time.

Keywords m-Laplacian parabolic equation, blow-up, blow-up time, global existence

MR(2010) Subject Classification 35K05, 35B44, 35A01

1 Introduction

In this paper we consider the following initial boundary value problem of the m-Laplacian
parabolic equation

ut − div(|∇u|m−2∇u) = |u|p−2u, (x, t) ∈ Ω × (0, T ), (1.1)

u(x, 0) = u0(x), x ∈ Ω, (1.2)

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ), (1.3)
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where Ω is a bounded domain of R
n with smooth boundary ∂Ω, the nonlinear term div(|∇u|m−2

∇u) = ∇ · (|∇u|m−2 ∇u) = Δmu is called m-Laplace operator, where

|∇u|m−2 =
{(

∂u

∂x1

)2

+ · · · +
(

∂u

∂xn

)2}m−2
2

and

2 ≤ m < p < ∞, (1.4)

p also satisfies (H) as follows

(H) 2 < p < ∞, if n ≤ m; m < p <
nm

n − m
, if n > m.

The prototypical model of the reaction-diffusion equation can be written as [7]

∂u

∂t
= div(D(u,∇u)∇u) + F (u), u(x, 0) = u0(x). (1.5)

Here D is a coefficient, that could be a constant as the simplest case of linear diffusion [13, 14, 26,
31], a function depending on the domain of definition [4–6], a matric function D(u) = A(x, t) to
model various ecological and evolutionary processes in spatio-temporally varying environments
[25], a function depending on u, i.e. D(u) = |u|m−1 to mean porous medium equation [15, 28,
33, 37], a function D(u,∇u) = |∇u|m−2 as the celebrated m-Laplacian parabolic equation [9,
19, 22, 42], or in general a function D = D(u,∇u) [12, 32], which includes the 3D incompressible
micropolar equations with fractional dissipations [38] and the possibility of fractional diffusion
associated with nonlocal quantum mechanics [27], and the function F (u) represents the reaction
term. These above diverse model equations contained in (1.5) have corresponding various
physical backgrounds and received enormous attentions.

In the present paper, we focus on the m-Laplacian parabolic equation in form of (1.1)
which, in mathematical form can be regarded as a comparison between the dynamical behavior
of the model with nonlinear diffusion and the evolution property associated with the linear
diffusion model, and also the mathematical description of the corresponding physical phenomena
introduced as follows. Besides the mathematical formal extension in (1.5), the m-Laplacian
parabolic equation seems to be first introduced in [30] with the name n-diffusion equation as
a generalized form of diffusion related to the unsteady vertical heat transfer from a horizontal
surfaces by turbulent free convection, and unsteady turbulent flow of a liquid with a free surface
over a plane. The heat conduction in a uniform temperature-dependent medium suggests the
equation S(u)∂u

∂t = div(K(u)∇u), where u is the temperature, S(u) is the volumetric heat
capacity and K(u) is the thermal conductivity. As S(u) is always supposed to be a constant,
K(u)

s is the thermal diffusivity [2]. It is customary to say that (1.5) with F (u) = 0 is a parabolic
equation with implicit degeneracy, which takes the equation of Newtonian polytropic filtration
ut = Δ(|u|m−1u), m > 1 as an important example, and parabolic for u �= 0 and degenerates
for u = 0 to describe the non-stationary flow of a compressible Newtonian fluid in a porous
medium (filtration) under polytropic conditions [3, 10, 11]. If the flow is not polytropic, the
above model should be replaced by the so-called non-Newtonian elastic filtration model equation
ut = div(|∇u|m−2∇u), m > 2 to describe the non-stationary flow in a porous medium of fluids
with a power dependence of the tangential stress on the velocity of the displacement under elastic
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condition [17, 23, 39]. If the medium has heat sources or sinks whose power depends on the
temperature, then we need to consider the special case of (1.5) like ut = div(|∇u|m−2∇u)+F (u),
m > 2. If, moreover, F ′(u) < 0 for u > 0, then we shall call (1.5) the nonlinear heat equation
with absorption. If F ′(u) > 0 at least on some interval (0, u0), we shall call (1.5) the nonlinear
heat equation with sources [19]. Next we shall recall some results about the above model
equations.

For the Cauchy problem of

ut = div(|∇u|m−2∇u), m > 2, (1.6)

based on the existence of global weak solution, the large time behavior of the global solution was
discussed in [42]. Choe and Kim [9] considered some interesting issues involving the interface
given by the Cauchy problem of (1.6), and showed that its interface is Lipschitz continuous for
large time, and the interface is globally Lipschitz continuous for some special initial data. The
regularity of such interface was also focused on by Ko in [22], and some geometric properties
for the long time behavior of the solution were studied in [24]. The potential theoretic aspects
of certain model equation were studied in [18] and [21].

Differently from the above problem without nonlinear source term, the following equation
with nonlinear inhomogeneous source term

ut − div(|∇u|m−2∇u) = f(u) (1.7)

will lose many good properties belonging to homogeneous model, insteadly, a lot of interesting
new phenomena can be observed. Tsutsumi [36] studied the initial boundary value problem
of (1.7) for f(u) = u1+α, m < α + 2 (α is a nonnegative real number) and he proved the global
existence and uniqueness of solution with sub-critical initial energy, i.e., J(u0) < d and blow-up
in finite time with negative initial energy, i.e., J(u0) < 0, where d is the so-called potential well
depth or mountain pass level which is characterized by d = minu∈W 1,m

0 (Ω)\{0} maxs≥0 J(su),
where J(u) is the so-called potential energy functional and will be defined later. Five years
later, the above conclusions were improved in [16] by extending the negative initial energy
blow-up to the positive initial energy blow-up with J(u0) < d1, where d1 is smaller than the
depth of potential well d, and additionally obtaining the decay of the global solution when
J(u0) < d (not d1). During the following two decades, a lot of efforts have been devoted to
searching the relations between the initial data and the behavior of the corresponding solution
to such problems, like the local existence with large initial datum [1], blow-up solution to the
problem with critical Sobolev exponent [35], the behavior of the solution from the initial data
near the flat hats [38]. Most recently, the initial boundary value problem of (1.7) with the
power-type growth conditions on the nonlinearity f(u) was considered in [8], and the nonlinear
term in (1.1), i.e. |u|p−2u satisfies certain growth conditions in [8]. They obtained the finite
time blow-up for both the classical solution (m = 2) and the weak solution (m > 2) under some
conditions on the initial data, which indicate J(u0) < −γ (γ > 0), the so-called negative initial
energy blow-up. Hence the positive initial energy case, i.e. J(u0) > 0 becomes an interesting
unsolved issue. In the present paper, we aim to tackle this issue by employing the variational
method, i.e. the so-called potential well method, hence the case J(u0) > 0 will be divided into
two cases: 0 < J(u0) < d and J(u0) > 0, where d is the depth of potential well, also called
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mountain pass level, which will be defined later. We divide this issue in this way not only due
to such parameter d, but also considering the structures of the main conclusions for each cases,
which will be explained in the end of the paper. It is worth mentioning that the steady-state
problems related to parabolic problems play an important role in the potential well theory. The
usability of the potential well theory to problem (1.1) was provided in [29], like its applications
to the semilinear pseudo-parabolic equations [41] and the coupled parabolic systems [40].

In order to give a clear picture of the already well-established conclusions, the main con-
clusions obtained in the present paper and the still unsolved problems, we use Table 1 to show
the relations among all of above.

Initial data Global

existence

Asymptotic

behavior of

the global

solution

Blow-up Lower bound of

the maximum ex-

istence time T

Upper bound of

the maximum ex-

istence time T

J(u0) < −γ \ \ [8] ∗ [8]

J(u0) < 0 \ \ [36] ∗ ∗
0 < J(u0) < d [36] [16] ∗ ∗ ∗

J(u0) = d ∗ ∗ ∗ ∗ ?

J(u0) > 0 ? ? ∗ ∗ ∗

Table 1 Research background: the symbol “\” denotes the case that does not hold under this

condition; reference number denotes the literature announcing the corresponding results; the symbol

“∗” denotes the results obtained in the present paper; and “?” denotes the still unsolved problems.

The detailed descriptions of J(u0) > 0 is in Remark 5.4.

This article is structured as follows:
(i) Sub-critical initial energy case (J(u0) < d) in Section 3: by introducing two different

auxiliary functions, we obtain the finite time blow-up of solution for problem (1.1)–(1.3) and
estimate the lower and upper bounds of the blow-up time, which also hold for J(u0) < −γ and
J(u0) < 0 as shown in Table 1.

(ii) Critical initial energy case (J(u0) = d) in Section 4: we get the global existence,
asymptotic behavior, finite time blow-up of solutions and estimate the lower bound of the
blow-up time.

(iii) Sup-critical initial energy case (J(u0) > 0) in Section 5: by using the concave function
method instead of comparison principle, we get the finite time blow-up of solution, and estimate
the lower and upper bounds of the blow-up time.

2 Preliminaries

First, we denote by ‖ · ‖q the Lq(Ω) norm for 1 ≤ q ≤ ∞ and ‖∇ · ‖m the Dirichlet norm
in W 1,m

0 (Ω). Moreover, from now on, C denotes various positives constants depending on the
known constants and may be different at each appearance.

Next, we introduce some functionals and sets as follows

J(u) =
1
m
‖∇u‖m

m − 1
p
‖u‖p

p,
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I(u) = ‖∇u‖m
m − ‖u‖p

p,

W = {u ∈ W 1,m
0 (Ω) | I(u) > 0, J(u) < d} ∪ {0}, (2.1)

V = {u ∈ W 1,m
0 (Ω) | I(u) < 0, J(u) < d} (2.2)

and the depth of potential well d is defined as [29]

d = inf
u∈N

J(u),

where the Nehari manifold is defined by

N = {u ∈ W 1,m
0 (Ω) | I(u) = 0, ‖∇u‖m �= 0},

and N separates two unbounded sets

N+ = {u ∈ W 1,m
0 (Ω) | I(u) > 0} ∪ {0}

and
N− = {u ∈ W 1,m

0 (Ω) | I(u) < 0}.
Then, we introduce the definition of weak solution for problem (1.1)–(1.3).

Definition 2.1 (Weak solution) A function u = u(x, t) is called a weak solution of problem
(1.1)–(1.3) on Ω × (0, T ), if u ∈ L∞(0, T ; W 1,m

0 (Ω)) with ut ∈ L2(0, T ; L2(Ω)) satisfying the
following conditions:

(i) for any ν ∈ W 1,m
0 (Ω), t ∈ (0, T ),

(ut, ν) + (|∇u|m−2∇u,∇ν) = (|u|p−2u, ν); (2.3)

(ii) u(x, 0) = u0(x) in W 1,m
0 (Ω);

(iii) for 0 ≤ t < T, ∫ t

0

‖uτ‖2
2dτ + J(u) ≤ J(u0). (2.4)

Then, we give the existence theorem of the local solution of problem (1.1)–(1.3) established
in [36].

Theorem 2.2 (Local solution) Let u0 ∈ W 1,m
0 (Ω)\{0} and p satisfy (H). Then there exist

a T > 0 and a unique weak solution u of (1.1)–(1.3) satisfying u ∈ C(0, T ; W 1,m
0 (Ω)), and the

energy inequality ∫ t

0

‖uτ‖2
2dτ + J(u(t)) ≤ J(u0), 0 ≤ t ≤ T,

where T is the maximum existence time of solution u(t). Moreover,
(i) If T < ∞, then

lim
t→T

‖u‖q = ∞ for all q > 1 such that q >
n(p − m)

m
;

(ii) If T = ∞, then u(t) is a global solution of problem (1.1)–(1.3).

Here, we have the following qualitative analysis about J(u) and I(u).

Lemma 2.3 Let u ∈ W 1,m
0 (Ω) and ‖∇u‖m �= 0. Then

(i) limλ→0 J(λu) = 0, limλ→+∞ J(λu) = −∞;
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(ii) There exists a unique λ∗ = λ∗(u) on the interval 0 < λ < ∞ such that

d

dλ
J(λu)|λ=λ∗ = 0;

(iii) J(λu) is increasing on 0 ≤ λ ≤ λ∗, decreasing on λ∗ ≤ λ < +∞ and takes the maximum
at λ = λ∗;

(iv) I(λu) > 0 for 0 < λ < λ∗, I(λu) < 0 for λ∗ < λ < ∞ and I(λ∗u) = 0.

Proof (i) By the definition of J(u) and (1.4), we get

J(λu) =
λm

m
‖∇u‖m

m − λp

p
‖u‖p

p,

which gives
lim
λ→0

J(λu) = 0

and
lim

λ→+∞
J(λu) = −∞.

(ii) According to the definition of J(λu), we know

d

dλ
J(λu) = λm−1‖∇u‖m

m − λp−1‖u‖p
p

= λm−1(‖∇u‖m
m − λp−m‖u‖p

p), (2.5)

which implies that d
dλJ(λu)|λ=λ∗ = 0 for

λ =
(‖∇u‖m

m

‖u‖p
p

) 1
p−m

:= λ∗(u).

(iii) In view of (ii), we obtain

d

dλ
J(λu) > 0 for 0 < λ < λ∗,

d

dλ
J(λu) < 0 for λ∗ < λ < ∞,

and the maximum of J(λu) is achieved at λ = λ∗.
(iv) By the definition of I(u) and (2.5), we have

I(λu) = λm‖∇u‖m
m − λp‖u‖p

p = λ
d

dλ
J(λu),

then we can get the conclusion by (iii). �
Next, we find a ball in W 1,m

0 (Ω) space with a radius as ‖∇u‖m to reveal the relations
between I(u), ‖∇u‖m and the depth of potential well d.

Lemma 2.4 Let u ∈ W 1,m
0 (Ω) and assume that (1.4), (H) and J(u) ≤ d hold.

(i) If 0 < ‖∇u‖m < r, then I(u) > 0 and

‖∇u‖m
m <

mp

p − m
d.

(ii) If
‖∇u‖m

m >
mp

p − m
d,

then I(u) < 0 and ‖∇u‖m > r.
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(iii) If I(u) = 0, then ‖∇u‖m = 0 or

rm ≤ ‖∇u‖m
m ≤ mp

p − m
d,

where r = ( 1
Cp

∗
)

1
p−m and C∗ is the best embedding constant from W 1,m

0 (Ω) to Lp(Ω).

Proof (i) From (H), (1.4) and 0 < ‖∇u‖m < r, we have

‖u‖p
p ≤ Cp

∗‖∇u‖p
m = Cp

∗‖∇u‖p−m
m ‖∇u‖m

m < ‖∇u‖m
m,

which gives I(u) > 0. According to the definition of J(u), (1.4) and I(u) > 0, we compute

J(u) =
1
m
‖∇u‖m

m − 1
p
‖u‖p

p

=
(

1
m

− 1
p

)
‖∇u‖m

m +
1
p
(‖∇u‖m

m − ‖u‖p
p)

=
p − m

mp
‖∇u‖m

m +
1
p
I(u)

>
p − m

mp
‖∇u‖m

m, (2.6)

then J(u) ≤ d gives
p − m

mp
‖∇u‖m

m < d,

i.e.
‖∇u‖m

m <
mp

p − m
d.

(ii) By (2.6) and ‖∇u‖m
m > mp

p−md, we have

J(u) =
p − m

mp
‖∇u‖m

m +
1
p
I(u)

> d +
1
p
I(u),

then J(u) ≤ d shows
I(u) < 0,

which also means ‖∇u‖m �= 0 due to Sobolev inequality. Then I(u) < 0 gives

‖∇u‖m
m < ‖u‖p

p ≤ Cp
∗‖∇u‖p−m

m ‖∇u‖m
m,

that is ‖∇u‖m > r.

(iii) As I(u) = ‖∇u‖m
m − ‖u‖p

p = 0. If ‖∇u‖m �= 0, then by

‖∇u‖m
m = ‖u‖p

p ≤ Cp
∗‖∇u‖p−m

m ‖∇u‖m
m,

we get ‖∇u‖m ≥ r. By (2.6) and I(u) = 0, we see

J(u) =
p − m

mp
‖∇u‖m

m,

combining J(u) ≤ d, which yields

‖∇u‖m
m ≤ mp

p − m
d. �

In the following lemma, we give the expression of d in term of r, prove the nonincreasing of
J(u) and show a relation between J(u), I(u) and d.
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Lemma 2.5 (i) If r is defined in Lemma 2.4, we have

d =
p − m

mp
rm. (2.7)

(ii) The potential energy J(u) is nonincreasing.
(iii) If u ∈ W 1,m

0 (Ω) and I(u) < 0, then we have the relation between J(u), I(u) and the
potential well depth d as follows

I(u) < p(J(u) − d). (2.8)

Proof (i) For all u ∈ N , by (iii) of Lemma 2.4 we know ‖∇u‖m ≥ r, which combining (2.6)
gives

J(u) =
p − m

mp
‖∇u‖m

m +
1
p
I(u)

=
p − m

mp
‖∇u‖m

m

≥ p − m

mp
rm.

Therefore, by the definition of d, we get (2.7).
(ii) Let ν = ut in (2.3), then we have∫

Ω

|ut|2dx +
d

dt

∫
Ω

1
m
|∇u|mdx =

d

dt

∫
Ω

1
p
|u|pdx,

which says
d

dt

( ∫
Ω

(
1
m
|∇u|m − 1

p
|u|p

)
dx

)
= −

∫
Ω

|ut|2dx,

that is

J ′(t) =
d

dt
J(u) = −

∫
Ω

|ut|2dx ≤ 0.

(iii) According to (iv) of Lemma 2.3 and I(u) < 0, we know that there exists a λ∗ ∈ (0, 1)
such that I(λ∗u) = 0. Set

h(λ) := pJ(λu) − I(λu), λ > 0.

By the definition of J(u), I(u), (1.4) and (ii) in Lemma 2.4, we derive

h′(λ) = p
dJ(λu)

dλ
− dI(λu)

dλ

= p(λm−1‖∇u‖m
m − λp−1‖u‖p

p) − mλm−1‖∇u‖m
m + pλp−1‖u‖p

p

= (p − m)λm−1‖∇u‖m
m

> (p − m)λm−1rm > 0.

Hence h(λ) is strictly increasing for λ > 0, then h(1) > h(λ∗) for λ∗ ∈ (0, 1). By the definition
of d and the fact I(λ∗u) = 0, we get

pJ(u) − I(u) > pJ(λ∗u) − I(λ∗u) = pJ(λ∗u) ≥ pd,

which gives (2.8) immediately. �
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3 Global Existence, Asymptotic Behavior and Blow-up in Finite Time with
J(u0) < d

In this section, we prove the finite time blow-up and estimate the upper and lower bounds of
the blow-up time of solution for problem (1.1)–(1.3) with J(u0) < d. The global existence and
asymptotic behavior of solution for problem (1.1)–(1.3) with J(u0) < d has been obtained by
Tsutsumi [36] and Ishii [16]. So we omit the proof and only mention it in order to show the
systematical conclusions.

Theorem 3.1 ([16, 36]) Let p satisfy (H) and u0 ∈ W 1,m
0 (Ω). Assume that J(u0) < d and

I(u0) > 0. Then problem (1.1)–(1.3) admits a global weak solution u(t) ∈ L∞(0,∞; W 1,m
0 (Ω))

with ut ∈ L2(0,∞; L2(Ω)) and u(t) ∈ W for 0 ≤ t < ∞. Further, there exists a constant κ > 0
such that

‖u‖2 ≤ (‖u0‖2−m
2 + (m − 2)κt)

1
2−m .

Next, in order to prove the blow-up in finite time of solution to problem (1.1)–(1.3) for
J(u0) < d, we first introduce the invariant set V in Lemma 3.2. In Theorem 3.3, we prove
the blow-up in finite time of solution and give a sufficient condition by introducing a simple
auxiliary function. In Theorem 3.5, we introduce another auxiliary function to prove the blow-
up in finite time and estimate the upper bound of the blow-up time. For the finite time blow-up
results, Theorems 3.3 and 3.5 give two different proofs of the same conclusion. We observe that
the auxiliary function introduced in the proof of Theorem 3.5 is more effective as it not only
helps to prove the finite time blow-up of solution, but also estimates the upper bound of the
blow-up time. In Theorem 3.6, based on the conclusion of Theorems 3.3 and 3.5, i.e. the
solution blows up in finite time, we estimate the lower bound of the blow-up time with the help
of a differential inequality. As Theorem 3.6 does not prove the finite time blow-up but relies
on the finite time blow-up results, for other initial data leading to the finite time blow-up, the
estimate of lower bound of the blow-up time in Theorem 3.6 is still valid.

Lemma 3.2 (Invariant set for J(u0) < d) Let p satisfy (H), u0 ∈ W 1,m
0 (Ω), T be the maximal

existence time. Then the weak solution u of problem (1.1)–(1.3) with J(u0) < d belongs to V

for 0 ≤ t < T, provided I(u0) < 0.

Proof Since J(u0) < d and I(u0) < 0, we get u0 ∈ V . We prove u(t) ∈ V for 0 < t < T .
Arguing by contradiction, by the continuity of J(u) and I(u) in t, we suppose that t0 ∈ (0, T )
is the first time such that J(u(t0)) = d or I(u(t0)) = 0 and ‖∇u(t0)‖m �= 0. By Definition 2.1
(iii) and J(u0) < d, we have∫ t

0

‖uτ‖2
2dτ + J(u) ≤ J(u0) < d, 0 ≤ t < T, (3.1)

which means J(u(t0)) �= d. If I(u(t0)) = 0 and ‖∇u(t0)‖m �= 0, then by the definition of d we
have J(u(t0)) ≥ d, which contradicts (3.1). The proof is completed. �

Theorem 3.3 (Blow-up for J(u0) < d) Let p satisfy (H) and u0 ∈ W 1,m
0 (Ω). Assume that

J(u0) < d and I(u0) < 0. Then the weak solution u(t) of problem (1.1)–(1.3) blows up in finite
time.

Proof According to Theorem 2.2, we know problem (1.1)–(1.3) admits a unique local weak
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solution u ∈ C(0, T ; W 1,m
0 (Ω)), where T is the maximal existence time of u(t). We prove the

existence time is finite. Arguing by contradiction, we suppose that the existence time T = +∞.
We define

M(t) :=
∫ t

0

‖u‖2
2dτ, t ∈ [0, +∞), (3.2)

then
M ′(t) = ‖u‖2

2.

Further, letting ν = u in (2.3), we obtain

M ′′(t) = 2(u, ut)

= 2(|u|p−2u, u) − 2(|∇u|m−2∇u,∇u)

= 2‖u‖p
p − 2‖∇u‖m

m

= −2I(u). (3.3)

Combining (2.4) and (2.6), we get

J(u0) ≥ J(u) +
∫ t

0

‖uτ‖2
2dτ

≥ p − m

mp
‖∇u‖m

m +
1
p
I(u) +

∫ t

0

‖uτ‖2
2dτ,

which is

1
p
I(u) ≤ J(u0) − p − m

mp
‖∇u‖m

m −
∫ t

0

‖uτ‖2
2dτ,

i.e.,

I(u) ≤ pJ(u0) − p − m

m
‖∇u‖m

m − p

∫ t

0

‖uτ‖2
2dτ. (3.4)

Substituting (3.4) into (3.3), we derive

M ′′(t) ≥ −2pJ(u0) +
2(p − m)

m
‖∇u‖m

m + 2p

∫ t

0

‖uτ‖2
2dτ. (3.5)

Due to ∫ t

0

(uτ , u)dτ =
1
2
‖u‖2

2 −
1
2
‖u0‖2

2,

we derive ( ∫ t

0

(uτ , u)dτ

)2

=
(

1
2
‖u‖2

2 −
1
2
‖u0‖2

2

)2

=
1
4
(‖u‖4

2 − 2‖u0‖2
2‖u‖2

2 + ‖u0‖4
2)

=
1
4
((M ′(t))2 − 2‖u0‖2

2M
′(t) + ‖u0‖4

2),

then

(M ′(t))2 = 4
( ∫ t

0

(uτ , u)dτ

)2

+ 2‖u0‖2
2M

′(t) − ‖u0‖4
2. (3.6)
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Hence, combining (3.5) and (3.6) we observe that

M(t)M ′′(t) − p

2
(M ′(t))2

≥ M(t)
(
− 2pJ(u0) +

2(p − m)
m

‖∇u‖m
m + 2p

∫ t

0

‖uτ‖2
2dτ

)

− p

2

(
4
( ∫ t

0

(uτ , u)dτ

)2

+ 2‖u0‖2
2M

′(t) − ‖u0‖4
2

)

= −2pJ(u0)M(t) +
2(p − m)

m
‖∇u‖m

mM(t)

+ 2p

(∫ t

0

‖u‖2
2dτ

∫ t

0

‖uτ‖2
2dτ −

( ∫ t

0

(uτ , u)dτ

)2)

− p‖u0‖2
2M

′(t) +
p

2
‖u0‖4

2

> −2pJ(u0)M(t) +
2(p − m)

m
‖∇u‖m

mM(t)

+ 2p

(∫ t

0

‖u‖2
2dτ

∫ t

0

‖uτ‖2
2dτ −

( ∫ t

0

(uτ , u)dτ

)2)
− p‖u0‖2

2M
′(t). (3.7)

By Cauchy–Schwarz inequality, we get(∫ t

0

(uτ , u)dτ

)2

≤
∫ t

0

‖uτ‖2
2dτ

∫ t

0

‖u‖2
2dτ, (3.8)

which makes (3.7) to be

M(t)M ′′(t) − p

2
(M ′(t))2 >

2(p − m)
m

‖∇u‖m
mM(t) − 2pJ(u0)M(t) − p‖u0‖2

2M
′(t). (3.9)

For 2 ≤ m < p, we have the embedding inequality from W 1,m
0 (Ω) to W 1,2

0 (Ω) as

C1‖∇u‖2 ≤ ‖∇u‖m (3.10)

and the Poincaré inequality

C2‖u‖2 ≤ ‖∇u‖2. (3.11)

According to (1.4), (3.10) and (3.11), we have

2(p − m)
m

‖∇u‖m
mM(t) ≥ 2Cm

1 Cm
2 (p − m)
m

‖u‖m
2 M(t)

=
2Cm

1 Cm
2 (p − m)
m

‖u‖m−2
2 ‖u‖2

2M(t),

then (3.9) becomes

M(t)M ′′(t) − p

2
(M ′(t))2

>
2Cm

1 Cm
2 (p − m)
m

‖u‖m−2
2 M ′(t)M(t) − 2pJ(u0)M(t) − p‖u0‖2

2M
′(t). (3.12)

Next, we discuss the following two cases, i.e. J(u0) ≤ 0 and 0 < J(u0) < d.
(i) If J(u0) ≤ 0, then (3.12) gives

M(t)M ′′(t) − p

2
(M ′(t))2 >

2Cm
1 Cm

2 (p − m)
m

‖u‖m−2
2 M ′(t)M(t) − p‖u0‖2

2M
′(t). (3.13)
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Combining (2.3), (2.6) and J(u0) ≤ 0, we get

0 ≥ J(u0) > J(u) =
p − m

mp
‖∇u‖m

m +
1
p
I(u),

that is I(u) < 0. From this and (3.3), we get M ′′(t) > 0 for t ≥ 0, then M ′(t) = ‖u‖2
2

is increasing with t ∈ (0,∞). Noting that M ′(0) = ‖u0‖2
2 > 0 and M ′′(t) > 0, we get

M ′(t) > M ′(0) > 0 for t > 0, which means M(t) is increasing over [0,∞), then we obtain
M(t) > M(0) = 0. Thereby we have

M(t) − M(0) =
∫ t

0

M ′(τ )dτ >

∫ t

0

M ′(0)dτ = M ′(0)t,

that is
M(t) > M ′(0)t, t > 0.

Therefore, for M ′(t) > M ′(0) > 0 and sufficiently large t, we find

2Cm
1 Cm

2 (p − m)
m

‖u‖m−2
2 M(t) >

2Cm
1 Cm

2 (p − m)
m

‖u0‖m−2
2 M(t) > p‖u0‖2

2,

which makes (3.13) to be

M(t)M ′′(t) − p

2
(M ′(t))2 > M ′(t)

(
2Cm

1 Cm
2 (p − m)
m

‖u0‖m−2
2 M(t) − p‖u0‖2

2

)
> 0.

(ii) If 0 < J(u0) < d, then by Lemma 3.2 we have u(t) ∈ V for t ≥ 0. By (2.8), (2.4) and
0 < J(u0) < d, (3.3) becomes

M ′′(t) = −2I(u)

> 2p(d − J(u))

≥ 2p

(
d − J(u0) +

∫ t

0

‖uτ‖2
2dτ

)

> 2p(d − J(u0))

=: CM > 0. (3.14)

Then by (3.14) and M ′(0) = ‖u0‖2
2 > 0, we get

M ′(t) − M ′(0) =
∫ t

0

M ′′(τ )dτ > CM t, 0 < t < ∞,

that is

M ′(t) > CM t + M ′(0) > CM t. (3.15)

Similarly, by M ′′(t) > 0, M(0) = 0 and (3.15), for t ∈ (0,∞) we obtain

M(t) − M(0) =
∫ t

0

M ′(τ )dτ >

∫ t

0

CMτdτ =
1
2
CM t2,

i.e.,

M(t) >
1
2
CM t2 + M(0) =

1
2
CM t2. (3.16)

Therefore, for sufficiently large t, the fact M ′(t) > M ′(0) > 0, (3.15) and (3.16) gives

Cm
1 Cm

2 (p − m)
m

‖u‖m−2
2 M(t) >

Cm
1 Cm

2 (p − m)
m

‖u0‖m−2
2 M(t) > p‖u0‖2

2 (3.17)
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and
Cm

1 Cm
2 (p − m)
m

‖u‖m−2
2 M ′(t) >

Cm
1 Cm

2 (p − m)
m

‖u0‖m−2
2 M ′(t) > 2pJ(u0). (3.18)

Then, by (3.17) and (3.18), (3.12) becomes

M(t)M ′′(t) − p

2
(M ′(t))2 ≥

(
Cm

1 Cm
2 (p − m)
m

‖u0‖m−2
2 M(t) − p‖u0‖2

2

)
M ′(t)

+
(

Cm
1 Cm

2 (p − m)
m

‖u0‖m−2
2 M ′(t) − 2pJ(u0)

)
M(t) > 0 (3.19)

for sufficiently large t. In view of M(t), M ′(t) and M ′′(t) are all positive for sufficiently large
t, then (3.19) gives

M ′′(t)
M ′(t)

>
pM ′(t)
2M(t)

, t ∈ [t,∞).

Integrating above inequality from t to t with respect to t, we have∫ t

t

dM ′(τ )
M ′(τ )

>
p

2

∫ t

t

dM(τ )
M(τ )

,

i.e.,

ln
M ′(t)
M ′(t)

>
p

2
ln

M(t)
M(t)

= ln
(

M(t)
M(t)

) p
2

,

which means
M ′(t)
M ′(t)

>

(
M(t)
M(t)

) p
2

,

i.e.,
M ′(t)

(M(t))
p
2

>
M ′(t)

(M(t))
p
2
.

Integrating above inequality again from t to t with respect to t gives∫ t

t

dM(τ )
(M(τ ))

p
2

>
M ′(t)

(M(t))
p
2
(t − t),

which says

M(t)−
p−2
2 (t) < M(t)−

p−2
2

(
1 − (p − 2)M ′(t)

2M(t)
(t − t)

)
,

i.e.,

M(t) > M(t)
(

1 − (p − 2)M ′(t)
2M(t)

(t − t)
)− 2

p−2

. (3.20)

Since we have assumed that the solution is global, i.e. the existence time T = +∞, we only
need to discuss the possibility of finite time blow-up solution for some finite time t∗. Next we
shall make the blow-up happen and see if there exists such finite time t∗. In order to treat
(3.20), we set

G(t) := 1 − (p − 2)M ′(t)
2M(t)

(t − t)

for any t ∈ [t, +∞). In the following, in order to find a finite time t∗ such that the solution
blows up, we solve the equation G(t) = 0 and get a unique root as t + 2M(t)

(p−2)M ′(t) . Therefore,
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for

0 < t∗ ≤ t +
2M(t)

(p − 2)M ′(t)

we have
lim
t→t∗

M(t) = +∞,

which contradicts T = +∞. �
In order to estimate the upper bound of the blow-up time, we introduce the following lemma.

Lemma 3.4 ([20]) Suppose that a positive, twice-differentiable function ϕ(t) satisfies the in-
equality

ϕ′′(t)ϕ(t) − (1 + θ)(ϕ′(t))2 ≥ 0, t > 0,

where θ > 0 is some constant. If ϕ(0) > 0 and ϕ′(0) > 0, then there exists 0 < t1 ≤ ϕ(0)
θϕ′(0) such

that ϕ(t) tends to infinity as t → t1.

Next, we introduce a different auxiliary function from Theorem 3.3 to prove that the solution
blows up in finite time. Further, we also estimate the upper bound of the blow-up time.

Theorem 3.5 Let p satisfy (H) and u0 ∈ W 1,m
0 (Ω). Assume that J(u0) < d and I(u0) < 0.

Then the weak solution u(t) of problem (1.1)–(1.3) blows up in finite time. And we estimate
the upper bound of the blow-up time as

0 < T ≤ 4‖u0‖2
2

(p − 2)2β
,

where 0 < β < p(d−J(u0))
p−1 is a constant.

Proof According to Theorem 2.2, we know that problem (1.1)–(1.3) admits a unique local
weak solution u ∈ C(0, T ; W 1,m

0 (Ω)), where T is the maximal existence time of u(t). Next we
shall prove that the existence time is finite. Arguing by contradiction, we suppose that the
existence time T = +∞.

For any T > 0, we define

F (t) :=
1
2

∫ t

0

‖u‖2
2dτ +

1
2
(T − t)‖u0‖2

2 +
1
2
β(t + σ)2 for t ∈ [0, T ), (3.21)

where σ is a positive constant which will be determined later. It is easy to verify that F (t) > 0
for any t ∈ [0, T ). By the definition of J(u), I(u) and (2.6), we get

J(u) =
1
m
‖∇u‖m

m − 1
p
‖u‖p

p =
p − m

mp
‖∇u‖m

m +
1
p
I(u),

that is

I(u) = pJ(u) − p − m

m
‖∇u‖m

m. (3.22)

Let ν = u in (2.3). We obtain

(u, uτ ) = −I(u). (3.23)

By (3.21)–(3.23) and (2.4), we obtain for any t ∈ [0, T ) that

F ′(t) =
1
2
‖u‖2

2 −
1
2
‖u0‖2

2 + β(t + σ)
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=
∫ t

0

(u, uτ )dτ + β(t + σ) (3.24)

and

F ′′(t) = (u, uτ ) + β

=
p − m

m
‖∇u‖m

m − pJ(u) + β

≥ p − m

m
‖∇u‖m

m − p

(
J(u0) −

∫ t

0

‖uτ‖2
2dτ

)
+ β

=
p − m

m
‖∇u‖m

m − pJ(u0) + p

∫ t

0

‖uτ‖2
2dτ + β. (3.25)

Thus, by (3.21) and (3.24), it follows that

FF ′′ − α(F ′)2 = FF ′′ − α

(∫ t

0

(u, uτ )dτ + β(t + σ)
)2

= FF ′′ − α

(∫ t

0

(u, uτ )dτ + β(t + σ)
)2

+ α

( ∫ t

0

‖u‖2
2dτ + β(t + σ)2

)( ∫ t

0

‖uτ‖2
2dτ + β

)

− α(2F − (T − t)‖u0‖2
2)

( ∫ t

0

‖uτ‖2
2dτ + β

)
. (3.26)

By (3.8) and Young’s inequality, we obtain for any t ∈ [0, T ) that( ∫ t

0

‖u‖2
2dτ + β(t + σ)2

)( ∫ t

0

‖uτ‖2
2dτ + β

)
−

( ∫ t

0

(u, uτ )dτ + β(t + σ)
)2

=
( ∫ t

0

‖u‖2
2dτ

∫ t

0

‖uτ‖2
2dτ −

( ∫ t

0

(uτ , u)dτ

)2)

+
(

β

∫ t

0

‖u‖2
2dτ + β(t + σ)2

∫ t

0

‖uτ‖2
2dτ − 2β(t + σ)

∫ t

0

(u, uτ )dτ

)

≥ 2β(t + σ)
(∫ t

0

‖u‖2
2dτ

) 1
2
( ∫ t

0

‖uτ‖2
2dτ

) 1
2

− 2β(t + σ)
∫ t

0

(u, uτ )dτ

= 0. (3.27)

Then by (3.27) and (3.25), (3.26) becomes

FF ′′ − α(F ′)2 ≥ FF ′′ − α(2F − (T − t)‖u0‖2
2)

(∫ t

0

‖uτ‖2
2dτ + β

)

≥ F

(
F ′′ − 2α

(∫ t

0

‖uτ‖2
2dτ + β

))

≥ F

(
p − m

m
‖∇u‖m

m − pJ(u0) + p

∫ t

0

‖uτ‖2
2dτ + β − 2α

∫ t

0

‖uτ‖2
2dτ − 2αβ

)

≥ F

(
p − m

m
‖∇u‖m

m − pJ(u0) + (p − 2α)
∫ t

0

‖uτ‖2
2dτ − (2α − 1)β

)
. (3.28)

Let α := p
2 . (3.28) gives

FF ′′ − p

2
(F ′)2 ≥ F

(
p − m

m
‖∇u‖m

m − pJ(u0) − (p − 1)β
)

, t ∈ [0, T ).
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Next, by (ii) of Lemma 2.4 and (2.7), we know

p − m

m
‖∇u‖m

m >
p − m

m
rm = pd,

and letting 0 < β < p(d−J(u0))
p−1 , we discover

FF ′′ − p

2
(F ′)2 > F (p(d − J(u0)) − (p − 1)β) > 0. (3.29)

Hence, by Lemma 3.4, we have
lim
t→T

F (t) = +∞
and

0 < T ≤ 2F (0)
(p − 2)F ′(0)

. (3.30)

In order to get the exact estimates of the blow-up time and verify it, we shall go on with the
above inequality. By (3.21) and (3.24), (3.30) gives

2F (0)
(p − 2)F ′(0)

=
2( 1

2‖u0‖2
2T + 1

2βσ2)
(p − 2)σβ

=
‖u0‖2

2

(p − 2)σβ
T +

σ

p − 2
(3.31)

for any σ > 0 and 0 < β < p(d−J(u0))
p−1 . Combining with (3.30) and (3.31), we get

(
1 − ‖u0‖2

2

(p − 2)σβ

)
T ≤ σ

p − 2
.

In order to ensure 1 − ‖u0‖2
2

(p−2)σβ > 0, we choose σ ∈ ( ‖u0‖2
2

(p−2)β , +∞) such that 0 <
‖u0‖2

2
(p−2)σβ < 1,

then

T ≤ σ

p − 2

(
1 − ‖u0‖2

2

(p − 2)σβ

)−1

=
βσ2

(p − 2)σβ − ‖u0‖2
2

:= Tβ(σ),

and Tβ(σ) takes its minimum at σ = 2‖u0‖2
2

(p−2)β . Therefore, we get

0 < T ≤ Tβ

(
2‖u0‖2

2

(p − 2)β

)
=

4‖u0‖2
2

(p − 2)2β
. �

Next we shall estimate the lower bound of the blow-up time without proving the finite time
blow-up results, hence we use the sufficient conditions in Theorem 3.3 and Theorem 3.5 to make
the finite time blow-up happen. And Theorem 3.6 also works for the other initial data leading
to the finite time blow-up.

Theorem 3.6 (Lower bound of blow-up time) Assume that m < p < m+ 2m
n , J(u0) < d and

I(u0) < 0. We have the estimate of the lower bound of the blow-up time of solution for problem
(1.1)–(1.3) as follows

T ≥ ‖u0‖2−pη
2

(pη − 2)C
p

1− pθ
m

G

,

where CG is the constant of Gagliardo–Nirenberg’s inequality

‖u‖p ≤ CG‖∇u‖θ
m‖u‖1−θ

2 ,

θ = (p−2)nm
p(mn+2m−2n) ∈ (0, 1) and η = 1−θ

1− pθ
m

> 1.
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Proof By Theorem 3.3, the solution to problem (1.1)–(1.3) blows up in finite time, that is
limt→T

∫ t

0
‖u‖2

2dτ = +∞, i.e.

lim
t→T

‖u‖2
2 = +∞. (3.32)

By Lemma 3.2, we get I(u) < 0, i.e. ‖∇u‖m
m < ‖u‖p

p. Then combining the Gagliardo–
Nirenberg’s inequality, we get

‖u‖p ≤ CG‖∇u‖θ
m‖u‖1−θ

2 < CG‖u‖
pθ
m
p ‖u‖1−θ

2 ,

which yields

‖u‖p < C

1
1− pθ

m

G ‖u‖η
2 , (3.33)

where η = 1−θ
1− pθ

m

> 1, θ = (p−2)nm
p(mn+2m−2n) ∈ (0, 1) and pθ

m < 1 due to m < p < m + 2m
n .

Substituting (3.33) into (3.3), we find

d

dt
‖u‖2

2 ≤− 2I(u) = 2‖u‖p
p − 2‖∇u‖m

m < 2‖u‖p
p

<2
(

C

1
1− pθ

m

G ‖u‖η
2

)p

= 2C

p

1− pθ
m

G ‖u‖pη
2 = 2C

p

1− pθ
m

G (‖u‖2
2)

pη
2 .

Solving the differential inequality above, we get

‖u‖2−pη
2 − ‖u0‖2−pη

2 > (2 − pη)C
p

1− pθ
m

G t,

i.e.

‖u‖2−pη
2 + (pη − 2)C

p

1− pθ
m

G t > ‖u0‖2−pη
2 .

Since (3.32) and pη > 2, letting t → T , we have

T >
‖u0‖2−pη

2

(pη − 2)C
p

1− pθ
m

G

> 0. �

4 Global Existence, Asymptotic Behavior and Blow-up in Finite Time with
J(u0) = d

In this section, we extend all obtained results for the low initial energy J(u0) < d to the case of
critical initial energy J(u0) = d. In other words, we shall prove the global existence, asymptotic
behavior and blow-up in finite time of solution for problem (1.1)–(1.3) with the critical initial
energy J(u0) = d. Furthermore, we estimate the upper and lower bounds of the blow-up time.

Theorem 4.1 (Global existence for J(u0) = d) Let p satisfy (H), u0 ∈ W 1,m
0 (Ω). Assume

that J(u0) = d and I(u0) ≥ 0. Then problem (1.1)–(1.3) admits a global weak solution u(t) ∈
L∞(0,∞; W 1,m

0 (Ω)) with ut ∈ L2(0,∞; L2(Ω)).

Proof First the condition J(u0) = d implies that ‖∇u0‖m �= 0. For s = 2, 3, . . ., we define
ks := 1 − 1

s and u0s(x) := ksu0(x), then 0 < ks < 1 and ks → 1 as s → ∞. Now we consider
problem (1.1) and (1.3) corresponding to the initial condition

u(x, 0) = u0s(x), s = 2, 3, . . . . (4.1)
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From I(u0) = ‖∇u0‖m
m − ‖u0‖p

p ≥ 0 and (ii) of Lemma 2.3, we get

λ∗(u0) =
(‖∇u0‖m

m

‖u0‖p
p

) 1
p−m

≥ 1,

then 0 < ks < 1 ≤ λ∗(u0) for s = 2, 3, . . ., which combines (iii) and (iv) of Lemma 2.3 to give
J(u0s) = J(ksu0) < J(u0) = d and I(u0s) = I(ksu0) > 0. From [36, Theorem 2], it follows that
for each s problem (1.1), (1.3), (4.1) admits a global weak solution us(t) ∈ L∞(0,∞; W 1,m

0 (Ω))
with ust(t) ∈ L2(0,∞; L2(Ω)) and us(t) ∈ W for any ν ∈ W 1,m

0 (Ω) satisfying

(ust, ν) + (|∇us|m−2∇us,∇ν) = (|us|p−2us, ν), 0 ≤ t < ∞
and ∫ t

0

‖usτ‖2
2dτ + J(us) ≤ J(u0s) < d.

The remainder of this proof is similar to that of [36, Theorem 2]. �
In the following, we shall extend the asymptotic behavior and blow-up results of the sub-

critical initial energy J(u0) < d to the case of critical initial energy J(u0) = d. It is well known
that in order to use the potential well method the first step is to prove the invariance of the
stable set W and the unstable set V . But we can not directly derive this conclusion under
the case of J(u0) = d. Hence, we need to find a way to get the invariance of W and V under
J(u0) = d with the help of the case of J(u0) < d. In fact, according to the local existence theo-
rem (Theorem 2.2) we know that for the problem (1.1)–(1.3), there exists a local solution u(t)
with the initial value u0, and if the initial value u0 ∈ W or u0 ∈ V then the solution u(t) ∈ W

or u(t) ∈ V . Based on this, if the time goes a little forward, which says for sufficiently small
time t1 > 0, the solution u(t) also belongs to W or V at this moment t1. Inspired by above, we
choose a sufficiently small time t1 as the new initial time to complete all proof of the case of
J(u0) = d. In Theorem 4.3, we choose a new initial time t1 > 0 to prove the blow-up in finite
time for problem (1.1)–(1.3) by the similar auxiliary function as Theorem 3.3. In Theorem 4.4,
we estimate the lower bound of the blow-up time by adding a new condition on p and using the
same method as Theorem 3.6.

Next, based on Theorem 4.1, we show that the global solution decays in polynomial form.

Theorem 4.2 (Asymptotic behavior of solution for J(u0) = d) Let p satisfy (H), u0 ∈
W 1,m

0 (Ω). Assume that J(u0) = d and I(u0) > 0. Then for the global weak solution u of
problem (1.1)–(1.3), there exists a constant κ > 0 such that

‖u‖2 ≤ (‖u0‖2−m
2 + (m − 2)κt)

1
2−m .

Proof First, according to Theorem 4.1 we have proved that the solution u(t) is global. Next,
we prove I(u) > 0 for any t > 0. Arguing by contradiction, let t0 > 0 be the first time such
that I(u(t0)) = 0, ‖∇u(t0)‖m �= 0 and I(u) > 0 for t ∈ [0, t0), then by the definition of d, we
have

J(u(t0)) ≥ d. (4.2)

Meanwhile, (2.4) indicates

J(u(t0)) ≤ d −
∫ t0

0

‖uτ‖2
2dτ ≤ d. (4.3)
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Then combining (4.2) and (4.3) gives
∫ t0
0

‖uτ‖2
2dτ = 0, that is ut ≡ 0 for t ∈ [0, t0), which

contradicts (u, ut) = −I(u) < 0 for 0 ≤ t < t0 due to (3.23). Hence we get I(u) > 0 for
0 ≤ t < ∞. By the continuity of both J(u) and I(u) in t, we redefine the initial time by taking
a sufficiently small t1 > 0 such that 0 < J(u(t1)) < d and I(u(t1)) > 0. Therefore, by [16,
Theorem 5.3] we get the conclusion. �

Theorem 4.3 (Blow-up for J(u0) = d) Let p satisfy (H), u0 ∈ W 1,m
0 (Ω). Assume that

J(u0) = d and I(u0) < 0. Then the existence time of weak solution for problem (1.1)–(1.3) is
finite.

Proof The proof is similar to Theorem 3.3. First of all by (3.2)–(3.12) and J(u0) = d, we get

M(t)M ′′(t) − p

2
(M ′(t))2 ≥

(
Cm

1 Cm
2 (p − m)
m

‖u‖m−2
m M(t) − p‖u0‖2

2

)
M ′(t)

+
(

Cm
1 Cm

2 (p − m)
m

‖u‖m−2
m M ′(t) − 2pd

)
M(t).

On the other hand, from J(u0) = d > 0, I(u0) < 0 and the continuity of both J(u) and I(u)
in t, it follows that there exists a sufficiently small t1 > 0 such that J(u(t1)) > 0 and I(u) < 0
for t ∈ [0, t1). Combining (3.23) we get (u, ut) = −I(u) > 0 for t ∈ [0, t1], i.e. ut �= 0. Then
by (2.4) we get

0 < J(u(t1)) ≤ d −
∫ t1

0

‖uτ‖2
2dτ = d1 < d.

Thus taking t = t1 as the new initial time, then we have u ∈ V for 0 < t < ∞. The remainder
proof is similar to Theorem 3.3. �

Here, we should estimate the upper bound of the blow-up time with J(u0) = d based on
Theorem 3.5 and Theorem 4.3. Although the invariance of V in case of J(u0) = d has been
proved in Theorem 4.3, we still can not estimate the upper bound of the blow-up time at this
moment. In fact, similar to Theorem 3.5, by (3.29), for β > 0 we directly get

FF ′′ − p

2
(F ′)2 > F (p(d − J(u0)) − (p − 1)β) = −F (p − 1)β,

which implies that FF ′′ − p
2 (F ′)2 > 0 cannot be obtain, then Lemma 3.4 is invalid to estimate

the upper bound of the blow-up time.

Theorem 4.4 Assume that m < p < m + 2m
n , J(u0) = d and I(u0) < 0. We have the lower

bound estimate of the blow-up time of solution for problem (1.1)–(1.3) as follows

T >
‖u0‖2−pη

2

(pη − 2)C
p

1− pθ
m

G

> 0,

where CG, η and θ are defined in Theorem 3.6.

Proof Based on Theorem 4.3, we know that the solution of problem (1.1)–(1.3) blows up in
finite time T > 0 and I(u) < 0 for 0 < t < T . The remainder proof is similar to Theorem 3.6. �

5 Blow-up and Blow-up Time with High (sup-critical) Initial Energy J(u0) > 0

In this section, we prove the finite time blow-up of solution to problem (1.1)–(1.3) and estimate
the upper bound of the blow-up time of blow-up solution with high initial energy by using the
concave function method. In order to prove the main results, we need the following lemma.
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Lemma 5.1 Assume that u0 ∈ W 1,m
0 (Ω) satisfies

J(u0) < A‖u0‖m
2 , (5.1)

where A = Cm
1 Cm

2 (p−m)
mp , C1, C2 are defined in (3.10) and (3.11). Then u ∈ N− = {u ∈

W 1,m
0 (Ω) | I(u) < 0}.

Proof Let u(t) be the weak solution of problem (1.1)–(1.3). By the definition of J(u), (2.6),
(3.10) and (3.11), we deduce

J(u0) =
1
m
‖∇u0‖m

m − 1
p
‖u0‖p

p

=
p − m

mp
‖∇u0‖m

m +
1
p
I(u0)

≥ Cm
1 Cm

2 (p − m)
mp

‖u0‖m
2 +

1
p
I(u0)

=: A‖u0‖m
2 +

1
p
I(u0),

then I(u0) < 0 due to (5.1).
Next, we prove u(t) ∈ N− for all t ∈ [0, T ). Arguing by contradiction, by the continuity

of I(u) in t, we assume that there exists an s ∈ (0, T ) such that u(t) ∈ N− for 0 ≤ t < s and
u(s) ∈ N , then (3.23) indicates

d

dt
‖u(t)‖2

2 = −2I(u) > 0 for t ∈ [0, s),

which implies that

‖u0‖2
2 < ‖u(s)‖2

2. (5.2)

By (ii) of Lemma 2.5, we know that

J(u(s)) < J(u0). (5.3)

From the definition of J(u), u(s) ∈ N , (3.10), (3.11) and (5.2), we derive

J(u(s)) =
1
m
‖∇u(s)‖m

m − 1
p
‖u(s)‖p

p

=
p − m

mp
‖∇u(s)‖m

m +
1
p
I(u(s))

=
p − m

mp
‖∇u(s)‖m

m

≥ Cm
1 Cm

2 (p − m)
mp

‖u(s)‖m
2

= A‖u(s)‖m
2 ,

then further combining (5.1) and (5.3), we obtain

A‖u(s)‖m
2 ≤ J(u(s)) < J(u0) < A‖u0‖m

2 ,

which contradicts (5.2). �
Next, based on Lemma 5.1, we prove the finite time blow-up of solution under J(u0) > 0.

In addition, we also estimate the both upper and lower bounds of the blow-up time with the
help of Lemma 3.4 and Theorem 3.6.
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Theorem 5.2 Let p satisfy (H), if u0 ∈ W 1,m
0 (Ω), J(u0) > 0 and (5.1) hold, then the solution

u(x, t) of problem (1.1)–(1.3) blows up in finite time. Moreover, we estimate the upper bound
of the blow-up time as follows

0 < t∗ ≤ c

(α − 1)ε−1‖u0‖4
2

,

where 1 < α <
A‖u0‖m

2
J(u0)

, ε <
2(A‖u0‖m

2 −αJ(u0))

α‖u0‖2
2

and c > 1
4ε−2‖u0‖4

2.

Proof According to Theorem 2.2, we know that problem (1.1)–(1.3) has a unique local weak
solution in time t ∈ [0, T ], where T is the maximum existence time of u(t). We claim that the
maximum existence time of u(t) is finite with the condition (5.1). Arguing by contradiction,
we assume the existence time of solution T = ∞.

Now we define y(t) :=
∫ t

0
‖u‖2

2dτ . Since we have assumed that the solution u(x, t) is global,
thus the function y(t) is bounded for all t ≥ 0. Then we have

y′(t) = ‖u‖2
2 for all t ∈ [0,∞).

Combining the definition of J(u), I(u) and (3.23), we have

y′′(t) =
d

dt
‖u‖2

2 = −2I(u)

= −2(‖∇u‖m
m − ‖u‖p

p)

= −2
(
‖∇u‖m

m − m

p
‖u‖p

p +
(

m

p
− 1

)
‖u‖p

p

)

= −2m

(
1
m
‖∇u‖m

m − 1
p
‖u‖p

p +
(

1
p
− 1

m

)
‖u‖p

p

)

= −2m

(
1
m
‖∇u‖m

m − 1
p
‖u‖p

p

)
+

2(p − m)
p

‖u‖p
p

= −2mJ(u) +
2(p − m)

p
‖u‖p

p. (5.4)

In the rest of the proof, we consider the following two cases.
Case I J(u) ≥ 0 for all t > 0. From (5.1), we let

1 < α <
A‖u0‖m

2

J(u0)
. (5.5)

Substituting (2.4) into (5.4), we get

y′′(t) = 2m(α − 1)J(u) − 2mαJ(u) +
2(p − m)

p
‖u‖p

p

> −2mαJ(u) +
2(p − m)

p
‖u‖p

p (5.6)

≥ −2mαJ(u0) + 2mα

∫ t

0

‖uτ‖2
2dτ +

2(p − m)
p

‖u‖p
p.

Combining Lemma 5.1, i.e., I(u) < 0 and (3.23), we derive

y′′(t) =
d

dt
‖u‖2

2 > 0. (5.7)

From (3.10), (3.11) and (5.7), (5.6) becomes

y′′(t) > −2mαJ(u0) + 2mα

∫ t

0

‖uτ‖2
2dτ +

2(p − m)
p

‖∇u‖m
m
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≥ −2mαJ(u0) + 2mα

∫ t

0

‖uτ‖2
2dτ +

2Cm
1 Cm

2 (p − m)
p

‖u‖m
2

= −2mαJ(u0) + 2mα

∫ t

0

‖uτ‖2
2dτ +

2Cm
1 Cm

2 (p − m)
p

‖u‖m−2
2 ‖u‖2

2

> −2mαJ(u0) + 2mα

∫ t

0

‖uτ‖2
2dτ +

2Cm
1 Cm

2 (p − m)
p

‖u0‖m−2
2 ‖u‖2

2

= −2mαJ(u0) + 2mα

∫ t

0

‖uτ‖2
2dτ + 2mA‖u0‖m−2

2 ‖u‖2
2

= −2mαJ(u0) + 2mα

∫ t

0

‖uτ‖2
2dτ + 2mB‖u‖2

2, (5.8)

where B := A‖u0‖m−2
2 . In view of 2mα

∫ t

0
‖uτ‖2

2dτ ≥ 0, (5.8) gives

d

dt
‖u‖2

2 − 2mB‖u‖2
2 > −2mαJ(u0).

Solving the differential inequality above, we get

‖u‖2
2 > ‖u0‖2

2e
2mBt +

α

B
J(u0)(1 − e2mBt). (5.9)

Substituting (5.9) into (5.8) shows

y′′(t) > −2mαJ(u0) + 2mα

∫ t

0

‖uτ‖2
2dτ + 2mB‖u0‖2

2e
2mBt

+ 2mαJ(u0)(1 − e2mBt)

= 2me2mBt(B‖u0‖2
2 − αJ(u0)) + 2mα

∫ t

0

‖uτ‖2
2dτ. (5.10)

In view of (5.5), we take ε > 0 such that

ε <
2(B‖u0‖2

2 − αJ(u0))
α‖u0‖2

2

,

which combining (5.10) gives

y′′(t) > mεα‖u0‖2
2e

2mBt + 2mα

∫ t

0

‖uτ‖2
2dτ. (5.11)

Here, for any c > 0 and t ≥ 0 we introduce the second auxiliary function

φ(t) := y2(t) + ε−1‖u0‖2
2y(t) + c,

then

φ′(t) =
(
2y(t) + ε−1‖u0‖2

2

)
y′(t) (5.12)

and

φ′′(t) =
(
2y(t) + ε−1‖u0‖2

2

)
y′′(t) + 2(y′(t))2. (5.13)

Now, from (5.12) we can write

(φ′(t))2 = (2y(t) + ε−1‖u0‖2
2)

2(y′(t))2

= (4y2(t) + 4ε−1‖u0‖2
2y(t) + ε−2‖u0‖4

2)(y
′(t))2.
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In order to establish a connection between φ′(t) and φ(t), we pick c > 0 such that

c >
1
4
ε−2‖u0‖4

2,

and let δ := 4c − ε−2‖u0‖4
2 > 0, then

(φ′(t))2 = (4y2(t) + 4ε−1‖u0‖2
2y(t) + 4c − δ)(y′(t))2

= (4φ(t) − δ)(y′(t))2, (5.14)

i.e.,

4φ(t)(y′(t))2 = (φ′(t))2 + δ(y′(t))2. (5.15)

By the fact that
1
2
(‖u‖2

2 − ‖u0‖2
2) =

∫ t

0

(u, uτ )dτ,

i.e.,

‖u‖2
2 = ‖u0‖2

2 + 2
∫ t

0

(u, uτ )dτ,

combining the Hölder and Young’s inequalities, we get

(y′(t))2 = ‖u‖4
2

=
(
‖u0‖2

2 + 2
∫ t

0

(u, uτ )dτ

)2

≤
(
‖u0‖2

2 + 2
( ∫ t

0

‖u‖2
2dτ

) 1
2
( ∫ t

0

‖uτ‖2
2dτ

) 1
2
)2

= ‖u0‖4
2 + 4‖u0‖2

2(y(t))
1
2

( ∫ t

0

‖uτ‖2
2dτ

) 1
2

+ 4y(t)
∫ t

0

‖uτ‖2
2dτ

≤ ‖u0‖4
2 + 4y(t)

∫ t

0

‖uτ‖2
2dτ + 2ε‖u0‖2

2y(t) + 2ε−1‖u0‖2
2

∫ t

0

‖uτ‖2
2dτ. (5.16)

From (5.13) and (5.15), we observe that

2φ(t)φ′′(t) = 2((2y(t) + ε−1‖u0‖2
2)y

′′(t) + 2(y′(t))2)φ(t)

= 2(2y(t) + ε−1‖u0‖2
2)y

′′(t)φ(t) + 4(y′(t))2φ(t)

= 2(2y(t) + ε−1‖u0‖2
2)y

′′(t)φ(t) + (φ′(t))2 + δ(y′(t))2. (5.17)

Now, combining (5.17), (5.14) and the definition of δ, we obtain

2φ(t)φ′′(t) − (1 + α)(φ′(t))2

= 2(2y(t) + ε−1‖u0‖2
2)y

′′(t)φ(t) + (φ′(t))2 + δ(y′(t))2 − (1 + α)(φ′(t))2

= 2(2y(t) + ε−1‖u0‖2
2)y

′′(t)φ(t) − α(φ′(t))2 + δ(y′(t))2

= 2(2y(t) + ε−1‖u0‖2
2)y

′′(t)φ(t) − α(4φ(t) − δ)(y′(t))2 + δ(y′(t))2

= 2(2y(t) + ε−1‖u0‖2
2)y

′′(t)φ(t) − 4αφ(t)(y′(t))2 + δ(1 + α)(y′(t))2

> 2φ(t)(2y(t) + ε−1‖u0‖2
2)y

′′(t) − 4αφ(t)(y′(t))2

= 2φ(t)((2y(t) + ε−1‖u0‖2
2)y

′′(t) − 2α(y′(t))2).
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By (5.11), the fact that e2mBt > 1, (5.16) and (1.4), we compute

(2y(t) + ε−1‖u0‖2
2)y

′′(t) − 2α(y′(t))2

> (2y(t) + ε−1‖u0‖2
2)

(
mεα‖u0‖2

2e
2mBt + 2mα

∫ t

0

‖uτ‖2
2dτ

)
− 2α(y′(t))2

> mα(2y(t) + ε−1‖u0‖2
2)

(
ε‖u0‖2

2 + 2
∫ t

0

‖uτ‖2
2dτ

)
− 2α(y′(t))2

= mα

(
2ε‖u0‖2

2y(t) + ‖u0‖4
2 + 4y(t)

∫ t

0

‖uτ‖2
2dτ + 2ε−1‖u0‖2

2

∫ t

0

‖uτ‖2
2dτ

)
− 2α(y′(t))2

≥ (mα − 2α)(y′(t))2 ≥ 0,

that is

φ(t)φ′′(t) − 1 + α

2
(φ′(t))2 > 0,

which implies that

(φ−β(t))′′ = − β

φβ+2
(φ′′(t)φ(t) − (β + 1)(φ′(t))2) < 0, β =

α − 1
2

> 0.

Since φ(0) > 0 and φ′(0) > 0, by Lemma 3.4, it follows that there exists a

0 < t∗ ≤ 2φ(0)
(α − 1)φ′(0)

=
c

(α − 1)ε−1‖u0‖4
2

such that

lim
t→t∗

φ−β(t) = 0

and

lim
t→t∗

φ(t) = +∞,

which contradicts T = +∞. Now, by considering the continuity of φ with respect to y, we can
conclude that y(t) tends to infinity at some finite time.
Case II J(u(t)) < 0 for some t > 0.

Since J(u) is continuous with respect to t, for J(u0) > 0 and (3.23) there must exist a
time t1 > 0 such that J(u) < 0 for t > t1 and J(u(t1)) = 0. We choose u(t1) as a new initial
datum of problem (1.1)–(1.3), then Lemma 5.1 gives u ∈ N− for t > t1. Similar to the proof of
Theorem 3.3, we obtain the blow-up of solution in finite time.

Combining Case I and Case II, we conclude the blow-up of solution in finite time. �
Since J(u0) < A‖u0‖m

2 indicates I(u) < 0, we can get the same lower bound of blow-up
time as J(u0) ≤ d.

Theorem 5.3 Assume that m < p < m + 2m
n , d < J(u0) < A‖u0‖m

2 . We estimate the lower
bounded of blow-up time of solution for problem (1.1)–(1.3) as follows

T ≥ ‖u0‖2−pη
2

(pη − 2)C
p

1− pθ
m

G

,

where CG, η and θ are defined in Theorem 3.6.
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Proof By Lemma 5.1, we know I(u) < 0. Then the remainder proof is similar to Theorem
3.6. �

To verify the validity of the conditions on the initial data required in Theorem 5.2, and also
the confusion caused by the restriction J(u0) > 0 and J(u0) < d, we give the following two
remarks to clarify above two issues.

Remark 5.4 (Validity of conditions J(u0) > 0 and (5.1)) Here we claim that there exist some
data which satisfy the conditions J(u0) < A‖u0‖m

2 and J(u0) > 0, where A = Cm
1 Cm

2 (p−m)
mp , C1

and C2 are defined by (3.10) and (3.11) respectively, required in Theorem 5.2. Let u0 = aφ,
where a > 0 is some positive constant, φ is non-zero function in W 1,p

0 (Ω) that will be defined
later. First, fix φ ∈ W 1,p

0 (Ω) such that for a > 0, which will also be defined later, we have

‖u0‖m
2 = am‖φ‖m

2 > 0. (5.18)

For this fixed φ and m < p, we pick ap−m <
p‖∇φ‖m

m

m‖φ‖p
p

to ensure that

J(u0) =
1
m
‖∇u0‖m

m − 1
p
‖u0‖p

p

=
am

m
‖∇φ‖m

m − ap

p
‖φ‖p

p

= am

(
1
m
‖∇φ‖m

m − ap−m

p
‖φ‖p

p

)
> 0. (5.19)

Next, we verify the condition (5.1), i.e., J(u0) < A‖u0‖m
2 . By comparing (5.18) and (5.19),

we only need to verify

‖φ‖m
2 >

1
m‖∇φ‖m

m − ap−m

p ‖φ‖p
p

A
.

A simple calculation shows that we need

ap−m >
p‖∇φ‖m

m

m‖φ‖p
p

− Ap‖φ‖m
2

‖φ‖p
p

,

also ⎧⎪⎪⎨
⎪⎪⎩

p‖∇φ‖m
m

m‖φ‖p
p

− Ap‖φ‖m
2

‖φ‖p
p

< ap−m <
p‖∇φ‖m

m

m‖φ‖p
p

, if
p‖∇φ‖m

m

m‖φ‖p
p

− Ap‖φ‖m
2

‖φ‖p
p

> 0;

0 < ap−m <
p‖∇φ‖m

m

m‖φ‖p
p

, if
p‖∇φ‖m

m

m‖φ‖p
p

− Ap‖φ‖m
2

‖φ‖p
p

< 0.

Hence, there exists an initial value u0 = aφ to satisfy J(u0) > 0 and (5.1).

Remark 5.5 (Some comments on J(u0) < d and J(u0) > 0) In the studies of the relations
between the initial data and the global well-posedness of the solution to problem (1.1)–(1.3),
we usually consider three different levels of the initial energy related the potential well depth
d, namely sub-critical, critical and sup-critical initial energy levels, included in the arbitrary
positive case in the present paper. As we have known for the sub-critical initial energy and
critical initial energy that we can well divide the manifold of the initial data for the global
existence (W defined in (2.1)) and the finite time blow-up (V defined in (2.2)) of the solution
by the signs of the Nehari functional. In other words, we have well classified the initial data by
above two manifolds, the stable manifold W and the unstable manifold V , for both sub-critical
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and critical initial energy cases, which can be regarded as the “threshold result” or so-called
sharp condition described in Theorem 3.1 and Theorem 3.3 for the sub-critical initial energy
case, also Theorem 4.1 and Theorem 4.3 for the critical initial energy case. Naturally, we are
expected to extend above results parallelly to the sup-critical initial energy case, i.e., J(u0) > d.
Unfortunately, for this case (J(u0) > d) we can only obtain some sufficient conditions of the
finite time blow-up of solution as shown in Theorem 5.2 for J(u0) > 0. Obviously, there is an
overlap between 0 < J(u0) ≤ d and J(u0) > 0. In the proof of Theorem 5.2 for the sup-critical
initial energy case, the condition (5.1) is valid for both J(u0) > d and 0 < J(u0) ≤ d. The
“sharp condition” for the well-posedness of solution obtained for the sub-critical and critical
initial energy cases implies that the condition (5.1) for the high energy blow-up is stronger than
the condition required in Theorem 3.3 and Theorem 4.3 for the sub-critical and critical initial
energy case respectively, i.e., I(u0) < 0. Although the condition (5.1) is the best we can find
up to now, how to find the better conditions for the finite time blow-up of the solution at high
initial energy level is still an interesting problem. Another unsolved problem is how to prove the
global existence of the solution at the sup-critical initial energy level. Indeed, for the standard
parabolic equation [14, 41], it has been proved that for the arbitrary positive initial energy,
there exist initial data leading to global solution, and also the initial data leading to the finite
time blow-up solution. However, for the m-Laplacian parabolic equations, we cannot establish
the similar conclusion because of the absence of the maximum principle and the comparison
principle, which leads to the method for treating the classical parabolic equations invalid for
the corresponding problem at the sup-critical initial energy level.

Acknowledgements We thank the referees for their time and comments.

References
[1] Akagi, G.: Local existence of solutions to some degenerate parabolic equation associated with the p-

Laplacian. J. Differential Equations, 241, 359–385 (2007)

[2] Akinsont, C., Jones, C. W.: Similarity solutions in some nonlinear diffusion problems and in boundary-layer

flow of a pseudo-plastic fluid. Quart. J. Mech. Appl. Math., 37, 193–211 (1974)

[3] Angenent, S. B., Aronson, D. G.: Non-axial self-similar hole filling for the porous medium equation. J.

Amer. Math. Soc., 14, 737–782 (2001)

[4] Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Comm. Pure Appl. Math., 55,

949–1032 (2002)

[5] Berestycki, H., Hamel, F., Nadirashvili, N.: The speed of propagation for KPP type problems. I. Periodic

framework. J. Eur. Math. Soc., 7, 173–213 (2005)

[6] Berestycki, H., Hamel, F., Nadirashvili, N.: The speed of propagation for KPP type problems. II. General

domains. J. Amer. Math. Soc., 23, 1–34 (2010)

[7] Calvo, J., Campos, J., Caselles, V., et al.: Pattern formation in a flux limited reaction-diffusion equation

of porous media type. Invent. Math., 206, 57–108 (2016)

[8] Chung, S. Y., Choi, M. H.: A new condition for the concavity method of blow-up solutions to p-Laplacian

parabolic equations. J. Differential Equations, 12, 6384–6399 (2018)

[9] Choe, H. J., Kim, J.: Regularity for the interfaces of evolutionary p-Laplacian functions. SIAM J. Math.

Anal., 26, 791–819 (1995)

[10] Dahlberg, B. E. J., Garlos, E. K.: Nonnegative solutions of the initial-Dirichlet problem for generalized

porous medium equations in cylinders. J. Amer. Math. Soc., 1, 401–412 (1988)

[11] Daskalopoulos, P., Hamilton, R.: Regularity of the free boundary for the porous medium equation. J.

Amer. Math. Soc., 11, 899–965 (1998)



m-Laplacian Parabolic Problem 1523

[12] Enguica, R., Gavioli, A., Sanchez, L.: A class of singular first order differential equations with applications

in reaction-diffusion. Discrete Contin. Dyn. Syst., 33, 173–191 (2013)

[13] Fisher, R. A.: The wave of advance of advantageous genes. Ann. Eugenics, 7, 335–369 (1937)

[14] Gazzola, F., Weth, T.: Finite time blow-up and global solutions for semilinear parabolic equations with

initial data at high energy level. Differential Integral Equations, 18, 961–990 (2005)

[15] Hadeler, K. P., Rothe, F.: Travelling fronts in nonlinear diffusion equations. J. Math. Biol., 2, 251–263

(1975)

[16] Ishii, H.: Asymptotic stability and blowing up of solutions of some nonlinear equations. J. Differential

Equations, 26, 291–319 (1977)

[17] Jin, C. H., Yin, J. X.: Traveling wavefronts for a time delayed non-Newtonian filtration equation. Phys. D,

241, 1789–1803 (2012)

[18] Juutinen, P., Lindqvist, P., Manfredi, J. J.: On the equivalence of viscosity solutions and weak solutions

for a quasi-linear equation. SIAM J. Math. Anal., 33, 699–717 (2001)

[19] Kalashnikov, A. S.: Some problems of the qualtative theory of nonlinear degenerate second-order parabolic

equation. Russian Math. Surveys, 42, 169–222 (1987)

[20] Khelghati, A., Baghaei, K.: Blow-up phenomena for a nonlocal semilinear parabolic equation with positive

initial energy. Comput. Math. Appl., 70, 896–902 (2015)
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