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1. Introduction and main results

Theory of network (or graph) has a wide range of applications in various fields such as signal processing, image
processing, data clustering and machine learning. (For example, see [1-3].) A graph G = (V, E), where V denotes the
vertex set and E denotes the edge set, is said to be locally finite if for any x € V, there are only finite y € V such that
xy € E. A graph is connected if any two vertices x and y can be connected via finite edges. For any xy € E, we assume
that its weight wy, > 0 and wy, = wy,. The degree of x € V is defined by deg(x) = Zy~x wxy, Where we write y ~ x if
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xy € E. The distance d(x, y) of two vertices x, y € V is defined by the minimal number of edges which connect these two
vertices. The measure u : V — R* is defined to be a finite positive function on G.

In recent years, there have been many studies on the existence and multiplicity of solutions to nonlinear elliptic
equations on discrete graphs. For example, see [4-11] and their references. In [7], Grigor'yan, Lin and Yang studied
nonlinear Schrédinger equations

— Au+b(x)u =f(x,u) inV (1.1)

on a connected locally finite graph G. By applying the mountain pass theorem, they established the existence of strictly
positive solutions of (1.1) when f satisfies the so-called Ambrosetti-Rabinowitz ((AR) for short) condition, and the
potential b : V — R™ has a positive lower bound and satisfies one of the following hypotheses:

(B1) b(x) — 400 as d(x, xg) — +oc for some fixed xq € V;
(By) 1/b(x) € LY(V).

In [11], Zhang and Zhao established the existence and convergence (as A — +00) of ground state solutions for Eq. (1.1),
when b(x) = Aa(x) + 1 and f(x, u) = |u[’~'u, where a(x) > 0 satisfies (B;) and the potential well £2 = {x € V : a(x) = 0}
is a non-empty connected and bounded domain in V. Similar results for p-Laplacian equations and biharmonic equations
on locally finite graphs can be found in [12,13].

In this paper, we consider the following logarithmic Schrédinger equation

— Au+ra(x)u =ulogu?* inV (12)

on a connected locally finite graph G = (V, E), where the parameter » > 0. We recall that the logarithmic Schrédinger
equation in the Euclidean space

— Au+ Ab(x)u = ulogu® in RV (1.3)

has recently received much attention. For example, see [14-22] and references therein. Logarithmic nonlinear problems
have a wide range of applications in fields such as quantum mechanics, quantum optics, nuclear physics, transport and
diffusion phenomena, Bose-Einstein condensation and etc. Interested readers may refer to [23-25].

Different approaches have been developed to study the existence and multiplicity of solutions for nonlinear Schrédinger
equations with logarithmic nonlinearities. Cazenave [ 14] worked in an Orlicz space endowed with a Luxemburg type norm
in order to make the associated energy functional of Eq. (1.3) to be C!. Squassina and Szulkin [20] studied the existence
of multiple solutions by using non-smooth critical point theory (see also [15,16,18]). Tanaka and Zhang [21] applied the
penalization technique to study multi-bump solutions of Eq. (1.3). For the idea of penalization, see also [17,26,27]. In [22],
Wang and Zhang proved that the ground state solutions of the power-law scalar field equations —Au 4 Au = |[u[P~2u, as
p | 2, converge to the ground state solution of the logarithmic-law equation —Au = Aulog u®. Recently, several results
are devoted to studying the sign-changing solutions. Chen and Tang [28] established the existence of least energy sign-
changing solutions of some logarithmic Schrédinger equation in bounded domains of RY using the constraint variational
method. Shuai [19] obtained the existence of least energy sign-changing solutions for Eq. (1.3) under different types
of potentials by using the directional derivative and constrained minimization method. Zhang and Wang investigated,
in [29], the existence and concentration behaviors of sign-changing solutions for logarithmic scalar field equations in the
semiclassical setting. Ji [30] established the existence and multiplicity of multi-bump type nodal solutions for Eq. (1.3).
For more studies on logarithmic nonlinear equations, one may refer to [14-16,18,20,31,32] and their references.

The goal of this work is to show the existence of least energy sign-changing solutions of (1.2) and their asymptotic
behavior as A — +o0. To the best of our knowledge, there is no result on sign-changing solutions for logarithmic
Schrédinger problems on locally finite graphs.

In the sequel of this paper, we make the assumption that there exists a constant pmin > 0 such that the measure
wu(x) > wmin > 0 for all x € V. As for the potential a = a(x), we assume that:

(A1) a(x) > 0 and the potential well £2 = {x € V : a(x) = 0} is a non-empty, connected and bounded domain in V;
(A) there exists M > 0 such that the volume of the set Dy is finite, namely,

Vol(Dy) = ) ulx) < oo,
xeDy

where Dy = {x € V : a(x) < M}.

To explain our result, we first introduce some necessary notations. For any function u : V — R, the graph Laplacian
of u is defined by

1
Aux) =~ yZ Wy (U(y) — u(x)) . (1.4)
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The integral of u over V is defined by fv udp =Y,y m(x)u(x), and the gradient form of the two functions u, v on V is
defined by

1
2u(x)

Write I'(u) = I'(u, u), and sometimes we use VuVuv to replace I'(u, v). The length of the gradient of u is defined by

172
1
[Vu|(x) =/ T'(u)x) = (2/¢L(X) Zfl)xy (u(y) — u(x))2> . (1.6)

y~x

I(u, v)(x) = D oy ((y) — u(x) (v(y) = v(x)) - (15)

y~x

Denote by C.(V) the set of all functions with compact support, and let H!(V) be the completion of C.(V) under the norm

172
g, = (/ (IVul2 +12) du> .
\%4

Then, H'(V) is a Hilbert space with the inner product
(u,v) = / (I'(u,v)+uv)du, Vu, veH(V).
4

. 1
We write ||ull, = (fv |u|”du) /P for p € [1, +00) and ||u|jc = SUP,ey |U(X)|.
For each A > 0 we introduce a space

My, = {u eH\(V): / ra(xuldu < +oo}
with norm '
Jul2, = /V (IVuP + GiaGe) + 1) dp,
which is induced by the inner product
(U, vy, = /v (I'(u, v) + (Aa(x) + Duv)du, Yu, v € H;.

Clearly, #; is also a Hilbert space.
Note that Eq. (1.2) is formally associated with the energy functional J, : H!(V) — R U {400} given by

Ji(u) = %/ (IVul” + (ra(x) + D) du — %fuz log u?dp. (1.7)
14 v

Clearly, J; fails to be C! in H(V). In fact, for some G = (V, E) with suitable measure p, there exists u € H'(V) but
J, u?logu?du = —oo. (For example, see [33].)
When a(x) satisfies (A1) and (A,), we consider the functional J; in (1.7) on the set

Dy = {u €Hy / u?|logu?|dp < oo}.
\'%

That is,

1

1
Ju(u) = EIIUIIE{x -3 / u?logu?du, Vu e D;.
Vv

Define the Nehari manifold and sign-changing Nehari set respectively by
N, ={u e D, \ {0} : Jj(u) - u =0},

M, ={u €Dy u" #0and Jj(u)-ut =J[(u) - u” =0},

where ut = max{u, 0} and u~ = min{u, 0}. Clearly, N, contains all the nontrivial solutions of Eq. (1.2) and the set M,
contains all the sign-changing solutions of Eq. (1.2). Set

¢, = inf J,(u), my, = inf J,(u).
A uemh( ) A ueMl]x( )
Our main results are as follows.

Theorem 1.1. Suppose that G = (V, E) is a connected locally finite graph and the potential a : V — R satisfies conditions
(A1) and (A;). Then, there exists a constant Ag > 0 such that for all . > A9, Eq. (1.2) admits a least energy sign-changing
solution u, € D; such that J,(u,) = m,. Moreover, m;, > 2c;.

3
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We recall that D € V is a bounded domain if the distance d(x, y) between any x,y € D is uniformly bounded. The
boundary of D is defined by

oD={y & D : there exists x € D such that xy € E}

and the interior of D is denoted by D°. Obviously, we have D° = D.
Set 2 = {x € V :a(x) = 0}. Let H(}(Q) be the completion of C.(£2) under the norm

1/2
”u”H(}(_Q) = (./_Quag |VU|2d/,L+ _/;2 uzdu) .

Then, H(}(Q) is a Hilbert space with the inner product

(u, v) = f I'(u, v)du +f uvdu, Vu, ve H&(.Q).
2UIR 2

Consider the following Dirichlet problem

{—Au:ulogu2 in 2,

u(x)=0 on 982. (18)

The energy functional J : H(}(.Q) — R associated with problem (1.8) is given by

1 1
It ity o, = 5 [ ¥ logidu, vue )

Define
No = {u € Hy(£2)\ {0} : Jo(u) - u = 0},

Mg = {u e Hy(2): u™ #0and Jy(u) - u™ =Jo(u)-u” =0}.
Set

o = uérj{/fgh(u), mo = uel/r\l/lfnf.o(u)

Similar to Theorem 1.1, problem (1.8) also has a least energy sign-changing solution.

Theorem 1.2. let G = (V,E) be a connected locally finite graph. Assume 2 = {x € V : a(x) = 0} is a non-empty,
connected and bounded domain in V. Then problem (1.8) admits a least energy sign-changing solution uy € H(}(.Q) such that
Jo(ug) = mg. Moreover, mg > 2Cq,.

Finally, we prove that the least energy sign-changing solution u; converges to a least energy sign-changing solution
of problem (1.8).

Theorem 1.3. Under the assumptions of Theorem 1.1, we conclude that for any sequence A, — 400, up to a subsequence, the
corresponding least energy sign-changing solution u,, of Eq. (1.2) converges in H (V) to a least energy sign-changing solution
of problem (1.8).

One of the main challenges in proving Theorem 1.1-1.3 is to deal with the logarithmic term in Eq. (1.2). In the
Euclidean space, the logarithmic Sobolev inequality plays a significant role in studying logarithmic Schrodinger equation
(see [19,20,27] etc.). While, on discrete graphs, the logarithmic Sobolev inequality is only available under a positive
curvature condition, which requires the measure u to be finite (see [34] for details). In our case, the measure u has
a uniform positive lower bound, which violates the positive curvature condition. To overcome this difficulty, we will
develop new and delicate arguments which do not rely on the logarithmic Sobolev inequality.

Furthermore, the associated energy functional with Eq. (1.2) is not well-defined in the setting of discrete graphs
(see [33]). Inspired by ideas in [19,22], we will restrict u? logu® e L'(V) which is suitable for finite energy solutions.
However, new challenge arises since the techniques in [19,22] are not applicable here because the graph Laplacian
operator is non-local. To be precise, in [19], the following decomposition

Iw) =1+ 1), () u)= @), ut)+ ('), u), (1.9)

plays a key role in studying nodal solutions. Here I is the corresponding energy functional. But in our case, such a
decomposition does not hold. Actually, by a direct computation, it follows that for each u € D, \ {0},

1
L) =Lwh) + L) - EKv(u),

) = ) = K,
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where Ky (u) = )",y Zy~x Wyy [u+(x)u‘(y) + u‘(x)u+(y)] < 0, see Section 2 for details. Clearly, J; (u) # J;(u™)+J,(u™) and
(), u) # (™), ut) + (5 (u™), u™), which imply that (1.9) fails. Motivated by [35,36], we will develop new variational
arguments involving nonlocal operator based on directional derivative to the logarithmic Schrédinger equation on locally
finite graphs.

The paper is organized as follows. In Section 2, we introduce some notations, definitions and preliminary lemmas. In
Section 3, we apply the Nehari manifold method to prove the existence of least energy sign-changing solution of Eq. (1.2)
and the Dirichlet problem (1.8). In Section 4, we give the proof of Theorem 1.3.

2. Some preliminary results
2.1. Some definitions
To prove Theorem 1.1, we need the definition of the directional derivative.

Definition 2.1. Given u € D, and ¢ € C.(V), the derivative of J, in the direction ¢ at u, denoted by J;(u) - ¢, is defined
as lim_q+ 1 [Ju(u + t@) — Ji(u)].
It is easy to check that

K- ¢ = [ (o) + Gato+ gy~ [ uplogian
Vv v

In fact, it suffices to show the following

lim U (F'(u+ t¢) — I'(u)) du]
Vv

t—0t+ t

111
= lim {2 DO o (((+ t9)y) — (u+ tp(x))* — (uly) — u(x))z)]
xeV y~x

t—0t 2t
xeV y~x

1
= lim — [Z D g (£ (@) — $(x))” + 2t (uly) — u(x)) ($(y) — ¢(x)>)}

=Y ") o W) — u(x) ($y) — $(x))

xeV y~x

:z/ I'(u, ¢)du.
|4

Definition 2.2.

(1) For u, v € Dy, we define
Jw)-vi= / (I'(u, v) + Aa(x)uv) du — / uv log u?dpu.
v %

Clearly, fv uv log u?dp is well-defined for u, v € D;.

(2) We say that u € , is a critical point of J, if u € D, and J{(u)- v = 0 for all v € D,. We also say that d;, € Risa
critical value for J, if there exists a critical point u € H; such that J;, (u) = d,.

It is easily seen that, u is a weak solution to Eq. (1.2) if and only if u is a critical point of J;.
For the functional J of problem (1.8), note that, for any 0 < ¢ < 1, there exists C. > 0 such that

[u” log u?| < Co(Jul>™* + [ul***).

Since H'(£2) < [P(£2) is compact for p € [1, +o0], by a standard argument, we have J, € C'(H;(£2), R) and
Jo(u)-v= f VuVudp — / uv log udpu, Yu, v € Hj(£2).
2UIR 2
Clearly, u is a weak solution to problem (1.8) if and only if u is a critical point of Jg.
Lemma 2.3. Ifu € D, is a weak solution of Eq. (1.2), then u is a point-wise solution of Eq. (1.2).
Proof. If u € D, is a weak solution of (1.2), then for any ¢ € D;, there holds

/(F(u,¢)+ka(><)u<p)du=/uwlogu2du~
14 Vv
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Using C.(V) is dense in D, and w,, is symmetric, for any ¢ € C.(V), by integration by parts, we have

/V =2 D03 ey ) — ) (09) — 900)

er y~x
1
=522 0 W) —ux) ¢ ZZ%(u u(x)) p(x)
xeV y~x er y~xX
——fZwayw(y—u X)) g(x ——Zwayw u(x) p(x)
yev x~y xeV y~x
==Y oy (u(y) — u(x)) e(x)
xeV y~x
- / Aupdu,
v
which gives
/ (—Au + ra(x)u) pdp = f ug logu?du, Vo e C(V). (2.1)
v v
For any fixed y € V, take a test function ¢ : V — R in (2.1) with
L x=y,
p(x) = :0’ X%y,

Clearly, ¢ € D, and —Au(y) + ra(y)u(y) — u(y)log (u(y))?> = 0. Since y is arbitrary, we conclude that u is a point-wise
solution of (1.2). O

Similarly, we obtain

Lemma 24. Ifu e H(}(.Q) is a weak solution of problem (1.8), then u is a point-wise solution of problem (1.8).

Next, we have the following observations:

/ Iu™ +u)du
v

xeV y~x
2.2)
S o [0~ wt) () w )’ = 2 [ut )+ u )]
xeV y~x
—/ ( )du+/F( i — Ko ()
\4 14
/I“(uJr +u,ut)du
14
=Y D oy [ un ) — W+ uT )] [ut () — ut ()]
xeV y~x
(2.3)
= S o [0 [t 0w )+ (w0
xeV y~x
=/ ()i — 2Ky ()
\%4
Similarly, we have
/1"(uJr +u,u)dp = / T'(u™)dp — 1Ky(u). (2.4)
\4 \%4 2

Then, for each u € D;, we have

1
L) =Lwh) + L) - EKv(u),

) = ) = K,



X. Chang, V.D. Radulescu, R. Wang et al. Communications in Nonlinear Science and Numerical Simulation 125 (2023) 107418
and for each u € H}(£2),
Jolu) = Jo(u™) +Ja(u) ~ S Kg(u),
o) - u* = () - u — ZKaw)
where Ko () := Y\ coung Doyx @ [UT (U™ () + u= (ut ()]
2.2. Sobolev embedding
In this subsection, we establish a Sobolev embedding result.

Lemma 2.5. If u(x) > wumin > 0 and a(x) satisfies (A1) — (Az), then there exist a constant Ao > 0 such that, for all A > A,
the space H, is compactly embedded into [P(V) for all 2 < p < +o0.

Proof. For all A > 0, at any vertex xo € V, by (A1) we have

lull3, :/ (IVul* + (ra(x) + 1)) dp
v

z/uzdu
\4

= uw’(x)

xeV

zﬂminuz(xo)»

which implies that |u(xg)] < /ﬁllullm- Thus #; <> L[°°(V) continuously. Hence, using interpolation gives that

H; <> [P(V) continuously for all 2 < p < oo. Assuming {u,} is bounded in #;, we have that, up to a subsequence,
U — u in H,. In particular, {uy} C X, is also bounded in L?(V) and by the weak convergence in L?(V) it follows that, for
any ¢ € [*(V),

Jim (uk — uedy = lim XV:M X) (u(x) — u(x)) g(x) = 0. (2.5)

Take any xy € V and let

1, x = Xo,
@o(x) = {0’ X £ Xo.

Obviously, ¢o(x) € L?(V). By substituting ¢, into (2.5), we can get that limy_, o, ux(x) = u(x) for any fixed x € V.
We now prove that there exist a constant Aq > 0 such that for all A > Ay, we have uy — uin [P(V)forall 2 < p < oo.
Since uy is bounded in #; and u € H,, there exists some constant C; such that

A / a(X)(ue — wdps < Cr.
\%4

We claim that, up to a subsequence,

lim /(uk—u du = 0.

k——+o0

In fact, since a(x) satisfies (A,), there exists some M > 0 such that

/ (- uPdps = / (g — uPdpe + / (4 — uPd
\%4 Dy V\Dy

< / (- wdpe + / L)y — wdps
Dy M

V\Dp

G
< | (u—w’du+ —
/. i

We can see that, for all ¢ > 0, there exists Ag > 0 such that when A > A(, we have A%, < &. Moreover, up to a subsequence,
we have

lim (u — uYdp = 0.
k—+o00 Dy
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Hence the claim holds. Then, in view of |ju;, — ullfoc < fv |ux — u|?dp, we obtain, for any 2 < p < oo,

— HMmin

p=2 p
1 2 2
/ lug — uPdp < ( ) (/ luy — u|2du> )
1% Mmin v

Therefore, up to a subsequence, u, — u in [P(V) forall 2 < p < 4o00. O

3. Existence of least energy sign-changing solutions

This section is devoted to proving that Eq. (1.2), as well as (1.8), admits a least energy sign-changing solution by using
the Nehari manifold method based on directional derivative.

The following result will be useful.

Lemma 3.1. Forallu € M, and s, t > 0, there holds
Ju(u) = J(sut +tu™).
The “=” holds if and only if s =t = 1.

Proof. For any u € M;,
1, 1,
o (0) =) = )~ ()
1, 1,
S5 = ) ut )~ )
1 1 2 2 1 1 2 2 1
= (51t - 5 [ g Pan) - (Giurig, - 3 [ Plog e - S1i2)
1 _ 1 _2 _2 1 _ 1 _2 _2 1
(Gt = 5 [P ogi e ) - (Gt = 5 [ os i P S )
1 1
S EN R
For s, t > 0, we have
/ T(su™ 4+ tu™)du
Vv

=% Z Z Wxy [(Su+ + ) y) — (sut + ur)(x)]2

xeV y~x

(3.1)
1
=3 DD oy [(su*(y) —sut(0)” + () — - (0)” = 2st [ut (XU~ (y) + uf(x)lﬁ(}’)]]
xeV y~x
=/ T(suT)du + / T(tu™) — stKy(u).
v v

Hence, we have
Ja(su™ +tu)

st
=/, (su™) + Ji(tu™) — EKV(u)
27 (14 1, 200+ 012 4 427 (11— 1, 2, -2 St
=s(u™) — 55 logs“|lu™ |3 + tJu(u™) — Et logt“|lu™||; — EKV(H)
1 1 _ 1, _
=5’ [Mu*) - - u*] — 55 logs”Ju” |3 + ¢* [JA(U IEETAOR }
1 _ st
- Etz log t?||lu™[|% — EKV(U)
2 PN TP 1, 201,412
=s7 | hW(u™) = ") - u" + —Ky(u) | — =s"logs”[u™|l3
2 4 2
1, - 1 1 _ st
+ ¢ []A(U_) — S+ KV(U)] - Etz log t?[|u~ |13 — =Ky (u)

4 2
(s —t)

4
8

1 1
=5(52 — s logs?)ut | + 5“2 — t2logt?)|Ju~|I2 + Ky (w).



X. Chang, V.D. Radulescu, R. Wang et al. Communications in Nonlinear Science and Numerical Simulation 125 (2023) 107418
Therefore, defining f(t) = 1> — t?log 2 — 1 for any T > 0, we have

Jusut + ) — Ji(u)

1 1 s —t)?
=5(s2 —s?logs® — D|ut |2 + E(t2 —t?logt? — 1)|ju” |3 + ( 7 )

(s —t)?
4

Ky(u)

1 1

=SF I3+ SFOIu I3 + Ky (u).

Since f(0) = —1,f(1)=0and f(r) < 0if 7 # 1, %K\/(u) < 0 for any s # t, the conclusions follow. O
Next we show M; # .

Lemma 3.2. Ifu € D; \ {0} with u® s 0, then there exists a unique positive number pair (s, t,) satisfying s,u* +t,u™ € M,.

Proof. Fors,t > 0, we have

/ rsut + ™, sut)du = / I(su™)dp — sz—tl(v(u) (3.2)
v v
and
/ F(su™ 4w, tw™)du = / I(tu™)dp — %K‘/(u). (3.3)
v v
Let

gi(s, t) =J;(su™ 4 tu”) - (su™)

= (su") - (su) = THu(w)

2 2 2 2 2 2 2 22 » St
=S ||U+||HA —S /|U+| log |u™|"du — s* logs*||u™ |13 — s*|lu™ |15 — EKV(U)
v

and
s, t) =) (sut +tu™) - (tu™)
=J(tu) () = S Kla)

_ 2 2 _ _ st
=t*|lu IIiA—tZ/Iu |log |u "dp — £ log * Ju™ |3 — £ lu” I3 — — Ky (w).
Vv

We can see that there exists r; > 0 small enough and R; > 0 large enough such that

g1(s,5) > 0, gy(s,s) > 0 forall s € (0, 1),
g1(s,5) < 0, gu(s,s) < 0 for all s € (R, +00).

Hence, there exist 0 < r < R such that

gi(r,t) >0, gi(R, t) <O0forallt e [r,R],
2(s,r) >0, g2(s,R) < OforallselrR].

Applying Miranda’s theorem [37], there exist some s,, t, € [r, R] such that gi(sy, ty) = g2(Su, ty) = 0, which implies that
ST L UT € M,y
In what follows, we prove the uniqueness of the pair (sy, t,). If u € M;, then

0= Jj(w)-u =)~ Ky (3.4)
and
1
0=J(uw)-u =) u — SKv(w). (3.5)
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We claim that (s,, t,) = (1, 1) is the unique pair of positive numbers such that s,u™ +t,u~ € M;. Indeed, if (s, t,) = (1, 1)
satisfies s,u™ + t,u~ € M,, without loss of generality, we assume that 0 < s, < t,. Then

0 =])/L(5uu7L + tyu”) - (suu™)

Sut;
=J} (st™) - (suu™) — ”2”I<v(u)
, Sut, 3.6
=s2Ji(uh)-ut —s2logs?jut |3 — %Kv(u) (3.6)
2
s
=suiu") - u —splogsyllutll; — S Ky(w)
and
0 =/ (syu™ + tyu™) - (tyu™)
Sut,
=J;(tyu”) - (tu™) — %Kv(u)
Sulu (3.7)

2 — — 2 2 -2
=tu])/u(u )'u _tu IOgtu”u “2_

5 Ky (u)

’ — — — tz
<tfi(u™)-u” —tlogtl|u ||§—5“1<V(u).

Together with (3.4) and (3.6), we get
s logsﬁf lutPdu > 0,
1%
Similarly, by (3.5) and (3.7), we can deduce that
ty logtif lu~’du <0,
%

which implies that s, > 1 and t, < 1. In view of 0 < 5, < t, it follows that s, =t, = 1.
If u g M, let (sq, t;) and (sz, t;) be the two different positive pairs such that v; := sju™ + tju™ € M;,i = 1, 2, which
shows that

S2 t _
—v1+ + —v; = v € M.
S$1 tq

By similar analysis as above, we can obtain that
S2 t

= =1.
S t1

This implies that (s, t;) = (s2, tz) and the uniqueness is obtained. O

Lemma 3.3. Let u € D; with u* # 0 such that J; (u) - u* < 0. Then the unique pair (s, t,) obtained in Lemma 3.2 satisfies
Sy, ty € (0, 1]. In particular, the “=” holds if and only if s, = t, = 1.

Proof. Without loss of generality, we assume that 0 < t, < s,. Since s,u™ + t,u~ € M,, then
0 =J; (suut + tyu™) - (suu™)
Sut
=s2Jj(u") - ut —s*logs2|lut |3 — L’T“K‘/(u).

Note that Ky(x, y) < 0. Since J;(u) - u™ < 0, from (3.8), we can deduce that

1
0 <s? (]i(uﬂ ut - EKv(x,y)) — szlogsaflu™ |3
=siJ(u) - u™ — s} log s} ||ut13
< —s’logsZ|lu™3,
which implies that 0 < s; < 1. Therefore,0 < t, <s, < 1. O

Similarly, we have

Lemma 34. Ifu € H(}(.Q) \ {0} with u* # 0, then there exists a unique positive number pair (s, t,) satisfying
suut + tuT € Mo.

10
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Lemma 3.5. Let u € H}($2) with u* # 0 such that J,(u) - u* < 0. Then the unique pair (s, t,) obtained in Lemma 3.4
satisfies sy, t, € (0, 1]. In particular, the “=" holds if and only if s, = t, = 1.

Now we prove that the minimizer of J, on M; is achieved.
Lemma 3.6. Supposed (A1) and (A;) hold. Then m; > 0 is achieved.

Proof. Taking a minimizing sequence {u;} C M; of J, yields

1
kEToo]x(Uk) :kEToo |: h(ug) — Efi(uk) ul - ]A(Uk) ]

k—+o0

1 1
= l — +112 — =12 = .
Jim (znuk 13+ 5l 13 ) = m,

By Lemma 2.5, the Holder’s inequality and Young inequality, for any ¢ € (0, 1), there exist C., C/, C/ > 0 such that

€y Lo g
2 2 2 2 2+4¢
f|u,f| log Ju* 2du s/uu,ﬂ log | )*duscg/wﬁ “du
1% Vv Vv

1 1
2 2
- (/ qu|sz> (/ Ay )
v

1+
=G ||u;< Izl 1525

1
= lim [x(u,f) - Elﬁ(u,f) w4 L) = ) - uk] (3.9)

2
|Iuk 5., + C N1,

Since {ux} C M;, we deduce that

1
i 3, = SKV(x.¥)

2 2
=/ Juic | log |uic ["dpe + lluic |13 (3.10)
*Iluk 15, + C/lluy || C 13
where K" erv Zyw [uk (Xuy, (v) + uk’(x)u;r(y)]. This together with (3.9) implies that {uf} is bounded in #; and

{ug} is also bounded in H;. Then, there exists Ao > 0 such that A > Ay, by Lemma 2.5, there exists u; € H, such that

U — u; weakly in #H;,
uy — u; point-wisely in V,
ux — uy strongly in IP(V) for p € [2, +00].

Thus, together with the weak-lower semi-continuity of norm and Fatou’s lemma, we get
2 1
[ (P -+ e+ 1t ) a— [ ;P tog 1t Py d - SKiw
\'4 \'4

gliminf[/ (r(u;)+(/\a(x)+1)|uk+|2)d /(|u,<| log [u} 1)~ du—;l<§(u)]
\%4 \%

k—+o0

=1kim+inf/ (|u,<+|2 + (i *log |uk+|2)+) du

/m*l du+/(|u 2 log lu 2)* du,

where Kj(u) =", ., >, [uf (0u; (v) + 5 ()u;f (). It follows that

j;(ux).u;r:/(l“(uf)—i-ka( M | du — /|u;| log [uf|? du—im u) < 0. (3.11)
v
Similarly, it holds that
, - _ _ _ _ 1
Jw)-u = / (r(uk)ﬂa(x)mA |2) du —/ u; | log |u; [Pdp — SKiw) <o. (3.12)
Vv 14

11
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In view of Lemmas 3.2 and 3.3, there exist two constants s, t € (0, 1] such that I = su,{r + tu, € M,. Then
<1 — 1 (3 1, . 4 1, .. _
my. < (u) = Ja(u) = (@) - (su;7) — Sf () - ()

1 1
=J(su;") — 51;(suf) -(sui) + Ja(tuy) — Eji(tu;) -(tuy))

e 2
=5 lullz + = iz

1 1
=Sl 13 + Sl 13

i 1 2, 19
< liminf Elluﬁll2 + 5l IIZ]

1 1
=liminf L) — 5J;(u,j) Uy 4Dy ) — gfi(u,?) : u,?}

- 1, 1, _
= II:TJ:?Of Jalu) — E])”(uk) : u;-: - EJ)\(uk) : uki|

= liminf, () = m;.
k— 400

This implies that s =t = 1, i.e., u, € M, satisfying J,(u,) = m,.
We claim that m; > 0. In fact, if m, = 0, we have

1 1 R DR IR,
0 =Ji () = o/ (wa) - uf = o) -uy = St 15 + 5 13-

Then, by similar arguments as in (3.10), it follows that ||uic||m = 0. However, by Lemma 2.5, for any q > 2, there exists
Cq > 0 such that

2 2 2 2
lui 13, < / || og [ui | “du < f(|uf| log [uy ) du < cq/ |z "dpe < Cllu)lg,, .
v Vv Vv

which implies
1

1)z
+
u > = > 0,
Nl = (C)

which provides a contradiction, hence the claim holds. O
The following lemma completes the proof of Theorem 1.1.

Lemma 3.7. [fu € M; with J,(u) = m,, then u is a sign-changing solution of Eq. (1.2). Moreover, m; > 2c;.

Proof. We assume by contradiction that u € M; with J;(u) = m,, but u is not a solution of Eq. (1.2). Then we can find a
function ¢ € C.(V) such that

/ (VuVe + ra(x)ue) du — / ug logu?du < —1,
\'4 \'4
which implies that, for some ¢ > 0 small enough,
1
Lsut +tu +o¢)-¢ < ) forall[s— 1|+ |t = 1|+ |o| <e.

In what follows, we estimate sup; . Ji (qur + tu™ + en(s, t)¢>), where 7 is a cut-off function such that

1 ifs—1] <4eand |t — 1| < le,
0 ifls—1]>¢cor|t—1]>c¢.

nis,t) = {

In the case of s — 1| < ¢ and |t — 1| < &, we have
I (sut +tu™ +en(s, 0)p) =) (su™ + tu™ +en(s, t)¢) — Lu(sut + tu”) + Ju(sut +tu)

1
=f(sut +tu) + / I (su™ + tu” + oen(s, t)p) - (en(s. t)g) do
0
1
=/, (su™ 4+ tu™) + en(s, t)/ I (su+ +tu” 4+ oen(s, t)¢) - ¢pdo
0

1
<h(sut +tu")— Een(s, t).

12



X. Chang, V.D. Radulescu, R. Wang et al. Communications in Nonlinear Science and Numerical Simulation 125 (2023) 107418
For the other case, thatis |[s — 1| > ¢ or |t — 1| > ¢, (s, t) = 0, the above estimate is obvious. Now since u € M,, for
(s,t) # (1, 1), by Lemma 3.1, we have J;(sut + tu™) < J;(u). Hence

I (su™ + tu™ +enls, t)g) < Ju(su™ + tu™) < Ji(u) for all (s, t) # (1, 1).
For (s,t) = (1, 1),

1 1

L (su™ + tu™ +enls, t)g) < Ja(su™ +tu™) — Sen(l =) - e.

In any case, we have Jj (qur + tu™ + en(s, t)qb) < J;,(u) = my. In particular, for0 < e < 1 —g¢,

sup  Ji (sut +tu 4+ en(s, £)p) = i, < m.

e<s,t<2—¢
Set v = sut + tu™ + en(s, t)¢ and define
H(s, t) = (Fi(s, t), Fa(s. t) = (J;(v) - v*, [ (v) - v7) .

By the definition of n, when s = ¢, t € (¢,2 — €), we have n(s, t) = 0 and s < t. Hence

Fi(e, £)=J;(su® + tu™) - (su™)

S=¢&

= |Ji(su")- (sut) — Sthv(U):|

s=¢&

st
=) ut — Sk — s* logszlluﬂlﬁ} -

F :
>[5 (Jk(uﬂ - 51<v(u)> -5 logszllu*llﬁ] -

2 2 2
= — s’ log s*[|u 13 ]s=-

=—¢e’loge?||lut|3
>0.
Whens=2—¢, t € (¢,2 —€), we have n(s,t) = 0 and s > t. Therefore,

Fi(2 — e, t)=J;(su™ +tu™) - (su')

s=2—¢

= | jysut) - (sut) SZtKv(U):|

s=2—¢

st
=¥ ) ut - EKV(U) —s log52||u+||§]

s=2—¢

i 1
<|s? (]i(u*) - EKV(U)> - logsﬂlu*”%}

s=2—¢

2 2 2
— s*logs|lu™ 5

s=2—¢
=—(2—¢)log(2 — &) |lu*l3
<0.
That is
Fi(e,t) >0, F1(2 —¢e,t) <0 forall t € (g,2 —¢).
Similarly, we have
Fy(s,e) >0, Fy(s,2—¢)<O0forallse(e,2—¢).
Thus, applying Miranda’s theorem [37], there exists (g, to) € (¢, 2—&)x (&, 2—e¢) such that U = squ™ +tou™ +en(so, to)p €
M,;,_and J, (1) < m,. This give a contradiction to the definition of m;.
Next, we prove that m, > 2c;. Assume that u € M, such that J;,(u) = m,. Then u* # 0. Similar to the proof of
Lemmas 3.2 and 3.3, we can deduce that there exists a unique s,+ € (0, 1] such that s,+u* € A}, and a unique t,- € (0, 1]
such that t,-u~ € Aj,. Similar to the proofs of Lemma 3.6 and Lemma 3.7, we can deduce that c; > 0 can be achieved.

Furthermore, if u € N, with J;(u) = c;, then u is a least energy solution.
By the definition of J, and Ky (x, y) < 0, we have

st + by ) =)+t w) = K )

>.])»(Su+ u+) +])»(tu* u- )
13
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By Lemma 3.1, we deduce that
m, = [(u" 4+ u7) = [lsyru 4 t-uT) > Julsprul) +Lt-uT) = 205

This completes the proof. O

Proof of Theorem 1.2. Similar to the proof of Theorem 1.1, we can also obtain the existence of a least energy sign-
changing solution ug of problem (1.8), which achieves the minimum mg, of the functional J; in Mg and the least energy
solution of problem (1.8), which achieves the minimum cg of the functional J, in Ng. Moreover, mg > 2c,. O

4. Convergence of least energy sign-changing solutions

In this section, we shall study the asymptotic behavior of the least energy sign-changing u; € H, of Eq. (1.2) as
A — +o0. First we show that the family of solutions {u;} is uniformly bounded above and below away from zero.

Lemma 4.1. There exists o > 0 (independent of 1) such that |[ull3;, > l[ullyiy, > o forallu € M.

Proof. Note that for all ¢ > 0, if s > e‘%, then
e2s2te > 2. (4.1)

Since u € M;, by Lemma 2.5 and (4.1), we have

1
0=f(u) u" =L u" — SKv(u)

> / (Pt + (hao) + Dl ) e~ / Py / 2 log [u* 2dy
\%4 14 \%4

2 2 2 2
=[lu*|3, —f | (IU*I + |u™|” log Ju™| )du—f , W dp
[ut|<e 2 [ut|=e 2

2 2 2 2
[, g~ [t logut P
e 2<jut|<1

lut|>1

2 £ 4 ,24¢ 2+¢
>[|ut||, — ez f|+| g lu™| du—Cg/ [u* ™ du
ut|>e

ut|>1
+12 +2+e
>|lu IIHA—C;/IH " du
v

2 2+
= |Iu+ ”Hl(V) - C;/||ll+ ”Hlfv)'

Then
_1
It il = u i) = (€))7 > 0.
Similarly, we get
_ _ 1
lu™llag, = lu" gy = (C/)"F > 0.
Hence,
2

2 2 -2 2 -2 -
Nl = gy, = 1120+ 1y, — Ko@) > Nt 12, + 12, = 260 7F

Thus we can choose o = \fZ(C!)*% such that [[ufly, > ullgiyy=0. O

Lemma 4.2. There exists ¢y > 0 (independent of A) such that if sequence {uy} C M; of J, with lim_ . J;(ux) = my, then
lukll#, < co.

Proof. Since M, C M,, it is easily seen that m; < mg for any A > 0. Since {u;} C M; and limy_  J;(ux) = m;, we
have

lim J,(ug) = lim
k—+o0 k—+o0

1 1
|:x(uk) - Eli(uk) uf - Efﬁ(uk) . uk]

1 1
= tim_ B0~ J50a0) i+ 50~ 5060 | -

1 1
= l — +112 — =12 = < .
k—lr-il—‘loo (2”uk ||2+ 2||uk ”2 m, = mg

14
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By Lemma 2.5, the Holder’s inequality and Young inequality, for any ¢ € (0, 1), there exist C., C/, C/ > 0 such that

€y “gsr g
2 2 2 2 2+4¢
f|u,f| log Ju* 2du s/uu,ﬂ log [u| )*duscgfwiﬂ “du
1% Vv Vv

1 1
2 2
- (/ qu|sz> (/ Ay )
v

1+
<Cllu Nl 137

2
Eilluk ”Hx + Cs””uk ”21%-

Since {u} C M;, we deduce that
1 2 2
I 3, — 5Ky, 9) =/ |uy | log |uy [“dp + ||uf||§
Vv

1
+2
= Sl + /g || C 13

This together with (4.2) we get

1
. 02 Ak
Jim (nuk 1%, zxv(u)>

< | " 2
_k_lflloo< C, ||U;< || f+ ||U,< ||z>

1
<c <m}2“9 + mg> .

1
From Lemma 3.6 we know that m; > 0 and then mg > 0. Therefore it suffices to choose ¢y = C” (mé‘g + mg> O
Secondly, we have the following relation about the ground state energy m; and mg,.
Lemma 4.3. m; — mg as A — +oQ.

Proof. By m, < mg for any A > 0, passing to subsequence if necessary, we may take a sequence Ay — +o0 such that

lim m;, = n < mg, (43)

k—o00

where m;, = infukeM,\k J(u) and u,,, is a least energy sign-changing solution of Eq. (1.2). Then, combining Lemma 4.1
and (1.8), it is easy to get n > 0. By Lemma 4.2, we have that {u;,} is uniformly bounded in #;,. Consequently, {u,,} is
also bounded in H'(V) and thus, up to a subsequence, there exists some uy € H'(V) such that

u;, — up weakly in H'(V),
u;, —> U point-wisely in V, (4.4)
u;, — ug strongly in LP(V) for p € [2, 4+-00].

We claim that ug |ec= 0. In fact, if there exists a vertex xg € £2¢ such that ug(xo) # 0. Since u;, € M,,, we have
1 2 1 2 2
D(un) = Elluxk W3¢, — Efvu*k logu} du
Ak 1
z5 Va( s dp — 5 /(uil logu}, )" du

Ak
= 2 [atoudan =5 [ e
\'4

Ak
= 5 ) rX)a0u, (0 = Cllusy I
xeV
Ak
> 5 Mmma(xo)uik(xo) C//-

Since a(xp) > 0, uy,(xo) — uo(Xp) # 0 and A — +o00, we get
kETOOJAk(uAk) = +o0,
This is in contradiction with (4.3). Hence the claim holds.

15
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Since ug |ec= 0, by the weak lower semi-continuity of the norm | -||;;1.,) and Fatou’s lemma, taking ufk as test function

in Eq. (1.2), we get

[ rwaes [ gt [ o g P - K3
2UaR Q (2:uf1=1)

5/ (F(u§)+ Iuarlz) du—/ lug |* log [uy |*dpe —
v Viudi=<1}

<liminf
k— 400

<Iliminf
k—+o0

=Iliminf
k—+o0

/|ux,| dﬂ"‘/. |u)\ | 10g|ux | dﬂ
L (v:|u;f\>1]
= [l [ g ogiug

{V:luf |>1}

2
:/ |u3| d,LL-i-/ |u0| 10g|uo| dpL,
2 (2:fug1>1)

where
Koy = Y Y [ug(Xug ) + g ¥ug )]
XeR2UA2 y~x
Ko(u ZZ ug (ug (v) + ug (ug )],
xeV y~x
Kot = Y0 3 [uf 0w 0) + w00
xeV y~x
Then

Jotun)-uf = [ ¢
QUIs
Similarly, it holds that

1

2 2

ud )dp —/ lud|” log |ug |"dp — EKg(u) <0.
2

/ - _ 2 2 1
Jotun) -y = [ e~ [ g P tog g P~ 5KE) < 0.
U 2

1.0
EK()

1
/( (uy) + luy) I) / |uj | log |u;” |du—5K k(u ):|
L v {V\u |<l}

1
/(r(u;,()ﬂxka() 11,7 du f s, tog uf Pt — 2K )}
% Vil 1<1)

(4.5)

(4.6)

In view of Lemmas 3.4 and 3.5, there exist two constants s, t € (0, 1] such that iy = suar + tu, € Mg. Then

1, _ _
Ejkk(ulk) "

~ ~ 1, o 1, o _
mo <Jo(to) = Ja(uo) — *]Q(Uo) “(sug) — 5]5(“0) < (tuy )
_ 1 _ _
=]Q(5u0 ) 7.]9(5110 ) (SU(T) +](Z(tuo ) - E]_;)(tuo ) . (tuo )
s° 2 § 2
:EHUP)L”Lz(Q) + EHU(;HF(Q)
1 1
< g5 + 5 llug 13
o[ gz, Lo
Sllkrgg)lf illuxkllz + EHUA,( (B
i 1, _
=liminf | Jy, () = 307, (uh) -, + 0 07,) =
thIEIOIQf ])tk(u)tk) ])Lk( Ak) .])Lk(u)»k) u)»ki|
zlkigl +igof]xk(uxk) =n <mg.
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Hence,

lim my = mg.
A—+400

This completes the proof. O

Next, we prove Theorem 1.3.

Proof of Theorem 1.3. Assume that u;, € M,, satisfies J,, (u;,) = m,,. We shall prove that u,, converges in HY(V)toa
least energy sign-changing solution ug of Eq. (1.8) along a subsequence.

Lemma 4.2 gives that u;, € Hj,, is uniformly bounded. Consequently, we have that {uy,} is also bounded in HY(V).
Therefore, we can assume that for any p € [2, 00), u,, — up in IP(V) and u;, — up in HY(V). Moreover, in view of
Ug € N and we get from Lemma 4.1 that ug $ 0. As proved in Lemma 4.3, we can prove that ug |gc= 0. Then it suffices
to show that, as k — +o0, we have A, fv |uA | dp, — 0 and fv ukk du — fv u0 )du. If not, we may assume that

lim xkf aX)|ui; 'du =6 > 0.
v

k—+4o00

Since up |gc= 0, by weak lower semi-continuity of the norm || - ||41, and Fatou’s lemma, taking uzrk as test function
in Eq. (1.2), we get

2
/ I"(ua“)d,u—i-/ lug|“dp —/ uZ > log |ug [*dp — fKQ(u)
2UaR 2 (2:uf1=1)

1
</(F(u§)+|u§2)d,u+5—/ |u0| log Jug |d,u—71<°()
v WViug =1} 2

.. 1
<lim inf f (F(u:,()+(xka(x)+1> |u:k|2) du — f luf” *log [uf: | dpe — =Ky (u)
k=>+oo | Jy Vil <) 2

=liminf u q u log |ut [*d
k—+o00 |:/ | | M+/V |u‘£’ \>l}| Ak' g| A’| Mj|
f|uo| d/'L+/ |Ll0| 10g|u0| dp
v Vilug |>1}

2
:/ |ug | du+/ lug|” log |ug | dpe,
2 (2:ug 1> 1)

which implies that

1
T (uo) - ut = / rud)du — f 1 log luf 1Pdu — =K (u) < 0. (4.7)
U 2 2

Similarly, it holds that

~ - ~ - 1
Jo(ug) - ug =/ I(ug )dp —/ lug | log Juy |*du — 51<g(u) <0. (4.8)
U 2

By similar arguments as above, if
lim [ r)de > / r(uf)dp,
k——+o00 Jy k v

we also have (4.7) and (4.8).
In view of Lemmas 3.4 and 3.5, there exist two constants s, t € (0, 1) such that Ty = suo+ + tuy € Mg. Consequently,
we have

- 1, 1
me <Jo(lo) = Jo(lo) — *]_,Q(UO) - (sug) — Ejﬁ(uo) (tug)

_ 1, _
=Jo(sug) — *.’_Q(SU()) (sug) + Jo(tuy) — Haltig) - (tug)
2 2 2 2
7””3’”]_2(9) + S”uﬂ_”Lz(Q)
*Iluo 5 + *Iluallﬁ
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1 1
o s + 12 — 12
<liminf) —flu ll2 + S llu,, IIZ]

. 1, - 1, 0
=liminf | J;, (4, ) — Ehk(urk) A D (uy,) — PLACWE ka]

k—+o0
limi f' 1, L1, -
- ,:E}_:go _J)Lk(u)»k) - Ejlk(u)‘k) U, ijklc(uxk) U,
=liminf

lim infJy, (us, )

=liminfm,, = mg,
k——+o00

which leads to a contradiction. Hence, we obtain that u;, — up in H 1(V) and ug is a least energy sign-changing solution
of problem (1.8). O
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