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a b s t r a c t

In this paper, we study the following logarithmic Schrödinger equation

−∆u + λa(x)u = u log u2 in V

on a connected locally finite graph G = (V , E), where ∆ denotes the graph Laplacian,
λ > 0 is a constant, and a(x) ≥ 0 represents the potential. Using variational techniques
in combination with the Nehari manifold method based on directional derivative, we
can prove that, there exists a constant λ0 > 0 such that for all λ ≥ λ0, the above
problem admits a least energy sign-changing solution uλ. Moreover, as λ → +∞, we
prove that the solution uλ converges to a least energy sign-changing solution of the
following Dirichlet problem{

−∆u = u log u2 in Ω,

u(x) = 0 on ∂Ω,

where Ω = {x ∈ V : a(x) = 0} is the potential well.
© 2023 Elsevier B.V. All rights reserved.

1. Introduction and main results

Theory of network (or graph) has a wide range of applications in various fields such as signal processing, image
rocessing, data clustering and machine learning. (For example, see [1–3].) A graph G = (V , E), where V denotes the
ertex set and E denotes the edge set, is said to be locally finite if for any x ∈ V , there are only finite y ∈ V such that
y ∈ E. A graph is connected if any two vertices x and y can be connected via finite edges. For any xy ∈ E, we assume
hat its weight ωxy > 0 and ωxy = ωyx. The degree of x ∈ V is defined by deg(x) =

∑
y∼x ωxy, where we write y ∼ x if

∗ Corresponding authors.
E-mail addresses: changxj100@nenu.edu.cn (X. Chang), radulescu@inf.ucv.ro (V.D. Rădulescu), wangr076@nenu.edu.cn (R. Wang),

duokuiyan@buaa.edu.cn (D. Yan).
1 These authors contributed equally to this work.
https://doi.org/10.1016/j.cnsns.2023.107418
1007-5704/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cnsns.2023.107418
https://www.elsevier.com/locate/cnsns
http://www.elsevier.com/locate/cnsns
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cnsns.2023.107418&domain=pdf
mailto:changxj100@nenu.edu.cn
mailto:radulescu@inf.ucv.ro
mailto:wangr076@nenu.edu.cn
mailto:duokuiyan@buaa.edu.cn
https://doi.org/10.1016/j.cnsns.2023.107418


X. Chang, V.D. Rădulescu, R. Wang et al. Communications in Nonlinear Science and Numerical Simulation 125 (2023) 107418

o
e

h
h
d

e
i
o
p
W
p
a
c
m
o
i
s
F

b
S

µ

o

xy ∈ E. The distance d(x, y) of two vertices x, y ∈ V is defined by the minimal number of edges which connect these two
vertices. The measure µ : V → R+ is defined to be a finite positive function on G.

In recent years, there have been many studies on the existence and multiplicity of solutions to nonlinear elliptic
equations on discrete graphs. For example, see [4–11] and their references. In [7], Grigor’yan, Lin and Yang studied
nonlinear Schrödinger equations

− ∆u + b(x)u = f (x, u) in V (1.1)

on a connected locally finite graph G. By applying the mountain pass theorem, they established the existence of strictly
positive solutions of (1.1) when f satisfies the so-called Ambrosetti–Rabinowitz ((AR) for short) condition, and the
potential b : V → R+ has a positive lower bound and satisfies one of the following hypotheses:

(B1) b(x) → +∞ as d(x, x0) → +∞ for some fixed x0 ∈ V ;

(B2) 1/b(x) ∈ L1(V ).

In [11], Zhang and Zhao established the existence and convergence (as λ → +∞) of ground state solutions for Eq. (1.1),
when b(x) = λa(x) + 1 and f (x, u) = |u|p−1u, where a(x) ≥ 0 satisfies (B1) and the potential well Ω = {x ∈ V : a(x) = 0}
is a non-empty connected and bounded domain in V . Similar results for p-Laplacian equations and biharmonic equations
on locally finite graphs can be found in [12,13].

In this paper, we consider the following logarithmic Schrödinger equation

− ∆u + λa(x)u = u log u2 in V (1.2)

n a connected locally finite graph G = (V , E), where the parameter λ > 0. We recall that the logarithmic Schrödinger
quation in the Euclidean space

− ∆u + λb(x)u = u log u2 in RN (1.3)

as recently received much attention. For example, see [14–22] and references therein. Logarithmic nonlinear problems
ave a wide range of applications in fields such as quantum mechanics, quantum optics, nuclear physics, transport and
iffusion phenomena, Bose–Einstein condensation and etc. Interested readers may refer to [23–25].
Different approaches have been developed to study the existence and multiplicity of solutions for nonlinear Schrödinger

quations with logarithmic nonlinearities. Cazenave [14] worked in an Orlicz space endowed with a Luxemburg type norm
n order to make the associated energy functional of Eq. (1.3) to be C1. Squassina and Szulkin [20] studied the existence
f multiple solutions by using non-smooth critical point theory (see also [15,16,18]). Tanaka and Zhang [21] applied the
enalization technique to study multi-bump solutions of Eq. (1.3). For the idea of penalization, see also [17,26,27]. In [22],
ang and Zhang proved that the ground state solutions of the power-law scalar field equations −∆u + λu = |u|p−2u, as
↓ 2, converge to the ground state solution of the logarithmic-law equation −∆u = λu log u2. Recently, several results
re devoted to studying the sign-changing solutions. Chen and Tang [28] established the existence of least energy sign-
hanging solutions of some logarithmic Schrödinger equation in bounded domains of RN using the constraint variational
ethod. Shuai [19] obtained the existence of least energy sign-changing solutions for Eq. (1.3) under different types
f potentials by using the directional derivative and constrained minimization method. Zhang and Wang investigated,
n [29], the existence and concentration behaviors of sign-changing solutions for logarithmic scalar field equations in the
emiclassical setting. Ji [30] established the existence and multiplicity of multi-bump type nodal solutions for Eq. (1.3).
or more studies on logarithmic nonlinear equations, one may refer to [14–16,18,20,31,32] and their references.
The goal of this work is to show the existence of least energy sign-changing solutions of (1.2) and their asymptotic

ehavior as λ → +∞. To the best of our knowledge, there is no result on sign-changing solutions for logarithmic
chrödinger problems on locally finite graphs.
In the sequel of this paper, we make the assumption that there exists a constant µmin > 0 such that the measure

(x) ≥ µmin > 0 for all x ∈ V . As for the potential a = a(x), we assume that:

(A1) a(x) ≥ 0 and the potential well Ω = {x ∈ V : a(x) = 0} is a non-empty, connected and bounded domain in V;
(A2) there exists M > 0 such that the volume of the set DM is finite, namely,

Vol(DM ) =

∑
x∈DM

µ(x) < ∞,

where DM = {x ∈ V : a(x) < M}.

To explain our result, we first introduce some necessary notations. For any function u : V → R, the graph Laplacian
f u is defined by

∆u(x) =
1

µ(x)

∑
ωxy (u(y) − u(x)) . (1.4)
y∼x
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The integral of u over V is defined by
∫
V udµ =

∑
x∈V µ(x)u(x), and the gradient form of the two functions u, v on V is

efined by

Γ (u, v)(x) =
1

2µ(x)

∑
y∼x

ωxy (u(y) − u(x)) (v(y) − v(x)) . (1.5)

rite Γ (u) = Γ (u, u), and sometimes we use ∇u∇v to replace Γ (u, v). The length of the gradient of u is defined by

|∇u|(x) =

√
Γ (u)(x) =

(
1

2µ(x)

∑
y∼x

ωxy (u(y) − u(x))2
)1/2

. (1.6)

enote by Cc(V ) the set of all functions with compact support, and let H1(V ) be the completion of Cc(V ) under the norm

∥u∥H1(V ) =

(∫
V

(
|∇u|2 + u2) dµ)1/2

.

hen, H1(V ) is a Hilbert space with the inner product

⟨u, v⟩ =

∫
V

(Γ (u, v) + uv) dµ, ∀u, v ∈ H1(V ).

e write ∥u∥p =
(∫

V |u|pdµ
)1/p for p ∈ [1, +∞) and ∥u∥L∞ = supx∈V |u(x)|.

For each λ > 0 we introduce a space

Hλ =

{
u ∈ H1(V ) :

∫
V

λa(x)u2dµ < +∞

}
ith norm

∥u∥2
Hλ

=̇

∫
V

(
|∇u|2 + (λa(x) + 1)u2) dµ,

hich is induced by the inner product

⟨u, v⟩Hλ
=

∫
V

(Γ (u, v) + (λa(x) + 1)uv) dµ, ∀u, v ∈ Hλ.

learly, Hλ is also a Hilbert space.
Note that Eq. (1.2) is formally associated with the energy functional Jλ : H1(V ) → R ∪ {+∞} given by

Jλ(u) =
1
2

∫
V

(
|∇u|2 + (λa(x) + 1)u2) dµ −

1
2

∫
V
u2 log u2dµ. (1.7)

learly, Jλ fails to be C1 in H1(V ). In fact, for some G = (V , E) with suitable measure µ, there exists u ∈ H1(V ) but
V u2 log u2dµ = −∞. (For example, see [33].)
When a(x) satisfies (A1) and (A2), we consider the functional Jλ in (1.7) on the set

Dλ =

{
u ∈ Hλ :

∫
V
u2

| log u2
|dµ < ∞

}
.

hat is,

Jλ(u) =
1
2
∥u∥2

Hλ
−

1
2

∫
V
u2 log u2dµ, ∀u ∈ Dλ.

Define the Nehari manifold and sign-changing Nehari set respectively by

Nλ =
{
u ∈ Dλ \ {0} : J ′λ(u) · u = 0

}
,

Mλ =
{
u ∈ Dλ : u±

̸= 0 and J ′λ(u) · u+
= J ′λ(u) · u−

= 0
}
,

here u+
= max{u, 0} and u−

= min{u, 0}. Clearly, Nλ contains all the nontrivial solutions of Eq. (1.2) and the set Mλ

ontains all the sign-changing solutions of Eq. (1.2). Set

cλ = inf
u∈Nλ

Jλ(u), mλ = inf
u∈Mλ

Jλ(u).

Our main results are as follows.

heorem 1.1. Suppose that G = (V , E) is a connected locally finite graph and the potential a : V → R satisfies conditions
(A1) and (A2). Then, there exists a constant λ0 > 0 such that for all λ ≥ λ0, Eq. (1.2) admits a least energy sign-changing
solution u ∈ D such that J (u ) = m . Moreover, m > 2c .
λ λ λ λ λ λ λ
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We recall that D ⊂ V is a bounded domain if the distance d(x, y) between any x, y ∈ D is uniformly bounded. The
boundary of D is defined by

∂D=̇{y ̸∈ D : there exists x ∈ D such that xy ∈ E}

and the interior of D is denoted by D◦. Obviously, we have D◦
= D.

Set Ω = {x ∈ V : a(x) = 0}. Let H1
0 (Ω) be the completion of Cc(Ω) under the norm

∥u∥H1
0 (Ω) =

(∫
Ω∪∂Ω

|∇u|2dµ +

∫
Ω

u2dµ
)1/2

.

Then, H1
0 (Ω) is a Hilbert space with the inner product

⟨u, v⟩ =

∫
Ω∪∂Ω

Γ (u, v)dµ +

∫
Ω

uvdµ, ∀u, v ∈ H1
0 (Ω).

Consider the following Dirichlet problem{
−∆u = u log u2 in Ω,

u(x) = 0 on ∂Ω.
(1.8)

he energy functional JΩ : H1
0 (Ω) → R associated with problem (1.8) is given by

JΩ (u)=̇
1
2
∥u∥2

H1
0 (Ω)

−
1
2

∫
Ω

u2 log u2dµ, ∀u ∈ H1
0 (Ω).

Define

NΩ =
{
u ∈ H1

0 (Ω) \ {0} : J ′Ω (u) · u = 0
}
,

MΩ =
{
u ∈ H1

0 (Ω) : u±
̸= 0 and J ′Ω (u) · u+

= J ′Ω (u) · u−
= 0

}
.

Set

cΩ = inf
u∈NΩ

Jλ(u), mΩ = inf
u∈MΩ

JΩ (u).

Similar to Theorem 1.1, problem (1.8) also has a least energy sign-changing solution.

Theorem 1.2. Let G = (V , E) be a connected locally finite graph. Assume Ω = {x ∈ V : a(x) = 0} is a non-empty,
connected and bounded domain in V. Then problem (1.8) admits a least energy sign-changing solution u0 ∈ H1

0 (Ω) such that
JΩ (uΩ ) = mΩ . Moreover, mΩ > 2cΩ .

Finally, we prove that the least energy sign-changing solution uλ converges to a least energy sign-changing solution
of problem (1.8).

Theorem 1.3. Under the assumptions of Theorem 1.1, we conclude that for any sequence λk → +∞, up to a subsequence, the
corresponding least energy sign-changing solution uλk of Eq. (1.2) converges in H1(V ) to a least energy sign-changing solution
of problem (1.8).

One of the main challenges in proving Theorem 1.1–1.3 is to deal with the logarithmic term in Eq. (1.2). In the
Euclidean space, the logarithmic Sobolev inequality plays a significant role in studying logarithmic Schrödinger equation
(see [19,20,27] etc.). While, on discrete graphs, the logarithmic Sobolev inequality is only available under a positive
curvature condition, which requires the measure µ to be finite (see [34] for details). In our case, the measure µ has
a uniform positive lower bound, which violates the positive curvature condition. To overcome this difficulty, we will
develop new and delicate arguments which do not rely on the logarithmic Sobolev inequality.

Furthermore, the associated energy functional with Eq. (1.2) is not well-defined in the setting of discrete graphs
(see [33]). Inspired by ideas in [19,22], we will restrict u2 log u2

∈ L1(V ) which is suitable for finite energy solutions.
owever, new challenge arises since the techniques in [19,22] are not applicable here because the graph Laplacian
perator is non-local. To be precise, in [19], the following decomposition

I(u) = I(u+) + I(u−),
⟨
I ′(u), u

⟩
=
⟨
I ′(u+), u+

⟩
+
⟨
I ′(u−), u−

⟩
, (1.9)

lays a key role in studying nodal solutions. Here I is the corresponding energy functional. But in our case, such a
ecomposition does not hold. Actually, by a direct computation, it follows that for each u ∈ Dλ \ {0},

Jλ(u) = Jλ(u+) + Jλ(u−) −
1
2
KV (u),

J ′ (u) · u±
= J ′ (u±) · u±

−
1
KV (u),
λ λ 2

4
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where KV (u) =
∑

x∈V
∑

y∼x ωxy
[
u+(x)u−(y) + u−(x)u+(y)

]
< 0, see Section 2 for details. Clearly, Jλ(u) ̸= Jλ(u+)+Jλ(u−) and⟨

J ′λ(u), u
⟩
̸=
⟨
J ′λ(u

+), u+
⟩
+
⟨
J ′λ(u

−), u−
⟩
, which imply that (1.9) fails. Motivated by [35,36], we will develop new variational

arguments involving nonlocal operator based on directional derivative to the logarithmic Schrödinger equation on locally
finite graphs.

The paper is organized as follows. In Section 2, we introduce some notations, definitions and preliminary lemmas. In
Section 3, we apply the Nehari manifold method to prove the existence of least energy sign-changing solution of Eq. (1.2)
and the Dirichlet problem (1.8). In Section 4, we give the proof of Theorem 1.3.

2. Some preliminary results

2.1. Some definitions

To prove Theorem 1.1, we need the definition of the directional derivative.

Definition 2.1. Given u ∈ Dλ and φ ∈ Cc(V ), the derivative of Jλ in the direction φ at u, denoted by J ′λ(u) · φ, is defined
as limt→0+

1
t [Jλ(u + tφ) − Jλ(u)].

It is easy to check that

J ′λ(u) · φ =

∫
V

(Γ (u, φ) + (λa(x) + 1) uφ) dµ −

∫
V
uφ log u2dµ.

n fact, it suffices to show the following

lim
t→0+

1
t

[∫
V

(Γ (u + tφ) − Γ (u)) dµ
]

= lim
t→0+

1
t

[
1
2

∑
x∈V

∑
y∼x

ωxy
(
((u + tφ)(y) − (u + tφ(x)))2 − (u(y) − u(x))2

)]

= lim
t→0+

1
2t

[∑
x∈V

∑
y∼x

ωxy
(
t2 (φ(y) − φ(x))2 + 2t (u(y) − u(x)) (φ(y) − φ(x))

)]
=

∑
x∈V

∑
y∼x

ωxy (u(y) − u(x)) (φ(y) − φ(x))

=2
∫
V

Γ (u, φ)dµ.

Definition 2.2.

(1) For u, v ∈ Dλ, we define

J ′λ(u) · v :=

∫
V

(Γ (u, v) + λa(x)uv) dµ −

∫
V
uv log u2dµ.

Clearly,
∫
V uv log u2dµ is well-defined for u, v ∈ Dλ.

(2) We say that u ∈ Hλ is a critical point of Jλ if u ∈ Dλ and J ′λ(u) · v = 0 for all v ∈ Dλ. We also say that dλ ∈ R is a
critical value for Jλ if there exists a critical point u ∈ Hλ such that Jλ(u) = dλ.

It is easily seen that, u is a weak solution to Eq. (1.2) if and only if u is a critical point of Jλ.
For the functional JΩ of problem (1.8), note that, for any 0 < ε < 1, there exists Cε > 0 such that

|u2 log u2
| ≤ Cε(|u|2−ε

+ |u|2+ε).

Since H1(Ω) ↪→ Lp(Ω) is compact for p ∈ [1, +∞], by a standard argument, we have JΩ ∈ C1(H1
0 (Ω),R) and

J ′Ω (u) · v =

∫
Ω∪∂Ω

∇u∇vdµ −

∫
Ω

uv log u2dµ, ∀u, v ∈ H1
0 (Ω).

learly, u is a weak solution to problem (1.8) if and only if u is a critical point of JΩ .

emma 2.3. If u ∈ Dλ is a weak solution of Eq. (1.2), then u is a point-wise solution of Eq. (1.2).

roof. If u ∈ Dλ is a weak solution of (1.2), then for any ϕ ∈ Dλ, there holds∫
(Γ (u, ϕ) + λa(x)uϕ) dµ =

∫
uϕ log u2dµ.
V V

5
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Using Cc(V ) is dense in Dλ and ωxy is symmetric, for any ϕ ∈ Cc(V ), by integration by parts, we have∫
V

Γ (u, ϕ)dµ =
1
2

∑
x∈V

∑
y∼x

ωxy (u(y) − u(x)) (ϕ(y) − ϕ(x))

=
1
2

∑
x∈V

∑
y∼x

ωxy (u(y) − u(x)) ϕ(y) −
1
2

∑
x∈V

∑
y∼x

ωxy (u(y) − u(x)) ϕ(x)

= −
1
2

∑
y∈V

∑
x∼y

ωxy (u(y) − u(x)) ϕ(x) −
1
2

∑
x∈V

∑
y∼x

ωxy (u(y) − u(x)) ϕ(x)

= −

∑
x∈V

∑
y∼x

ωxy (u(y) − u(x)) ϕ(x)

= −

∫
V

∆uϕdµ,

hich gives∫
V

(−∆u + λa(x)u) ϕdµ =

∫
V
uϕ log u2dµ, ∀ϕ ∈ Cc(V ). (2.1)

or any fixed y ∈ V , take a test function ϕ : V → R in (2.1) with

ϕ(x) =

{
1, x = y,
0, x ̸= y.

learly, ϕ ∈ Dλ, and −∆u(y) + λa(y)u(y) − u(y) log (u(y))2 = 0. Since y is arbitrary, we conclude that u is a point-wise
olution of (1.2). □

Similarly, we obtain

emma 2.4. If u ∈ H1
0 (Ω) is a weak solution of problem (1.8), then u is a point-wise solution of problem (1.8).

Next, we have the following observations:∫
V

Γ (u+
+ u−)dµ

=
1
2

∑
x∈V

∑
y∼x

ωxy
[
(u+

+ u−)(y) − (u+
+ u−)(x)

]2
=

1
2

∑
x∈V

∑
y∼x

ωxy

[(
u+(y) − u+(x)

)2
+
(
u−(y) − u−(x)

)2
− 2

[
u+(x)u−(y) + u−(x)u+(y)

]]
=

∫
V

Γ (u+)dµ +

∫
V

Γ (u−)dµ − KV (u),

(2.2)

∫
V

Γ (u+
+ u−, u+)dµ

=
1
2

∑
x∈V

∑
y∼x

ωxy
[
(u+

+ u−)(y) − (u+
+ u−)(x)

] [
u+(y) − u+(x)

]
=

1
2

∑
x∈V

∑
y∼x

ωxy

[
|u+(y)|2 −

[
u+(x)u−(y) + u−(x)u+(y)

]]
=

∫
V

Γ (u+)dµ −
1
2
KV (u).

(2.3)

imilarly, we have∫
V

Γ (u+
+ u−, u−)dµ =

∫
V

Γ (u−)dµ −
1
2
KV (u). (2.4)

hen, for each u ∈ Dλ, we have

Jλ(u) = Jλ(u+) + Jλ(u−) −
1
2
KV (u),

J ′ (u) · u±
= J ′ (u±) · u±

−
1
KV (u),
λ λ 2

6



X. Chang, V.D. Rădulescu, R. Wang et al. Communications in Nonlinear Science and Numerical Simulation 125 (2023) 107418

H

a

S

W

I

and for each u ∈ H1
0 (Ω),

JΩ (u) = JΩ (u+) + JΩ (u−) −
1
2
KΩ (u),

J ′Ω (u) · u±
= J ′Ω (u±) · u±

−
1
2
KΩ (u),

where KΩ (u) :=
∑

x∈Ω∪∂Ω

∑
y∼x ωxy

[
u+(x)u−(y) + u−(x)u+(y)

]
.

2.2. Sobolev embedding

In this subsection, we establish a Sobolev embedding result.

Lemma 2.5. If µ(x) ≥ µmin > 0 and a(x) satisfies (A1) − (A2), then there exist a constant λ0 > 0 such that, for all λ ≥ λ0,
the space Hλ is compactly embedded into Lp(V ) for all 2 ≤ p ≤ +∞.

Proof. For all λ > 0, at any vertex x0 ∈ V , by (A1) we have

∥u∥2
Hλ

=

∫
V

(
|∇u|2 + (λa(x) + 1)u2) dµ

≥

∫
V
u2dµ

=

∑
x∈V

µ(x)u2(x)

≥µminu2(x0),

which implies that |u(x0)| ≤

√
1

µmin
∥u∥Hλ

. Thus Hλ ↪→ L∞(V ) continuously. Hence, using interpolation gives that

λ ↪→ Lp(V ) continuously for all 2 ≤ p ≤ ∞. Assuming {uk} is bounded in Hλ, we have that, up to a subsequence,
uk ⇀ u in Hλ. In particular, {uk} ⊂ Hλ is also bounded in L2(V ) and by the weak convergence in L2(V ) it follows that, for
ny ϕ ∈ L2(V ),

lim
k→∞

∫
V
(uk − u)ϕdµ = lim

k→∞

∑
x∈V

µ(x) (uk(x) − u(x)) ϕ(x) = 0. (2.5)

Take any x0 ∈ V and let

ϕ0(x) =

{
1, x = x0,
0, x ̸= x0.

Obviously, ϕ0(x) ∈ L2(V ). By substituting ϕ0 into (2.5), we can get that limk→∞ uk(x) = u(x) for any fixed x ∈ V .
We now prove that there exist a constant λ0 > 0 such that for all λ ≥ λ0, we have uk → u in Lp(V ) for all 2 ≤ p ≤ ∞.

ince uk is bounded in Hλ and u ∈ Hλ, there exists some constant C1 such that

λ

∫
V
a(x)(uk − u)2dµ ≤ C1.

e claim that, up to a subsequence,

lim
k→+∞

∫
V
(uk − u)2dµ = 0.

n fact, since a(x) satisfies (A2), there exists some M > 0 such that∫
V
(uk − u)2dµ =

∫
DM

(uk − u)2dµ +

∫
V\DM

(uk − u)2dµ

≤

∫
DM

(uk − u)2dµ +

∫
V\DM

1
λM

λa(x)(uk − u)2dµ

≤

∫
DM

(uk − u)2dµ +
C1

λM
.

We can see that, for all ε > 0, there exists λ0 > 0 such that when λ > λ0, we have C1
λM < ε. Moreover, up to a subsequence,

we have

lim
∫

(uk − u)2dµ = 0.

k→+∞ DM

7



X. Chang, V.D. Rădulescu, R. Wang et al. Communications in Nonlinear Science and Numerical Simulation 125 (2023) 107418

3

t

L

T

H

Hence the claim holds. Then, in view of ∥uk − u∥2
L∞ ≤

1
µmin

∫
V |uk − u|2dµ, we obtain, for any 2 < p < ∞,∫

V
|uk − u|pdµ ≤

(
1

µmin

) p−2
2
(∫

V
|uk − u|2dµ

) p
2

.

Therefore, up to a subsequence, uk → u in Lp(V ) for all 2 ≤ p ≤ +∞. □

. Existence of least energy sign-changing solutions

This section is devoted to proving that Eq. (1.2), as well as (1.8), admits a least energy sign-changing solution by using
he Nehari manifold method based on directional derivative.

The following result will be useful.

emma 3.1. For all u ∈ Mλ and s, t > 0, there holds

Jλ(u) ≥ Jλ(su+
+ tu−).

he ‘‘=’’ holds if and only if s = t = 1.

Proof. For any u ∈ Mλ,

Jλ(u) =Jλ(u) −
1
2
J ′λ(u) · u+

−
1
2
J ′λ(u) · u−

=Jλ(u+) −
1
2
J ′λ(u

+) · u+
+ Jλ(u−) −

1
2
J ′λ(u

−) · u−

=

(
1
2
∥u+

∥
2
Hλ

−
1
2

∫
V

|u+
|
2 log |u+

|
2dµ

)
−

(
1
2
∥u+

∥
2
Hλ

−
1
2

∫
V

|u+
|
2 log |u+

|
2dµ −

1
2
∥u+

∥
2
2

)
+

(
1
2
∥u−

∥
2
Hλ

−
1
2

∫
V

|u−
|
2 log |u−

|
2dµ

)
−

(
1
2
∥u−

∥
2
Hλ

−
1
2

∫
V

|u−
|
2 log |u−

|
2dµ −

1
2
∥u+

∥
2
2

)
=

1
2
∥u+

∥
2
2 +

1
2
∥u−

∥
2
2.

For s, t > 0, we have∫
V

Γ (su+
+ tu−)dµ

=
1
2

∑
x∈V

∑
y∼x

ωxy
[
(su+

+ tu−)(y) − (su+
+ tu−)(x)

]2
=

1
2

∑
x∈V

∑
y∼x

ωxy

[(
su+(y) − su+(x)

)2
+
(
tu−(y) − tu−(x)

)2
− 2st

[
u+(x)u−(y) + u−(x)u+(y)

]]
=

∫
V

Γ (su+)dµ +

∫
V

Γ (tu−) − stKV (u).

(3.1)

ence, we have

Jλ(su+
+ tu−)

=Jλ(su+) + Jλ(tu−) −
st
2
KV (u)

=s2Jλ(u+) −
1
2
s2 log s2∥u+

∥
2
2 + t2Jλ(u−) −

1
2
t2 log t2∥u−

∥
2
2 −

st
2
KV (u)

=s2
[
Jλ(u+) −

1
2
J ′λ(u) · u+

]
−

1
2
s2 log s2∥u+

∥
2
2 + t2

[
Jλ(u−) −

1
2
J ′λ(u) · u−

]
−

1
2
t2 log t2∥u−

∥
2
2 −

st
2
KV (u)

=s2
[
Jλ(u+) −

1
2
J ′λ(u

+) · u+
+

1
4
KV (u)

]
−

1
2
s2 log s2∥u+

∥
2
2

+ t2
[
Jλ(u−) −

1
2
J ′λ(u

−) · u−
+

1
4
KV (u)

]
−

1
2
t2 log t2∥u−

∥
2
2 −

st
2
KV (u)

=
1
(s2 − s2 log s2)∥u+

∥
2
+

1
(t2 − t2 log t2)∥u−

∥
2
+

(s − t)2
KV (u).
2 2 2 2 4

8
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Therefore, defining f (τ ) = τ 2
− τ 2 log τ 2

− 1 for any τ ≥ 0, we have

Jλ(su+
+ tu−) − Jλ(u)

=
1
2
(s2 − s2 log s2 − 1)∥u+

∥
2
2 +

1
2
(t2 − t2 log t2 − 1)∥u−

∥
2
2 +

(s − t)2

4
KV (u)

=
1
2
f (s)∥u+

∥
2
2 +

1
2
f (t)∥u−

∥
2
2 +

(s − t)2

4
KV (u).

Since f (0) = −1, f (1) = 0 and f (τ ) < 0 if τ ̸= 1, (s−t)2
4 KV (u) < 0 for any s ̸= t , the conclusions follow. □

Next we show Mλ ̸= ∅.

Lemma 3.2. If u ∈ Dλ \{0} with u±
̸= 0, then there exists a unique positive number pair (su, tu) satisfying suu+

+tuu−
∈ Mλ.

Proof. For s, t > 0, we have∫
V

Γ (su+
+ tu−, su+)dµ =

∫
V

Γ (su+)dµ −
st
2
KV (u) (3.2)

nd ∫
V

Γ (su+
+ tu−, tu−)dµ =

∫
V

Γ (tu−)dµ −
st
2
KV (u). (3.3)

et

g1(s, t)
.
=J ′λ(su

+
+ tu−) · (su+)

=J ′λ(su
+) · (su+) −

st
2
KV (u)

=s2∥u+
∥
2
Hλ

− s2
∫
V

|u+
|
2 log |u+

|
2dµ − s2 log s2∥u+

∥
2
2 − s2∥u+

∥
2
2 −

st
2
KV (u)

nd

g2(s, t)
.
=J ′λ(su

+
+ tu−) · (tu−)

=J ′λ(tu
−) · (tu−) −

st
2
KV (u)

=t2∥u−
∥
2
Hλ

− t2
∫
V

|u−
|
2 log |u−

|
2dµ − t2 log t2∥u−

∥
2
2 − t2∥u−

∥
2
2 −

st
2
KV (u).

e can see that there exists r1 > 0 small enough and R1 > 0 large enough such that

g1(s, s) > 0, g2(s, s) > 0 for all s ∈ (0, r1),
g1(s, s) < 0, g2(s, s) < 0 for all s ∈ (R1, +∞).

ence, there exist 0 < r < R such that

g1(r, t) > 0, g1(R, t) < 0 for all t ∈ [r, R],
g2(s, r) > 0, g2(s, R) < 0 for all s ∈ [r, R].

Applying Miranda’s theorem [37], there exist some su, tu ∈ [r, R] such that g1(su, tu) = g2(su, tu) = 0, which implies that
uu+

+ tuu−
∈ Mλ.

In what follows, we prove the uniqueness of the pair (su, tu). If u ∈ Mλ, then

0 = J ′λ(u) · u+
= J ′λ(u

+) · u+
−

1
2
KV (u) (3.4)

nd

0 = J ′ (u) · u−
= J ′ (u−) · u−

−
1
KV (u). (3.5)
λ λ 2

9
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We claim that (su, tu) = (1, 1) is the unique pair of positive numbers such that suu+
+tuu−

∈ Mλ. Indeed, if (su, tu) = (1, 1)
atisfies suu+

+ tuu−
∈ Mλ, without loss of generality, we assume that 0 < su ≤ tu. Then

0 =J ′λ(suu
+

+ tuu−) · (suu+)

=J ′λ(suu
+) · (suu+) −

sutu
2

KV (u)

=s2uJ
′

λ(u
+) · u+

− s2u log s
2
u∥u

+
∥
2
2 −

sutu
2

KV (u)

≥s2uJ
′

λ(u
+) · u+

− s2u log s
2
u∥u

+
∥
2
2 −

s2u
2
KV (u)

(3.6)

nd

0 =J ′λ(suu
+

+ tuu−) · (tuu−)

=J ′λ(tuu
−) · (tuu−) −

sutu
2

KV (u)

=t2u J
′

λ(u
−) · u−

− t2u log t2u∥u
−
∥
2
2 −

sutu
2

KV (u)

≤t2u J
′

λ(u
−) · u−

− t2u log t2u∥u
−
∥
2
2 −

t2u
2
KV (u).

(3.7)

ogether with (3.4) and (3.6), we get

s2u log s
2
u

∫
V

|u+
|
2dµ ≥ 0,

imilarly, by (3.5) and (3.7), we can deduce that

t2u log t2u

∫
V

|u−
|
2dµ ≤ 0,

hich implies that su ≥ 1 and tu ≤ 1. In view of 0 < su ≤ tu, it follows that su = tu = 1.
If u ̸∈ Mλ, let (s1, t1) and (s2, t2) be the two different positive pairs such that vi := siu+

+ tiu−
∈ Mλ, i = 1, 2, which

shows that
s2
s1

v+

1 +
t2
t1

v−

1 = v2 ∈ Mλ.

By similar analysis as above, we can obtain that
s2
s1

=
t2
t1

= 1.

his implies that (s1, t1) = (s2, t2) and the uniqueness is obtained. □

emma 3.3. Let u ∈ Dλ with u±
̸= 0 such that J ′λ(u) · u±

≤ 0. Then the unique pair (su, tu) obtained in Lemma 3.2 satisfies
u, tu ∈ (0, 1]. In particular, the ‘‘=’’ holds if and only if su = tu = 1.

roof. Without loss of generality, we assume that 0 < tu ≤ su. Since suu+
+ tuu−

∈ Mλ, then

0 =J ′λ(suu
+

+ tuu−) · (suu+)

=s2uJ
′

λ(u
+) · u+

− s2u log s
2
u∥u

+
∥
2
2 −

sutu
2

KV (u).
(3.8)

ote that KV (x, y) < 0. Since J ′λ(u) · u+
≤ 0, from (3.8), we can deduce that

0 ≤s2u

(
J ′λ(u

+) · u+
−

1
2
KV (x, y)

)
− s2u log s

2
u∥u

+
∥
2
2

=s2uJ
′

λ(u) · u+
− s2u log s

2
u∥u

+
∥
2
2

≤ − s2u log s
2
u∥u

+
∥
2
2,

hich implies that 0 < su ≤ 1. Therefore, 0 < tu ≤ su ≤ 1. □

Similarly, we have

Lemma 3.4. If u ∈ H1
0 (Ω) \ {0} with u±

̸= 0, then there exists a unique positive number pair (su, tu) satisfying
s u+

+ t u−
∈ M .
u u Ω

10
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Lemma 3.5. Let u ∈ H1
0 (Ω) with u±

̸= 0 such that J ′Ω (u) · u±
≤ 0. Then the unique pair (su, tu) obtained in Lemma 3.4

atisfies su, tu ∈ (0, 1]. In particular, the ‘‘=’’ holds if and only if su = tu = 1.

Now we prove that the minimizer of Jλ on Mλ is achieved.

emma 3.6. Supposed (A1) and (A2) hold. Then mλ > 0 is achieved.

Proof. Taking a minimizing sequence {uk} ⊂ Mλ of Jλ yields

lim
k→+∞

Jλ(uk) = lim
k→+∞

[
Jλ(uk) −

1
2
J ′λ(uk) · u+

k −
1
2
J ′λ(uk) · u−

k

]
= lim

k→+∞

[
Jλ(u+

k ) −
1
2
J ′λ(u

+

k ) · u+

k + Jλ(u−

k ) − J ′λ(u
−

k ) · u−

k

]
= lim

k→+∞

(
1
2
∥u+

k ∥
2
2 +

1
2
∥u−

k ∥
2
2

)
= mλ.

(3.9)

y Lemma 2.5, the Hölder’s inequality and Young inequality, for any ε ∈ (0, 1), there exist Cε, C ′
ε, C

′′
ε > 0 such that∫

V
|u±

k |
2 log |u±

k |
2dµ ≤

∫
V
(|u±

k |
2 log |u±

k |
2)+dµ ≤ Cε

∫
V

|u±

k |
2+εdµ

≤Cε

(∫
V

|u±

k |
2dµ

) 1
2
(∫

V
|u±

k |
2(1+ε)dµ

) 1
2

≤C ′

ε∥u
±

k ∥2∥u±

k ∥
1+ε
Hλ

≤
1
2
∥u±

k ∥
2
Hλ

+ C ′′

ε ∥u±

k ∥

2
1−ε

2 .

Since {uk} ⊂ Mλ, we deduce that

∥u±

k ∥
2
Hλ

−
1
2
K k
V (x, y)

=

∫
V

|u±

k |
2 log |u±

k |
2dµ + ∥u±

k ∥
2
2

≤
1
2
∥u±

k ∥
2
Hλ

+ C ′′

ε ∥u±

k ∥

2
1−ε

2 + ∥u±

k ∥
2
2,

(3.10)

here K k
V (u) =

∑
x∈V

∑
y∼x

[
u+

k (x)u
−

k (y) + u−

k (x)u
+

k (y)
]
. This together with (3.9) implies that {u±

k } is bounded in Hλ and
{uk} is also bounded in Hλ. Then, there exists λ0 > 0 such that λ ≥ λ0, by Lemma 2.5, there exists uλ ∈ Hλ such that⎧⎨⎩

uk ⇀ uλ weakly in Hλ,

uk → uλ point-wisely in V ,

uk → uλ strongly in Lp(V ) for p ∈ [2, +∞].

Thus, together with the weak-lower semi-continuity of norm and Fatou’s lemma, we get∫
V

(
Γ (u+

λ ) + (λa(x) + 1) |u+

λ |
2
)
dµ −

∫
V
(|u+

λ |
2 log |u+

λ |
2)−dµ −

1
2
Kλ
V (u)

≤ lim inf
k→+∞

[∫
V

(
Γ (u+

k ) + (λa(x) + 1) |u+

k |
2
)
dµ −

∫
V
(|u+

k |
2 log |u+

k |
2)−dµ −

1
2
K k
V (u)

]
= lim inf

k→+∞

∫
V

(
|u+

k |
2
+ (|u+

k |
2 log |u+

k |
2)+
)
dµ

=

∫
V

|u+

λ |
2dµ +

∫
V
(|u+

λ |
2 log |u+

λ |
2)+dµ,

here Kλ
V (u) =

∑
x∈V

∑
y∼x

[
u+

λ (x)u
−

λ (y) + u−

λ (x)u
+

λ (y)
]
. It follows that

J ′λ(uλ) · u+

λ =

∫
V

(
Γ (u+

λ ) + λa(x)|u+

λ |
2
)
dµ −

∫
V

|u+

λ |
2 log |u+

λ |
2dµ −

1
2
Kλ
V (u) ≤ 0. (3.11)

imilarly, it holds that

J ′λ(uλ) · u−

λ =

∫ (
Γ (u−

λ ) + λa(x)|u−

λ |
2
)
dµ −

∫
|u−

λ |
2 log |u−

λ |
2dµ −

1
Kλ
V (u) ≤ 0. (3.12)
V V 2
11
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In view of Lemmas 3.2 and 3.3, there exist two constants s, t ∈ (0, 1] such that ũ = su+

λ + tu−

λ ∈ Mλ. Then

mλ ≤Jλ (̃u) = Jλ (̃u) −
1
2
J ′λ (̃u) · (su+

λ ) −
1
2
J ′λ (̃u) · (tu−

λ )

=Jλ(su+

λ ) −
1
2
J ′λ(su

+

λ ) · (su+

λ ) + Jλ(tu−

λ ) −
1
2
J ′λ(tu

−

λ ) · (tu−

λ )

=
s2

2
∥u+

λ ∥
2
2 +

t2

2
∥u−

λ ∥
2
2

≤
1
2
∥u+

λ ∥
2
2 +

1
2
∥u−

λ ∥
2
2

≤ lim inf
k→+∞

[
1
2
∥u+

k ∥
2
2 +

1
2
∥u−

k ∥
2
2

]
= lim inf

k→+∞

[
Jλ(u+

k ) −
1
2
J ′λ(u

+

k ) · u+

k + Jλ(u−

k ) −
1
2
J ′λ(u

−

k ) · u−

k

]
= lim inf

k→+∞

[
Jλ(uk) −

1
2
J ′λ(uk) · u+

k −
1
2
J ′λ(uk) · u−

k

]
= lim inf

k→+∞

Jλ(uk) = mλ.

This implies that s = t = 1, i.e., uλ ∈ Mλ satisfying Jλ(uλ) = mλ.
We claim that mλ > 0. In fact, if mλ = 0, we have

0 = Jλ(uλ) −
1
2
J ′(uλ) · u+

λ −
1
2
J ′(uλ) · u−

λ =
1
2
∥u+

λ ∥
2
2 +

1
2
∥u−

λ ∥
2
2.

hen, by similar arguments as in (3.10), it follows that ∥u±

λ ∥Hλ
= 0. However, by Lemma 2.5, for any q > 2, there exists

q > 0 such that

∥u±

λ ∥
2
Hλ

<

∫
V

|u±

λ |
2 log |u±

λ |
2dµ ≤

∫
V
(|u±

λ |
2 log |u±

λ |
2)+dµ ≤ Cq

∫
V

|u±

λ |
qdµ ≤ C∥u±

λ ∥
q
Hλ

,

hich implies

∥u±

λ ∥Hλ
≥

(
1
C

) 1
q−2

> 0,

hich provides a contradiction, hence the claim holds. □

The following lemma completes the proof of Theorem 1.1.

emma 3.7. If u ∈ Mλ with Jλ(u) = mλ, then u is a sign-changing solution of Eq. (1.2). Moreover, mλ > 2cλ.

Proof. We assume by contradiction that u ∈ Mλ with Jλ(u) = mλ, but u is not a solution of Eq. (1.2). Then we can find a
function φ ∈ Cc(V ) such that∫

V
(∇u∇φ + λa(x)uφ) dµ −

∫
V
uφ log u2dµ ≤ −1,

which implies that, for some ε > 0 small enough,

J ′λ(su
+

+ tu−
+ σφ) · φ ≤ −

1
2

for all |s − 1| + |t − 1| + |σ | ≤ ϵ.

n what follows, we estimate sups,t Jλ
(
su+

+ tu−
+ εη(s, t)φ

)
, where η is a cut-off function such that

η(s, t) =

{
1 if |s − 1| ≤

1
2ε and |t − 1| ≤

1
2ε,

0 if |s − 1| ≥ ε or |t − 1| ≥ ε.

n the case of |s − 1| ≤ ε and |t − 1| ≤ ε, we have

Jλ
(
su+

+ tu−
+ εη(s, t)φ

)
=Jλ

(
su+

+ tu−
+ εη(s, t)φ

)
− Jλ(su+

+ tu−) + Jλ(su+
+ tu−)

=Jλ(su+
+ tu−) +

∫ 1

0
J ′λ
(
su+

+ tu−
+ σεη(s, t)φ

)
· (εη(s, t)φ) dσ

=Jλ(su+
+ tu−) + εη(s, t)

∫ 1

0
J ′λ
(
su+

+ tu−
+ σεη(s, t)φ

)
· φdσ

≤Jλ(su+
+ tu−) −

1
εη(s, t).
2
12
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For the other case, that is |s − 1| ≥ ε or |t − 1| ≥ ε, η(s, t) = 0, the above estimate is obvious. Now since u ∈ Mλ, for
(s, t) ̸= (1, 1), by Lemma 3.1, we have Jλ(su+

+ tu−) < Jλ(u). Hence

Jλ
(
su+

+ tu−
+ εη(s, t)φ

)
≤ Jλ(su+

+ tu−) < Jλ(u) for all (s, t) ̸= (1, 1).

For (s, t) = (1, 1),

Jλ
(
su+

+ tu−
+ εη(s, t)φ

)
≤ Jλ(su+

+ tu−) −
1
2
εη(1, 1) = Jλ(u) −

1
2
ε.

n any case, we have Jλ
(
su+

+ tu−
+ εη(s, t)φ

)
< Jλ(u) = mλ. In particular, for 0 < ε < 1 − ε,

sup
ε≤s,t≤2−ε

Jλ
(
su+

+ tu−
+ εη(s, t)φ

)
= m̃λ < mλ.

Set v = su+
+ tu−

+ εη(s, t)φ and define

H(s, t) = (F1(s, t), F2(s, t)) =̇
(
J ′λ(v) · v+, J ′λ(v) · v−

)
.

By the definition of η, when s = ε, t ∈ (ϵ, 2 − ϵ), we have η(s, t) = 0 and s < t . Hence

F1(ε, t)=̇J ′λ(su
+

+ tu−) · (su+)
⏐⏐⏐s=ε

=

[
J ′λ(su

+) · (su+) −
st
2
KV (u)

]
s=ε

=

[
s2J ′λ(u

+) · u+
−

st
2
KV (u) − s2 log s2∥u+

∥
2
2

]
s=ε

>

[
s2
(
J ′λ(u

+) −
1
2
KV (u)

)
− s2 log s2∥u+

∥
2
2

]
s=ε

= − s2 log s2∥u+
∥
2
2

⏐⏐⏐s=ε

= − ε2 log ε2
∥u+

∥
2
2

>0.

hen s = 2 − ε, t ∈ (ϵ, 2 − ϵ), we have η(s, t) = 0 and s > t . Therefore,

F1(2 − ε, t)=̇J ′λ(su
+

+ tu−) · (su+)
⏐⏐⏐s=2−ε

=

[
J ′λ(su

+) · (su+) −
st
2
KV (u)

]
s=2−ε

=

[
s2J ′λ(u

+) · u+
−

st
2
KV (u) − s2 log s2∥u+

∥
2
2

]
s=2−ε

<

[
s2
(
J ′λ(u

+) −
1
2
KV (u)

)
− s2 log s2∥u+

∥
2
2

]
s=2−ε

= − s2 log s2∥u+
∥
2
2

⏐⏐⏐s=2−ε

= − (2 − ε)2 log(2 − ε)2∥u+
∥
2
2

<0.

hat is

F1(ε, t) > 0, F1(2 − ε, t) < 0 for all t ∈ (ε, 2 − ε).

imilarly, we have

F2(s, ε) > 0, F2(s, 2 − ε) < 0 for all s ∈ (ε, 2 − ε).

hus, applying Miranda’s theorem [37], there exists (s0, t0) ∈ (ε, 2−ε)×(ε, 2−ε) such that ũ = s0u+
+t0u−

+εη(s0, t0)φ ∈

Mλ and Jλ (̃u) < mλ. This give a contradiction to the definition of mλ.
Next, we prove that mλ > 2cλ. Assume that u ∈ Mλ such that Jλ(u) = mλ. Then u±

̸= 0. Similar to the proof of
Lemmas 3.2 and 3.3, we can deduce that there exists a unique su+ ∈ (0, 1] such that su+u+

∈ Nλ, and a unique tu− ∈ (0, 1]
such that tu−u−

∈ Nλ. Similar to the proofs of Lemma 3.6 and Lemma 3.7, we can deduce that cλ > 0 can be achieved.
Furthermore, if u ∈ Nλ with Jλ(u) = cλ, then u is a least energy solution.

By the definition of Jλ and KV (x, y) < 0, we have

Jλ(su+u+
+ tu−u−) =Jλ(su+u+) + Jλ(tu−u−) −

su+ tu−

2
KV (u)

+ −
>Jλ(su+u ) + Jλ(tu−u ).
13
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By Lemma 3.1, we deduce that

mλ = Jλ(u+
+ u−) ≥ Jλ(su+u+

+ tu−u−) > Jλ(su+u+) + Jλ(tu−u−) ≥ 2cλ.

This completes the proof. □

Proof of Theorem 1.2. Similar to the proof of Theorem 1.1, we can also obtain the existence of a least energy sign-
changing solution u0 of problem (1.8), which achieves the minimum mΩ of the functional JΩ in MΩ and the least energy
solution of problem (1.8), which achieves the minimum cΩ of the functional JΩ in NΩ . Moreover, mΩ > 2cΩ . □

4. Convergence of least energy sign-changing solutions

In this section, we shall study the asymptotic behavior of the least energy sign-changing uλ ∈ Hλ of Eq. (1.2) as
λ → +∞. First we show that the family of solutions {uλ} is uniformly bounded above and below away from zero.

Lemma 4.1. There exists σ > 0 (independent of λ) such that ∥u∥Hλ
≥ ∥u∥H1(V ) ≥ σ for all u ∈ Mλ.

Proof. Note that for all ε > 0, if s ≥ e−
1
2 , then

e
ε
2 s2+ε

≥ s2. (4.1)

ince u ∈ Mλ, by Lemma 2.5 and (4.1), we have

0 =J ′λ(u) · u+
= J ′λ(u

+) · u+
−

1
2
KV (u)

≥

∫
V

(
Γ (u+) + (λa(x) + 1)|u+

|
2
)
dµ −

∫
V

|u+
|
2dµ −

∫
V

|u+
|
2 log |u+

|
2dµ

=∥u+
∥
2
Hλ

−

∫
|u+|<e−

1
2

(
|u+

|
2
+ |u+

|
2 log |u+

|
2
)
dµ −

∫
|u+|≥e−

1
2

|u+
|
2dµ

−

∫
e−

1
2 ≤|u+|≤1

|u+
|
2 log |u+

|
2dµ −

∫
|u+|>1

|u+
|
2 log |u+

|
2dµ

≥∥u+
∥
2
Hλ

− e
ε
2

∫
|u+|≥e−

1
2

|u+
|
2+εdµ − Cε

∫
|u+|>1

|u+
|
2+εdµ

≥∥u+
∥
2
Hλ

− C ′

ε

∫
V

|u+
|
2+εdµ

≥∥u+
∥
2
H1(V ) − C ′′

ε ∥u+
∥
2+ε

H1(V )
.

Then

∥u+
∥Hλ

≥ ∥u+
∥H1(V ) ≥ (C ′′

ε )
−

1
ε > 0.

Similarly, we get

∥u−
∥Hλ

≥ ∥u−
∥H1(V ) ≥ (C ′′

ε )
−

1
ε > 0.

Hence,

∥u∥2
Hλ

≥ ∥u∥2
H1(V ) = ∥u+

∥
2
H1(V ) + ∥u−

∥
2
H1(V ) − KV (u) > ∥u+

∥
2
H1(V ) + ∥u−

∥
2
H1(V ) ≥ 2(C ′′

ε )
−

2
ε .

Thus we can choose σ =
√
2(C ′′

ε )
−

1
ε such that ∥u∥Hλ

≥ ∥u∥H1(V ) ≥ σ . □

emma 4.2. There exists c0 > 0 (independent of λ) such that if sequence {uk} ⊂ Mλ of Jλ with limk→∞ Jλ(uk) = mλ, then
uk∥Hλ

≤ c0.

roof. Since MΩ ⊂ Mλ, it is easily seen that mλ ≤ mΩ for any λ > 0. Since {uk} ⊂ Mλ and limk→∞ Jλ(uk) = mλ, we
ave

lim
k→+∞

Jλ(uk) = lim
k→+∞

[
Jλ(uk) −

1
2
J ′λ(uk) · u+

k −
1
2
J ′λ(uk) · u−

k

]
= lim

k→+∞

[
Jλ(u+

k ) −
1
2
J ′λ(u

+

k ) · u+

k + Jλ(u−

k ) −
1
2
J ′λ(u

−

k ) · u−

k

]
= lim

(
1
∥u+

k ∥
2
2 +

1
∥u−

k ∥
2
2

)
= mλ ≤ mΩ .

(4.2)
k→+∞ 2 2
14
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By Lemma 2.5, the Hölder’s inequality and Young inequality, for any ε ∈ (0, 1), there exist Cε, C ′
ε, C

′′
ε > 0 such that∫

V
|u±

k |
2 log |u±

k |
2dµ ≤

∫
V
(|u±

k |
2 log |u±

k |
2)+dµ ≤ Cε

∫
V

|u±

k |
2+εdµ

≤Cε

(∫
V

|u±

k |
2dµ

) 1
2
(∫

V
|u±

k |
2(1+ε)dµ

) 1
2

≤C ′

ε∥u
±

k ∥2∥u±

k ∥
1+ε
Hλ

≤
1
2
∥u±

k ∥
2
Hλ

+ C ′′

ε ∥u±

k ∥

2
1−ε

2 .

Since {uk} ⊂ Mλ, we deduce that

∥u±

k ∥
2
Hλ

−
1
2
K k
V (x, y) =

∫
V

|u±

k |
2 log |u±

k |
2dµ + ∥u±

k ∥
2
2

≤
1
2
∥u±

k ∥
2
Hλ

+ C ′′

ε ∥u±

k ∥

2
1−ε

2 + ∥u±

k ∥
2
2.

his together with (4.2) we get

lim
k→+∞

(
∥u±

k ∥
2
Hλ

−
1
2
K k
V (u)

)
≤ lim

k→+∞

(
2C ′′

ε ∥u±

k ∥

2
1−ε

2 + 2∥u±

k ∥
2
2

)
≤C ′′′

ε

(
m

1
1−ε

Ω + mΩ

)
.

From Lemma 3.6 we know that mλ > 0 and then mΩ > 0. Therefore it suffices to choose c0 = C ′′′
ε

(
m

1
1−ε

Ω + mΩ

)
. □

Secondly, we have the following relation about the ground state energy mλ and mΩ .

emma 4.3. mλ → mΩ as λ → +∞.

roof. By mλ ≤ mΩ for any λ > 0, passing to subsequence if necessary, we may take a sequence λk → +∞ such that

lim
k→∞

mλk = η ≤ mΩ , (4.3)

here mλk = infuk∈Mλk
Jλk (uk) and uλk is a least energy sign-changing solution of Eq. (1.2). Then, combining Lemma 4.1

nd (1.8), it is easy to get η > 0. By Lemma 4.2, we have that {uλk} is uniformly bounded in Hλk . Consequently, {uλk} is
lso bounded in H1(V ) and thus, up to a subsequence, there exists some u0 ∈ H1(V ) such that⎧⎨⎩

uλk ⇀ u0 weakly in H1(V ),
uλk → u0 point-wisely in V ,

uλk → u0 strongly in Lp(V ) for p ∈ [2, +∞].

(4.4)

e claim that u0 |Ωc= 0. In fact, if there exists a vertex x0 ∈ Ωc such that u0(x0) ̸= 0. Since uλk ∈ Mλk , we have

Jλk (uλk ) =
1
2
∥uλk∥

2
Hλk

−
1
2

∫
V
u2

λk
log u2

λk
dµ

≥
λk

2

∫
V
a(x)u2

λk
dµ −

1
2

∫
V
(u2

λk
log u2

λk
)+dµ

≥
λk

2

∫
V
a(x)u2

λk
dµ −

Cε

2

∫
V

|uλk |
2+εdµ

≥
λk

2

∑
x∈V

µ(x)a(x)u2
λk
(x) − C ′

ε∥uλk∥
2+ε

H1(V )

≥
λk

2
µmina(x0)u2

λk
(x0) − C ′′

ε .

Since a(x0) > 0, uλk (x0) → u0(x0) ̸= 0 and λk → +∞, we get

lim
k→+∞

Jλk (uλk ) = +∞,

This is in contradiction with (4.3). Hence the claim holds.
15
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Since u0 |Ωc= 0, by the weak lower semi-continuity of the norm ∥·∥H1(V ) and Fatou’s lemma, taking u+

λk
as test function

in Eq. (1.2), we get∫
Ω∪∂Ω

Γ (u+

0 )dµ +

∫
Ω

|u+

0 |
2dµ −

∫
{Ω:|u+

0 |≤1}
|u+

0 |
2 log |u+

0 |
2dµ −

1
2
K 0

Ω (u)

≤

∫
V

(
Γ (u+

0 ) + |u+

0 |
2
)
dµ −

∫
{V :|u+

0 |≤1}
|u+

0 |
2 log |u+

0 |
2dµ −

1
2
K 0
V (u)

≤ lim inf
k→+∞

[∫
V

(
Γ (u+

λk
) + |u+

λk
|
2
)
dµ −

∫
{V :|u+

λk
|≤1}

|u+

λk
|
2 log |u+

λk
|
2dµ −

1
2
Kλk
V (u)

]

≤ lim inf
k→+∞

[∫
V

(
Γ (u+

λk
) + (λka(x) + 1) |u+

λk
|
2
)
dµ −

∫
{V :|u+

λk
|≤1}

|u+

λk
|
2 log |u+

λk
|
2dµ −

1
2
Kλk
V (u)

]

= lim inf
k→+∞

[∫
V

|u+

λk
|
2dµ +

∫
{V :|u+

λk
|>1}

|u+

λk
|
2 log |u+

λk
|
2dµ

]

=

∫
V

|u+

0 |
2dµ +

∫
{V :|u+

0 |>1}
|u+

0 |
2 log |u+

0 |
2dµ

=

∫
Ω

|u+

0 |
2dµ +

∫
{Ω:|u+

0 |>1}
|u+

0 |
2 log |u+

0 |
2dµ,

here

K 0
Ω (u) =

∑
x∈Ω∪∂Ω

∑
y∼x

[
u+

0 (x)u
−

0 (y) + u−

0 (x)u
+

0 (y)
]
,

K 0
V (u) =

∑
x∈V

∑
y∼x

[
u+

0 (x)u
−

0 (y) + u−

0 (x)u
+

0 (y)
]
,

Kλk
V (u) =

∑
x∈V

∑
y∼x

[
u+

λk
(x)u−

λk
(y) + u−

λk
(x)u+

λk
(y)
]
.

Then

J ′Ω (u0) · u+

0 =

∫
Ω∪∂Ω

Γ (u+

0 )dµ −

∫
Ω

|u+

0 |
2 log |u+

0 |
2dµ −

1
2
K 0

Ω (u) ≤ 0. (4.5)

imilarly, it holds that

J ′Ω (u0) · u−

0 =

∫
Ω∪∂Ω

Γ (u−

0 )dµ −

∫
Ω

|u−

0 |
2 log |u−

0 |
2dµ −

1
2
K 0

Ω (u) ≤ 0. (4.6)

n view of Lemmas 3.4 and 3.5, there exist two constants s, t ∈ (0, 1] such that ũ0 = su+

0 + tu−

0 ∈ MΩ . Then

mΩ ≤JΩ (̃u0) = JΩ (̃u0) −
1
2
J ′Ω (̃u0) · (su+

0 ) −
1
2
J ′Ω (̃u0) · (tu−

0 )

=JΩ (su+

0 ) −
1
2
J ′Ω (su+

0 ) · (su+

0 ) + JΩ (tu−

0 ) −
1
2
J ′Ω (tu−

0 ) · (tu−

0 )

=
s2

2
∥u+

0 ∥
2
L2(Ω) +

t2

2
∥u−

0 ∥
2
L2(Ω)

≤
1
2
∥u+

0 ∥
2
2 +

1
2
∥u−

0 ∥
2
2

≤ lim inf
k→∞

[
1
2
∥u+

λk
∥
2
2 +

1
2
∥u−

λk
∥
2
2

]
= lim inf

k→∞

[
Jλk (u

+

λk
) −

1
2
J ′λk (u

+

λk
) · u+

λk
+ Jλk (u

−

λk
) −

1
2
J ′λk (u

−

λk
) · u−

λk

]
= lim inf

k→∞

[
Jλk (uλk ) −

1
2
J ′λk (uλk ) · u+

λk
−

1
2
J ′λk (uλk ) · u−

λk

]
= lim inf Jλk (uλk ) = η ≤ mΩ .
k→+∞
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Hence,

lim
λ→+∞

mλ = mΩ .

This completes the proof. □

Next, we prove Theorem 1.3.

roof of Theorem 1.3. Assume that uλk ∈ Mλk satisfies Jλk (uλk ) = mλk . We shall prove that uλk converges in H1(V ) to a
east energy sign-changing solution u0 of Eq. (1.8) along a subsequence.

Lemma 4.2 gives that uλk ∈ Hλk is uniformly bounded. Consequently, we have that {uλk} is also bounded in H1(V ).
herefore, we can assume that for any p ∈ [2, ∞), uλk → u0 in Lp(V ) and uλk ⇀ u0 in H1(V ). Moreover, in view of
0 ∈ NΩ and we get from Lemma 4.1 that u0 ̸≡ 0. As proved in Lemma 4.3, we can prove that u0 |Ωc= 0. Then it suffices
o show that, as k → +∞, we have λk

∫
V a(x)|u±

λk
|
2dµ → 0 and

∫
V Γ (u±

λk
)dµ →

∫
V Γ (u±

0 )dµ. If not, we may assume that

lim
k→+∞

λk

∫
V
a(x)|u±

λk
|
2dµ = δ > 0.

ince u0 |Ωc= 0, by weak lower semi-continuity of the norm ∥ · ∥H1(V ) and Fatou’s lemma, taking u+

λk
as test function

n Eq. (1.2), we get∫
Ω∪∂Ω

Γ (u+

0 )dµ +

∫
Ω

|u+

0 |
2dµ −

∫
{Ω:|u+

0 |≤1}
|u+

0 |
2 log |u+

0 |
2dµ −

1
2
K 0

Ω (u)

<

∫
V

(
Γ (u+

0 ) + |u+

0 |
2
)
dµ + δ −

∫
{V :|u+

0 |≤1}
|u+

0 |
2 log |u+

0 |
2dµ −

1
2
K 0
V (u)

≤ lim inf
k→+∞

[∫
V

(
Γ (u+

λk
) + (λka(x) + 1) |u+

λk
|
2
)
dµ −

∫
{V :|u+

λk
|≤1}

|u+

λk
|
2 log |u+

λk
|
2dµ −

1
2
Kλk
V (u)

]

= lim inf
k→+∞

[∫
V

|u+

λk
|
2dµ +

∫
{V :|u+

λk
|>1}

|u+

λk
|
2 log |u+

λk
|
2dµ

]

=

∫
V

|u+

0 |
2dµ +

∫
{V :|u+

0 |>1}
|u+

0 |
2 log |u+

0 |
2dµ

=

∫
Ω

|u+

0 |
2dµ +

∫
{Ω:|u+

0 |>1}
|u+

0 |
2 log |u+

0 |
2dµ,

hich implies that

J ′Ω (u0) · u+

0 =

∫
Ω∪∂Ω

Γ (u+

0 )dµ −

∫
Ω

|u+

0 |
2 log |u+

0 |
2dµ −

1
2
K 0

Ω (u) < 0. (4.7)

imilarly, it holds that

J ′Ω (u0) · u−

0 =

∫
Ω∪∂Ω

Γ (u−

0 )dµ −

∫
Ω

|u−

0 |
2 log |u−

0 |
2dµ −

1
2
K 0

Ω (u) < 0. (4.8)

y similar arguments as above, if

lim
k→+∞

∫
V

Γ (u±

λk
)dµ >

∫
V

Γ (u±

0 )dµ,

e also have (4.7) and (4.8).
In view of Lemmas 3.4 and 3.5, there exist two constants s, t ∈ (0, 1) such that ũ0 = su+

0 + tu−

0 ∈ MΩ . Consequently,
e have

mΩ ≤JΩ (̃u0) = JΩ (̃u0) −
1
2
J ′Ω (̃u0) · (su+

0 ) −
1
2
J ′Ω (̃u0) · (tu−

0 )

=JΩ (su+

0 ) −
1
2
J ′Ω (su+

0 ) · (su+

0 ) + JΩ (tu−

0 ) −
1
2
J ′Ω (tu−

0 ) · (tu−

0 )

=
s2

2
∥u+

0 ∥
2
L2(Ω) +

t2

2
∥u−

0 ∥
2
L2(Ω)

<
1
∥u+

∥
2
+

1
∥u−

∥
2

2 0 2 2 0 2
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w
o

D

a

D

A

T
o
T

R

≤ lim inf
k→+∞

[
1
2
∥u+

λk
∥
2
2 +

1
2
∥u−

λk
∥
2
2

]
= lim inf

k→+∞

[
Jλk (u

+

λk
) −

1
2
J ′λk (u

+

λk
) · u+

λk
+ Jλk (u

−

λk
) −

1
2
J ′λk (u

−

λk
) · u−

λk

]
= lim inf

k→+∞

[
Jλk (uλk ) −

1
2
J ′λk (uλk ) · u+

λk
−

1
2
J ′λk (uλk ) · u−

λk

]
= lim inf

k→+∞

Jλk (uλk )

= lim inf
k→+∞

mλk = mΩ ,

hich leads to a contradiction. Hence, we obtain that uλk → u0 in H1(V ) and u0 is a least energy sign-changing solution
f problem (1.8). □
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