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Abstract. We consider a Dirichlet elliptic equation driven by a weighted

(p, q)-Laplace differential operator. The weights are in general different. When

the reaction is “superlinear”, using the fountain theorem, we show the exis-
tence of a sequence of distinct smooth solutions with energies diverging to +∞.

When the reaction is “sublinear” (possibly resonant), we establish the existence

of a sequence of nodal solutions converging to zero in C1
0 (Ω̄) (in particular, the

energies converge to zero).

1. Introduction. Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω.
In this paper, we study the following Dirichlet problem driven by the weighted
(p, q)-Laplacian {

−∆a1
p u(z)−∆a2

q u(z) = f(z, u(z)) in Ω,
u|∂Ω = 0, 1 < q < p.

(1)

Given a ∈ C0,1(Ω̄) with 0 < ĉ ≤ a(z) for all z ∈ Ω̄ and r ∈ (1,∞), by ∆a
r we

denote the weighted r-Laplace differential operator defined by

∆a
ru = div(a(z)|Du|r−2Du) for all u ∈W 1,r

0 (Ω).

In problem (1) we have the sum of two such operators with different exponents
1 < q < p and also different weight functions a1(·) and a2(·). So, in problem (1), the
differential operator is not homogeneous and this of course leads to difficulties in the
analysis of (1). Moreover, the fact that the weights a1(·) and a2(·) are in general
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different, does not permit the use of the nonlinear maximum principle of Pucci-
Serrin [22, pp.111, 120]. Instead we employ a strengthened version of a result due
to Papageorgiou-Vetro-Vetro [20, Proposition 2.4], exploiting the stronger regularity
theory available for our problem.

Our aim is to prove the existence of a whole sequence of distinct solutions of
(1) with energy levels which tend to +∞ and to zero. Such multiplicity results
were obtained by Kajikiya [9], Pan-Tang [14], Papageorgiou-Rădulescu [15] (semi-
linear equations), Zhao-Zhao [28] (equations driven by the p-Laplacian), Gasinski-
Papageorgiou [7], Leonardi-Papageorgiou [11] (parametric Robin problems driven
by a nonhomgeneous differential operator) and Papageorgiou-Rădulescu-Repovs̆ [17]
(parametric double phase equations). They impose more restrictive conditions on
the reaction and with the exception of Zhao-Zhao [28], produce only sequences of
low energy solutions. For related existence and properties of ground state solutions
for the case p = q = 2, we also refer the readers to the recent paper [26, 27].

2. Mathematical background and auxiliary results. The main spaces in the
analysis of problem (1) are the Sobolev space W 1,p

0 (Ω) and the Banach space

C1
0 (Ω̄) = {u ∈ C1(Ω̄) : u|∂Ω = 0}.

On account of the Poincaré inequality, on W 1,p
0 (Ω) we can use the equivalent

norm

‖u‖ = ‖Du‖p for all u ∈W 1,p
0 (Ω).

The Banach space C1
0 (Ω̄) is ordered with positive cone

C+ = {u ∈ C1
0 (Ω̄) : u(z) ≥ 0 for all z ∈ Ω̄}.

This cone has a nonempty interior given by

intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω,
∂u

∂n
|∂Ω < 0},

where ∂u
∂n = (Du, n)RN with n(·) being the outward unit normal on ∂Ω.

By C0,1(Ω̄) we denote the space of all Lipschitz continuous functions on Ω̄. Let
a ∈ C0,1(Ω̄) and assume that 0 < ĉ ≤ a(z) for all z ∈ Ω̄. For r ∈ (1,∞), let

Aar : W 1,r
0 (Ω)→W−1,r′(Ω) = W 1,r

0 (Ω)∗ (
1

r
+

1

r′
= 1)

be the nonlinear operator defined by

〈Aar(u), h〉 =

∫
Ω

a(z)|Du|r−2(Du,Dh)RNdz.

This operator has the following properties (see Gasinski-Papageorgiou [6, Prob-
lem 2.192]).

Proposition 2.1. The operator Aar(·) is bounded (that is, maps bounded sets to
bounded sets), continuous, strictly monotone (thus, maximal monotone too) and of
type (S)+, that is,

“un
w−→ u in W 1,r

0 (Ω), lim sup
n→∞

〈Aar(un), un − u〉 ≤ 0⇒ un → u in W 1,r
0 (Ω).”

Consider the following nonlinear eigenvalue problem{
−∆a

ru(z) = λ̂a(z)|u(z)|r−2u(z) in Ω,
u = 0 on ∂Ω.

(2)



HIGH AND LOW ENERGY SOLUTIONS FOR WEIGHTED (p, q)-EQUATIONS 3

We say that λ̂ ∈ R is an eigenvalue of (2), if the problem admits a nontrivial solution

û ∈ W 1,r
0 (Ω) known as an eigenfunction corresponding to λ̂. Problem (2) has a

smallest eigenvalue λ̂a1(r) > 0 which has the following variational characterization

λ̂a1(r) = inf

{∫
Ω
a(z)|Du|rdz∫

Ω
a(z)|u|rdz

: u ∈W 1,r
0 (Ω), u 6= 0

}
. (3)

This eigenvalue is isolated and simple (that is, if û, v̂ are two eigenfunctions

corresponding to λ̂a1(r), then û = ϑv̂ for some ϑ ∈ R \ {0}). The infimum in
(3) is realized on the corresponding one dimensional eigenspace. It is easy to see

from (3) that the eigenfunctions corresponding to λ̂a1(r) have constant sign. The
nonlinear regularity theory (see Lieberman [12]) implies that all eigenfunctions of
(2) belong in C1

0 (Ω̄). By û1(r) we denote the positive eigenfunction corresponding

to λ̂a1(r) > 0 such that
∫

Ω
a(z)|û1(r)|rdz = 1. The nonlinear maximum principle

implies that û1(r) ∈ intC+. We mention that in addition to λ̂a1(r) > 0 the minimax
scheme of Ljusternik-Schnirelmann (see Gasinski-Papageorgiou [5]) gives a whole

strictly increasing unbounded sequence of eigenvalues {λ̂an(r)}n∈N. We do not know
if this sequence exhausts the spectrum of (2).

From the aforementioned properties of λ̂a1 , we infer the following simple lemma
(see Mugnai-Papageorgiou [13, Lemma 4.11]).

Proposition 2.2. If ϑ ∈ L∞(Ω), ϑ(z) ≤ λ̂a1(r)a(z) for a.a. z ∈ Ω and ϑ 6≡ λ̂a1(r)a,
then there exists c0 > 0 such that

c0‖Du‖rr ≤
∫

Ω

a(z)|Du|rdz −
∫

Ω

ϑ(z)|u|rdz

for all u ∈W 1,r
0 (Ω).

For our problem there is a strong regularity theory (see Lieberman [12]) and so we
can have a stronger version of the maximum principle of Papageorgiou-Vetro-Vetro
[20, Proposition 2.4].

So, let a1, a2 ∈ C0,1(Ω̄) with 0 < ĉ ≤ a1(z), a2(z) for all z ∈ Ω̄ and ξ, h ∈ L∞(Ω),
ξ(z) ≥ 0 for a.a. z ∈ Ω. We consider the following Dirichlet problem{

−∆a1
p u(z)−∆a2

q u(z) + ξ(z)|u(z)|p−2u(z) = h(z) in Ω,
u|∂Ω = 0, 1 < q < p <∞. (4)

Proposition 2.3. If u ∈ C1
0 (Ω̄) is a solution of (4), u(z) ≥ 0 for all z ∈ Ω̄, u 6= 0,

then u ∈ intC+.

Proof. First we show that

u(z) > 0 for all z ∈ Ω.

We argue by contradiction. So, suppose that the strict positivity of u(·) on Ω is
not true. Then we can find z1, z2 ∈ Ω and ρ > 0 such that

B̄2ρ(z2) ⊆ Ω, z1 ∈ ∂B2ρ(z2), u(z1) = 0, u|B2ρ(z2) > 0.

Here, B2ρ(z2) = {z ∈ RN : |z − z2| < 2ρ}. Clearly, by fixing z1 and varying z2, we
can always have ρ > 0 small. Let m = min∂Bρ(z2) u > 0. We have

Du(z1) = 0,m→ 0+ and
m

ρ
→ 0+ as ρ→ 0+ (L’Hospital’s rule). (5)
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Consider the annulus

A = {z ∈ Ω : ρ < |z − z2| < 2ρ}

and let

η = max

{
sup

Ω
|Da1|, sup

Ω
|Da2|

}
> 0.

Since a1, a2 are by hypothesis Lipschitz continuous, by Rademacher’s theorem (see
Papageorgiou and Winkert [21, p.476]) they are almost everywhere differentiable.
We define

µ = − ln
m

ρ
+
N − 1

ρ
+ 2η

and consider the function

y(t) =
m[e

µt
q−1 − 1]

e
µt
q−1 − 1

, 0 ≤ t ≤ ρ.

For ρ > 0 small we have

0 < y(t), y′(t) < 1 for all t ∈ [0, ρ] (see (5)), (6)

y′′(t) =
µ

q − 1
y′(t) for all t ∈ [0, ρ]. (7)

To simplify the presentation, without any loss of generality we assume that z2 =
0. Let r = |z|(= |z − z2|), t = 2ρ− r. For t ∈ [0, ρ], r ∈ [ρ, 2ρ] we define

v(r) = y(2ρ− r) = y(t)⇒ v′(t) = −y′(t), v′′(t) = y′′(t).

We set v̂(z) = v(r) for z ∈ Ω, |z| = r. We have v̂ ∈ C2(A). Then

div
[
a1(z)|Dv̂|p−2Dv̂ + a2(z)|Dv̂|q−2Dv̂

]
− ξ(z)|v̂|p−2v̂ + h(z)

=(p− 1)a1(z)y′(t)p−2y′′(t)− a1(z)
N − 1

r
y′(t)p−1 − y′(t)p−1

N∑
k=1

∂a1

∂zk

zk
r

+ (q − 1)a2(z)y′(t)q−2y′′(t)− a2(z)
N − 1

r
y′(t)q−1 − y′(t)p−1

N∑
k=1

∂a2

∂zk

zk
r

− ξ(z)y(t)p−1 + h(z)

≥ĉ
[
µ− N − 1

r
− 2η

]
y′(t)q−1 − c1 (c1 = ‖ξ‖∞ + ‖h‖∞ ≥ 0)

≥ĉ(− ln
m

ρ
)y′(t)p−1 − c1 (see (6) and recall q < p).

So, for ρ > 0 small we have

−∆a1
p v̂ −∆a2

q v̂ + ξ(z)v̂p−1 ≤ h(z) in Ω.

Then the weak comparison principle (see [22, p.61]) implies that v(z) ≤ u(z) for all
z ∈ Ā. Hence we have

lim
s→0+

u(z1 + s(z2 − z1))

s
≥ lim
s→0+

v̂(z1 + s(z2 − z1))− v̂(z1)

s
= v′(0) > 0.

Hence Du(z1) 6= 0, a contradiction. So, u(z) > 0 for all z ∈ Ω.
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Now let z1 ∈ ∂Ω and for ρ > 0 small let z2 = z1 − 2ρn(z1). Let 0 < d <
inf{u(z) : z ∈ ∂Bρ(z2)}. From the first part of the proof, we know that there exists
v̂ ∈ C1(Ā) ∩ C2(A) such that

v̂(z) ≤ u(z) for all z ∈ Ā, v̂(z1) = 0,
∂v̂

∂n
(z1) < 0,

⇒ u ∈ intC+.

The proof is now complete.

Let X be a Banach space and ϕ ∈ C1(X). We say that ϕ(·) satisfies that “C-
condition”, if the following property holds:

If {un}n∈N ⊆ X is a sequence such that

{ϕ(un)}n∈N ⊆ R is bounded,

and (1 + ‖un‖X)ϕ′(un)→ 0 in X∗ as n→∞,
then it has a strongly convergent subsequence.

This is a compactness-type condition on the functional ϕ(·) which compensates
for the fact that the ambient space X is not, in general, locally compact (being
infinite dimensional). It leads to a deformation theorem from which one deduces the
minimax theorems characterizing the critical points of ϕ(·) (see [5]). We also refer
to Tang and Cheng [24] who proposed a new approach to restore the compactness
of Palais-Smale sequences and to Tang and Chen [23] who introduced an original
method to recover the compactness of minimizing sequences. A related approach
has been developed by Chen and Tang [3] in the framework of Cerami sequences.

If u : Ω→ R is a measurable function, then we define

u±(z) = max{±u(z), 0} for all z ∈ Ω.

We know that u = u+−u−, |u| = u+ +u− and if u ∈W 1,p
0 (Ω), then u± ∈W 1,p

0 (Ω).
If u, v : Ω→ R are measurable functions and u(z) ≤ v(z) for all z ∈ Ω, then

[u, v] = {h ∈W 1,p
0 (Ω) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ Ω}.

Finally, for ϕ ∈ C1(X), we set

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ).

3. High energy solutions. In this section we produce a sequence of smooth solu-
tions with energy levels diverging to +∞. The hypotheses on the data of problem
(1) are the following:

H0 : a1, a2 ∈ C0,1(Ω̄) and 0 < ĉ ≤ a1(z), a2(z) for all z ∈ Ω̄.
H1 : f : Ω×R→ R is a Carathéodory function such that for a.a. z ∈ Ω, f(z, 0) = 0,

f(z, ·) is odd and
(i) |f(z, x)| ≤ â(z)[1 + |x|r−1] for a.a. z ∈ Ω, all x ∈ R with â ∈ L∞(Ω) and

p < r < p∗, where p∗ = Np
N−p if p < N and p∗ = +∞ if N ≤ p;

(ii) if F (z, x) =
∫ x

0
f(z, s)ds, then limx→±∞

F (z,x)
|x|p = +∞ uniformly for a.a.

z ∈ Ω;
(iii) there exists µ ∈ ((r − p) max{Np , 1}, p

∗) such that

0 < ĉ0 ≤ lim inf
x→±∞

f(z, x)x− pF (z, x)

|x|µ
uniformly for a.a. z ∈ Ω.
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Remark 1. We mention that no restriction on the behavior of f(z, ·) near zero
is imposed. Hypotheses H1-(ii) and H1-(iii) imply that for a.a. z ∈ Ω, f(z, ·)
is (p − 1)-superlinear as x → ±∞. However, this superlinearity of f(z, ·) is not
expressed via the usual for superlinear problems Ambrosetti-Rabinowitz condition
(the AR-condition for short, see Willem [25, p.46]). The condition in hypothesis
H1-(iii) is less restrictive and incorporates superlinear nonlinearities with “slower”
growth. For example, the function |x|p−2x ln |x| satisfies hypotheses H1 but fails to
satisfy the AR-condition.

We introduce the energy functional ϕ : W 1,p
0 (Ω)→ R for problem (1) defined by

ϕ(u) =
1

p

∫
Ω

a1(z)|Du|pdz +
1

q

∫
Ω

a2(z)|Du|qdz −
∫

Ω

F (z, u)dz

for all u ∈W 1,p
0 (Ω). Evidently, ϕ ∈ C1(W 1,p

0 (Ω)).

Proposition 3.1. If hypotheses H0 and H1 hold, then the functional ϕ(·) satisfies
the C-condition.

Proof. Consider a sequence {un}n∈N ⊆W 1,p
0 (Ω) such that

|ϕ(un)| ≤ c1 for some c1 > 0, all n ∈ N, (8)

(1 + ‖un‖)ϕ′(un)→ 0 in W−1,p′(Ω) as n→∞. (9)

From (9) we have∣∣∣∣〈Aa1p (un), h〉+ 〈Aa2q (un), h〉 −
∫

Ω

f(z, un)hdz

∣∣∣∣ ≤ εn‖h‖
1 + ‖un‖

(10)

for all h ∈W 1,p
0 (Ω), with εn → 0+.

In (10) we use the test function h = un ∈W 1,p
0 (Ω) and obtain

−
∫

Ω

a1(z)|Dun|pdz −
∫

Ω

a2(z)|Dun|qdz +

∫
Ω

f(z, un)undz ≤ εn (11)

for all n ∈ N. From (8) we have∫
Ω

a1(z)|Dun|pdz +
p

q

∫
Ω

a2(z)|Dun|qdz −
∫

Ω

pF (z, un)dz ≤ pc1. (12)

We add (11) and (12). Recalling that q < p, we obtain∫
Ω

[f(z, un)un − pF (z, un)]dz ≤ c2 for some c2 > 0, all n ∈ N. (13)

From hypotheses H1-(i) and H1-(ii), we see that we can find ĉ1 ∈ (0, ĉ0) and
c3 > 0 such that

ĉ1|x|µ − c3 ≤ f(z, x)x− pF (z, x) for a.a. z ∈ Ω, all x ∈ R. (14)

We use (14) in (13) and infer that

{un}n∈N ⊆ Lµ(Ω) is bounded. (15)

From hypothesis H1-(iii), it is clear that we may assume that µ < r < p∗. First
we assume that p 6= N and choose t ∈ (0, 1) such that

1

r
=

1− t
µ

+
t

p∗
. (16)
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Invoking the interpolation inequality (see Papageorgiou-Winkert [21, p.116]), we
have

‖un‖r ≤ ‖un‖1−tµ ‖un‖tp∗
⇒ ‖un‖rr ≤ c4‖un‖tr for some c4 > 0, all n ∈ N. (17)

(see (15) and use the Sobolev embedding theorem)

From (10) with h = un ∈W 1,p
0 (Ω), we have

‖un‖p ≤c5[1 + ‖un‖rr]
for some c5 > 0, all n ∈ N (see hypothesis H1-(i))

≤c6[1 + ‖un‖tr] (18)

for some c6 > 0, all n ∈ N (see (13)).

If p < N , the from (12) and since p∗ = Np
N−p we have

t

(
p∗ − µ
p∗

)
=
r − µ
r

,

⇒ tr =
p∗(r − µ)

p∗ − µ
=

(r − µ)Np

Np−Nµ+ pµ
< p,

(see hypothesis H1-(iii)).

If p > N , then p∗ = +∞ and so (16) becomes

1

r
=

1− t
µ

,

⇒ r(t) = r − µ < p, (see hypothesis H1-(iii)).

So, when p 6= N , we have that tr < p and then from (18), it follows that

{un}n∈N ⊆W 1,p
0 (Ω) is bounded. (19)

If N = p, then by definition p∗ = +∞, but the Sobolev embedding theorem says
that W 1,p

0 (Ω) ↪→ Ls(Ω) continuously (in fact, compactly) for all s ∈ [1,∞). So, in

the previous argument we need to replace p∗ with s > r big so that tr = s(r−µ)
s−µ < p

(see hypothesis H1-(iii)). Then again we infer that (15) holds.
On account of (19), we may assume that

un
w−→ u in W 1,p

0 (Ω) and un → u in Lr(Ω). (20)

In (10) we choose h = u− un ∈W 1,p
0 (Ω), pass to the limit as n→∞ and use (20),

we obtain

lim
n→∞

[
〈Aa1p (un), un − u〉+ 〈Aa2q (un), un − u〉

]
= 0,

⇒ lim sup
n→∞

[
〈Aa1p (un), un − u〉+ 〈Aa2q (u), un − u〉

]
≤ 0

(since Aa2q (·) is monotone),

⇒ lim sup
n→∞

〈Aa1p (un), un − u〉 ≤ 0 (see (20)),

⇒ uu → u in W 1,p
0 (Ω) (see Proposition 1).

This proves that ϕ(·) satisfies the C-condition.
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The Sobolev space W 1,p
0 (Ω) is a separable and reflexive Banach space. So, we

can find two sequences

{en}n∈N ⊆W 1,p
0 (Ω) and {e∗n}n∈N ⊆W−1,p′(Ω)

such that {
W 1,p

0 (Ω) = span{en}n∈N, W−1,p′(Ω) = span{e∗n}n∈N,
〈e∗m, en〉 = δmn for all m,n ∈ N. (21)

(see Bogachev-Smolyanov [2, p.245]). Here, δmn denotes the Kronecker symbol
defined by

δmn =

{
1, if m = n,
0, if m 6= n.

We set

Ek = Rek, k ∈ N, Yn = ⊕nk=1Ek and Vn = ⊕k≥n+1Ek, n ∈ N.

Let

ϑn = sup {‖u‖r : u ∈ Vn, ‖u‖ = 1} . (22)

Lemma 3.2. ϑn → 0 as n→∞.

Proof. Clearly, the sequence {ϑn}n∈N ⊆ (0,∞) is decreasing. So

ϑn → ϑ ≥ 0 as n→∞.

Choose un ∈ Vn such that

ϑn −
1

n
≤ ‖un‖r, ‖un‖ = 1 for all n ∈ N. (23)

From (23) we see that we may assume that

un
w−→ u in W 1,p

0 (Ω) and un → u in Lr(Ω) as n→∞. (24)

We have

〈e∗k, un〉 → 〈e∗k, u〉 as n→∞, for all k ∈ N,
⇒ 〈e∗k, un〉 → 0 as n→∞, for all k ∈ N (see (21)).

Therefore we have

〈e∗k, u〉 = 0 for all k ∈ N,
⇒ u = 0 (see (21)),

⇒ ϑ = 0 (see (23) and (24)).

The proof is now complete.

We set

a∗n = max{ϕ(u) : u ∈ Yn, ‖u‖ = ρn},
b∗n = inf{ϕ(u) : u ∈ Vn, ‖u‖ = ln}, n ∈ N.

Proposition 3.3. If hypotheses H0 and H1 hold, then there exist ρn ≥ ln > 0 for
all n ∈ N such that a∗n ≤ 0 for all n ∈ N, b∗n → +∞ as n→∞.
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Proof. Hypotheses H1-(i) and H1-(ii) imply that given η > 0, we can find c7 > 0
such that

F (z, x) ≥ η

p
|x|p − c7 for a.a. z ∈ Ω, all x ∈ R. (25)

Let u ∈ Yn with ‖u‖ ≥ 1. We have

ϕ(u) ≤ 1

p

∫
Ω

a1(z)|Du|pdz +
1

q

∫
Ω

a2(z)|Du|qdz + c8 −
η

p
‖u‖pp

for some c8 > 0 (see (25)).
Since Yn is finite dimensional, all norms are equivalent (see Papageorgiou-Winkert

[21, p.183]). We have

ϕ(u) ≤ (c9 − ηc10)‖u‖p for some c9, c10 > 0 (recall q < p). (26)

Since η > 0 is arbitrary, from (26) we infer that

ϕ(u)→ −∞ as ‖u‖ → ∞.

Therefore, we can find ρn > 0, n ∈ N with ρn → +∞ such that

a∗n ≤ 0 for all n ∈ N.

Hypothesis H1-(i) implies that

|F (z, x)| ≤ c11(|x|+ |x|r) for a.a. z ∈ Ω, all x ∈ R, some c11 > 0.

Let u ∈ Vn with ‖u‖ ≥ 1. We know that

‖u‖r ≤ ϑn‖u‖ (see (22)). (27)

So, we have

ϕ(u) ≥ ĉ

p
‖u‖p − c12[‖u‖+ ϑrn‖u‖r]

for some c12 > 0, all n ∈ N (see hypotheses H0 and (27)).

Let ln = 1/ϑr−pn , n ∈ N. Then ln → +∞ as n → ∞ (see Lemma 3.2 and recall
that p < r). Clearly we can always choose ρn > 0 such that ρn > ln for all n ∈ N.
We have

ϕ(u) ≥ ĉ

p
lpn − c12ln − c12ϑ

p
n,

⇒ b∗n ≥
ĉ

p
lpn − c12ln − c12ϑ

p
n,

⇒ bnn → +∞ (recall p > 1 and see Lemma 3.2).

The proof is now complete.
Now we can produce a sequence of high energy solutions with the energies di-

verging to +∞.

Theorem 3.4. If hypotheses H0 and H1 hold, then problem (1) has a sequence of
distinct solutions {un}n∈N ⊆ C1

0 (Ω̄) such that ϕ(un)→ +∞ as n→∞.
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Proof. Since ϕ(·) is even, on account of Propositions 3.1 and 3.3, we can apply
the Fountain Theorem (see Willem [25, p.58]) and generate a sequence {un}n∈N ⊆
W 1,p

0 (Ω) such that

un ∈ Kϕ for all n ∈ N and ϕ(un)→ +∞.

Then each un is a weak solution of problem (1). From [10, Theorem 7.1, p.286]
of Ladyzhenskaya and Uraltseva, we have un ∈ L∞(Ω) for all n ∈ N and then the
regularity theory of Lieberman [12], implies that {un}n∈N ⊆ C1

0 (Ω̄).

4. Low energy solutions. In this section, we have a (p − 1)-sublinear reaction
and we generate a whole sequence of distinct smooth nodal (sign-changing) solutions
with low energies which converge to zero.

In this case the hypotheses on the reaction f(z, x) are the following:

H2 : f : Ω×R→ R is a Carathéodory function such that for a.a. z ∈ Ω, f(z, 0) = 0
and
(i) |f(z, x)| ≤ â(z)[1 + |x|p−1] for a.a. z ∈ Ω, all x ∈ R with â ∈ L∞(Ω);

(ii) lim sup
x→±∞

f(z,x)
a1(z)|x|p−2x ≤ λ̂

a1
1 (p) uniformly for a.a. z ∈ Ω;

(iii) if F (z, x) =
∫ x

0
f(z, s)ds, then

lim
x→±∞

[f(z, x)x− pF (z, x)] = +∞ uniformly for a.a. z ∈ Ω;

(iv) there exists a function η ∈ L∞(Ω) such that

λ̂a21 (q)a2(z) ≤ η(z) for a.a. z ∈ Ω, η 6≡ λ̂a21 (q)a2,

η(z) ≤ lim inf
x→0

qF (z,x)
a2(z)|x|q uniformly for a.a. z ∈ Ω;

(v) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ Ω the function

x 7→ f(z, x) + ξ̂ρ|x|p−2x

is nondecreasing on [−ρ, ρ].

Remark 2. Hypothesis H2-(ii) implies that we can have resonance with respect to

the principal eigenvalue of (−∆a1
p ,W

1,p
0 (Ω)). Hypothesis H2-(iii) implies that the

resonance occurs from the left of λ̂a11 (p) in the sense that

λ̂a11 (p)a1(z)|x|p − pF (z, x)→ +∞

uniformly for a.a. z ∈ Ω, as x → ±∞. This makes the energy functional ϕ(·) and
its positive and negative truncations coercive (see Proposition 4.1 below).

The positive and negative truncations of the energy functional ϕ(·), are the

functionals ϕ± : W 1,p
0 (Ω)→ R defined by

ϕ±(u) =
1

p

∫
Ω

a1(z)|Du|pdz +
1

q

∫
Ω

a2(z)|Du|qdz −
∫

Ω

F (z,±u±)dz

for all u ∈W 1,p
0 (Ω). We have that ϕ± ∈ C1(W 1,p

0 (Ω)).

Proposition 4.1. If hypotheses H0 and H2 hold, then the functionals ϕ±(·) and
ϕ(·) are coercive.
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Proof. We have

d

dx

[
F (z, x)

|x|p

]
=
f(z, x)|x|p − p|x|p−2xF (z, x)

|x|2p

=
|x|p−2x[f(z, x)x− pF (z, x)]

|x|2p

=
f(z, x)x− pF (z, x)

|x|px
.

(28)

On account of hypothesis H2-(iii) given γ > 0, we can find Mγ > 0 such that

f(z, x)x− pF (z, x) ≥ γ for a.a. z ∈ Ω, all |x| ≥Mγ . (29)

We use (29) in (28) and obtain

d

dx

[
F (z, x)

|x|p

]
=

{
≥ γ

xp+1 , if x ≥Mγ ,
≤ γ
|x|px , if x < −Mγ ,

⇒ F (z, x)

|x|p
− F (z, y)

|y|p
≥ γ

p

[
1

|y|p
− 1

|x|p

]
for a.a. z ∈ Ω, all |x| ≥ |y| ≥Mγ . (30)

In (30) we let |x| → ∞. Using hypothesis H2-(ii), we obtain

λ̂a11 (p)a1(z)

p
− F (z, y)

|y|p
≥ γ

p

1

|y|p

⇒ λ̂a11 (p)a1(z)|y|p − pF (z, y) ≥ γ for a.a. z ∈ Ω, all |y| ≥Mγ .

Since γ > 0 is arbitrary, we conclude that

λ̂a11 (p)a1(z)|y|p − pF (z, y)→ +∞ uniformly for a.a. z ∈ Ω, as |y| → ∞. (31)

We will show that (31) implies the coercivity of three functionals. We will do
the proof for ϕ+(·), the proofs for ϕ−(·) and ϕ(·) being similar.

Arguing by contradiction, suppose that ϕ+(·) is not coercive. Then we can find

{un}n∈N ⊆W 1,p
0 (Ω) such that{

ϕ+(un) ≤ c13 for some c13 > 0, all n ∈ N,
‖un‖ → ∞ as n→∞. (32)

From the inequality in (32), we see that if {u+
n }n∈N ⊆W

1,p
0 (Ω) is bounded, then so

is {u−n }n∈N and we infer that {un}n∈N ⊆ W 1,p
0 (Ω) is bounded, a contradiction (see

(32)). Therefore, we must have

‖u+
n ‖ → ∞. (33)

Let yn =
u+
n

‖u+
n ‖

for all n ∈ N. Then ‖yn‖ = 1, yn ≥ 0 for all n ∈ N. So, we may

assume that

yn
w−→ y in W 1,p

0 (Ω) and yn → y in Lp(Ω), y ≥ 0. (34)

From the inequality in (32), we have

1

p

∫
Ω

a1(z)|Dyn|pdz +
1

q‖u+
n ‖p−q

∫
Ω

a2(z)|Dyn|qdz

≤ c13

‖u+
n ‖p

+

∫
Ω

F (z, u+
n )

‖u+
n ‖p

dz for all n ∈ N.
(35)
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Hypothesis H2-(i) implies that{
F (·, u+

n )

‖u+
n ‖p

}
n∈N
⊆ Lp

′
(Ω) is bounded.

Hence, by passing to a subsequence if necessary and using hypothesis H2-(ii), we
obtain

F (·, u+
n )

‖u+
n ‖p

w−→ 1

p
ϑ(·)yp in Lp

′
(Ω), (36)

with ϑ ∈ L∞(Ω), ϑ(z) ≤ λ̂a11 (p)a1(z) for a.a. z ∈ Ω (see Aizicovici-Papageorgiou-
Staicu [1] (proof of Proposition 16)). Passing to the limit as n → ∞ in (35) and
using (33), (34) and (36) we obtain∫

Ω

a1(z)|Dy|pdz ≤
∫

Ω

ϑ(z)ypdz ≤ λ̂a11 (p)

∫
Ω

a1(z)ypdz, (37)

⇒
∫

Ω

a1(z)|Dy|pdz = λ̂a11 (p)

∫
Ω

a1(z)ypdz (see (3)),

⇒ y = 0 or y = û1(p) ∈ intC+.

If y = 0, then from (35) we see that

yn → 0 in W 1,p
0 (Ω),

which contradicts the fact that ‖yn‖ = 1 for all n ∈ N. If y = û1(p) ∈ intC+ and

ϑ 6≡ λ̂a11 (p)a1, then from (37) and Proposition 2.2 we have

c0

∫
Ω

a1(z)|Dy|pdz ≤ 0,

⇒ y = 0,

which as above leads to a contradiction.
Finally we consider the case y = û1(p) ∈ intC+ and ϑ ≡ λ̂a11 (p)a1. From (31) we

have

λ̂a11 (p)a1(z)u+
n (z)− pF (z, u+

n (z))→ +∞ for a.a. z ∈ Ω,

⇒
∫

Ω

[
λ̂a11 (p)a1(z)u+

n − pF (z, u+
n )
]

dz → +∞ (by Fatou’s lemma, see (31)). (38)

From (35) and (3), we have∫
Ω

[
λ̂a11 (p)a1(z)u+

n − pF (z, u+
n )
]

dz +
p

q‖u+
n ‖p−q

∫
Ω

a2(z)|Dyn|qdz

≤ pc13

‖u+
n ‖p

for all n ∈ N.
(39)

Comparing (38) and (39), we have a contradiction. Therefore we infer that

{u+
n }n∈N ⊆W

1,p
0 (Ω) is bounded,

⇒ {un}n∈N ⊆W 1,p
0 (Ω) is bounded

and this contradicts (32). This proves that ϕ+(·) is coercive. Similarly, we show
that ϕ−(·) and ϕ(·) are coercive.

Remark 3. In the process of the above proof we saw that the resonance occurs

from the left of λ̂a11 (p) (see (31)).
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The coercivity of ϕ±(·) permits the use of the direct method of calculus of vari-
ations in order to generate constant sign solutions for problem (1).

Proposition 4.2. If hypotheses H0 and H2 hold, then problem (1) has at least two
constant sign solutions u0 ∈ intC+, v0 ∈ -intC+, both with negative energy.

Proof. From Proposition 4.1 we know ϕ+(·) is coercive. Also using the Sobolev
embedding theorem, we see that ϕ+(·) is sequentially weakly lower semicontinuous.

So, by the Weierstrass-Tonelli theorem, we can find u0 ∈W 1,p
0 (Ω) such that

ϕ+(u0) = inf{ϕ+(u) : u ∈W 1,p
0 (Ω)}. (40)

On account of hypothesis H2-(iv), we see that given ε > 0 we can find δ = δ(ε) >
0 such that

1

q
[η(z)− ε] ≤ F+(z, x) for a.a. z ∈ Ω, all 0 ≤ x ≤ δ. (41)

Consider the eigenfunction û1(q) ∈ intC+. We choose t ∈ (0, 1) small such that
0 ≤ tû1(q)(z) ≤ δ for all z ∈ Ω̄. We have

ϕ+(tû1(q)) ≤ t
p

p

∫
Ω

a1(z)|Dû1(q)|pdz +
tq

q

∫
Ω

a2(z)|Dû1(q)|qdz

− tq

q

∫
Ω

η(z)|û1(q)|qdz +
ε

q
tq

(see (41) and recall that ‖û1(q)‖q = 1)

≤c14t
p +

tq

q

[∫
Ω

(λ̂a21 (q)− η(z))a2(z)|û1(q)|qdz + ε

]
(for some c14 > 0)

≤c14t
p − c15t

q for some c15 > 0

(choosing ε > 0 small; see hypothesis H2-(iv)).

Since q < p, choosing t ∈ (0, 1) small, we have

ϕ+(tû1(q)) < 0,

⇒ ϕ+(u0) < 0 = ϕ+(0) see (40)

⇒ u0 6= 0.

From (40) we have

ϕ′+(u0) = 0,

⇒ 〈Aa1p (u0), h〉+ 〈Aa2q (u0), h〉 =

∫
Ω

f(z, u+
0 )hdz (42)

for all h ∈ W 1,p
0 (Ω). In (42) we use the test function h = −u−0 ∈ W 1,p

0 (Ω). We
obtain

ĉ
[
‖Du−0 ‖pp + ‖Du−0 ‖qq

]
≤ 0, (see hypotheses H0),

⇒ u0 ≥ 0, u0 6= 0.

From (42), it follows that u0 is a positive solution of (1). [10, Theorem 7.1,
p.286] of Ladyzhenskaya-Uraltseva implies that u0 ∈ L∞(Ω). Then the nonlinear
regularity theory of Lieberman [12] implies that u0 ∈ C+ \ {0}. Using Proposition
2.3 (see also hypothesis H2-(v)), we conclude that u0 ∈ intC+.
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Similarly working this time with the functional ϕ−(·), we produce a negative
solution v0 ∈ -intC+ with ϕ(v0) < 0.

On account of hypotheses H2-(i) and H2-(iv), given ε > 0 and r ∈ (p, p∗), we
can find c16 = c16(ε, r) > 0 such that

f(z, x)x ≥ [η(z)− ε]a2(z)|x|q − c16|x|r for a.a. z ∈ Ω, all x ∈ R. (43)

This unilateral growth condition on f(z, ·), leads to the following auxiliary Dirich-
let problem{

−∆a1
p u−∆a2

q u = [η(z)− ε]|u|q−2u− c16|u|r−2u in Ω,
u = 0 on ∂Ω.

(44)

Proposition 4.3. If hypotheses H0 and H2 hold, then for all ε > 0 small problem
(44) has a unique positive solution ū ∈ intC+, and since problem (44) is odd v̄ =
−ū ∈ -intC+ is the unique negative solution of (44).

Proof. We consider the C1-functional ψ+ : W 1,p
0 (Ω)→ R defined by

ψ+(u) =
1

p

∫
Ω

a1(z)|Du|pdz+1

q

∫
Ω

a2(z)|Du|qdz +
c15

r
‖u+‖rr

−1

q

∫
Ω

[η(z)− ε]a2(z)(u+)qdz

for all u ∈ W 1,p
0 (Ω). Evidently, ψ+(·) is coercive and sequentially weakly lower

semicontinuous. So, we can find ū ∈W 1,p
0 (Ω) such that

ψ+(ū) = inf
{
ψ+(u) : u ∈W 1,p

0 (Ω)
}
. (45)

As in the proof of Proposition 4.2, we show that for ε > 0 small, we have

ψ+(ū) < 0 = ψ+(0),

⇒ ū 6= 0.

From (45), we have

ψ′+(ū) = 0,

⇒ 〈ψ′+(ū), h〉 = 0 for all h ∈W 1,p
0 (Ω).

Choosing h = −ū− ∈W 1,p
0 (Ω), we infer that

ū ≥ 0, ū 6= 0.

The nonlinear regularity theory and Proposition 2.3 imply that

ū ∈ intC+.

Note that for a.a. z ∈ Ω, the function

x 7→ [η(z)− ε] 1

xp−q
− c15x

r−p

is strictly decreasing on (0,+∞). So, [4, Theorem 3.5] of Fragnelli-Mugnai
-Papageorgiou, implies that ū ∈ intC+ is the unique positive solution of (44). Since
the problem is odd, v̄ = −ū ∈ -intC+ is the unique negative solution of problem
(44).

Let S+ (resp. S−) be the set of positive (resp. negative) solutions of problem
(1). From Proposition 4.2, we know that

∅ 6= S+ ⊆ intC+ and ∅ 6= S− ⊆ -intC+.
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Proposition 4.4. If hypotheses H0 and H2 hold, then ū ≤ u for all u ∈ S+ and
v ≤ v̄ for all v ∈ S−.

Proof. Let u ∈ S+ ⊆ intC+ and let ε > 0 be small as postulated by Proposition
4.3. We introduce the Carathéodory function k+(z, x) defined by

k+(z, x) =

{
[η(z)− ε]a2(z)(x+)q−1 − c16(x+)r−1 if x ≤ u(z),
[η(z)− ε]a2(z)u(z)q−1 − c16u(z)r−1 if u(z) < x.

(46)

We set K+(z, x) =
∫ x

0
k+(z, s)ds and consider the C1-functional δ+ : W 1,p

0 (Ω)→
R defined by

δ+(u) =
1

p

∫
Ω

a1(z)|Du|pdz +
1

q

∫
Ω

a2(z)|Du|qdz −
∫

Ω

K+(z, u)dz

for all u ∈W 1,p
0 (Ω). It is clear from (46) that δ+(·) is coercive. Also it is sequentially

weakly lower semicontinuous. So, we can find ũ ∈W 1,p
0 (Ω) such that

δ+(ũ) = inf
{
δ+(ũ) : u ∈W 1,p

0 (Ω)
}
< 0 = δ+(0), (47)

(see the proof of Proposition 4.2)

⇒ ũ 6= 0.

From (47), we have

δ′+(ũ) = 0,

⇒ 〈δ′+(ũ), h〉 = 0 for all h ∈W 1,p
0 (Ω). (48)

In (48) first we use the test function h = −ũ− ∈W 1,p
0 (Ω) and obtain that ũ ≥ 0.

Next in (48) we choose h = [ũ− u]+ ∈W 1,p
0 (Ω). We have

〈Aa1p (ũ), (ũ− u)+〉+ 〈Aa2q (ũ), (ũ− u)+〉

=

∫
Ω

(
[η(z)− ε]a2(z)uq−1 − c16u

r−1
)

(ũ− u)+dz

≤
∫

Ω

f(z, u)(ũ− u)+dz (see (43))

= 〈Aa1p (u), (ũ− u)+〉+ 〈Aa2q (u), (ũ− u)+〉 (since u ∈ S+),

⇒ ũ ≤ u (see Proposition 2.1).

So, we have proved that

ũ ∈ [0, u], ũ 6= 0. (49)

Then (46), (48), (49) and Proposition 4.3, implies that

ũ = u,

⇒ ū ≤ u for all u ∈ S+ (see (49)).

Similarly we show that

v ≤ v̄ for all v ∈ S−.

The proof is now complete.

Using these bounds, we can show the existence of external constant sign solutions,
that is, we show the existence of a smallest positive solution and of a biggest negative
solution.
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Proposition 4.5. If hypotheses H0 and H2 hold, then there exist u∗ ∈ S+ ⊆ intC+

and v∗ ∈ S− ⊆ -intC+ such that

u∗ ≤ u for all u ∈ S+, v ≤ v∗ for all v ∈ S−.

Proof. From Proposition 7 of Papageorgiou-Rădulescu-Repovs̆ [18] we know that
S+ is downward directed (that is, if u1, u2 ∈ S+, then we can find u ∈ S+ such that
u ≤ u1, u ≤ u2). Hence, invoking Lemma 3.10 of Hu-Papageorgiou [8], we can find
a decreasing sequence {un}n∈N ⊆ S+ such that

inf S+ = inf
n∈N

un.

We have

〈Aa1p (un), h〉+ 〈Aa2q (un), h〉 =

∫
Ω

f(z, un)hdz (50)

for all h ∈W 1,p
0 (Ω), all n ∈ N,

ū ≤ un ≤ u1 for all n ∈ N (see Proposition 4.4). (51)

In (50) we use the test function h = un ∈ W 1,p
0 (Ω). Using (51) and hypothesis

H2-(i), we infer that

{un}n∈N ⊆W 1,p
0 (Ω) is bounded.

So, we may assume that

un
w−→ u∗ in W 1,p

0 (Ω) and un → u∗ in Lp(Ω).

In (50) we choose h = un − u∗ ∈ W 1,p
0 (Ω), pass to the limit as n → ∞ and use

Proposition 2.1 (as in the proof of Proposition 3.1). We obtain that

un → u∗ in W 1,p
0 (Ω). (52)

Passing to the limit as n→∞ in (50) and using (52) we obtain

〈Aa1p (u∗), h〉+ 〈Aa2q (u∗), h〉 =

∫
Ω

f(z, u∗)hdz (53)

for all h ∈W 1,p
0 (Ω). From (51) we have

ū ≤ u∗. (54)

Then (53) and (54) imply that

u∗ ∈ S+, u
∗ ≤ u for all u ∈ S+.

Similarly, we produce

v∗ ∈ S−, v ≤ v∗ for all v ∈ S−.
We mention that in this case, the set S− is upward directed (that is, if v1, v2 ∈ S−,

then there exists v ∈ S− such that v1 ≤ v, v2 ≤ v).

Since our aim is to produce a whole sequence of distinct nodal solutions with
vanishing energy levels, we need to strengthen the conditions on the reaction. So,
we introduce a symmetry condition on f(z, ·) and also strengthen the condition on
f(z, ·) near zero. The new conditions on the reaction f(z, x) are the following:

H ′2 : f : Ω×R→ R is a Carathéodory function such that for a.a. z ∈ Ω, f(z, 0) = 0,
f(z, ·) is odd, hypotheses H ′2-(i),(ii),(iii), (v) are the same as the corresponding
hypotheses H2-(i),(ii),(iii),(v) and

(iv) lim
x→0

F (z,x)
|x|q = +∞ uniformly for a.a. z ∈ Ω.
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Remark 4. The new condition at zero, reflects the presence of a “concave” term
near zero.

Let V ⊆W 1,p
0 (Ω) be a finite dimensional subspace.

Proposition 4.6. If hypotheses H0 and H ′2 hold, then there exists ρV > 0 such
that

sup {ϕ(u) : u ∈ V, ‖u‖ = ρV } < 0.

Proof. On account of hypothesis H ′2-(iv), given η > 0, we can find δ = δ(η) > 0
such that

F (z, x) ≥ η|x|q for a.a. z ∈ Ω, all |x| ≤ δ. (55)

Let u ∈ V . Since V is finite dimensional, all norms are equivalent (see
Papageorgiou-Winkert [21, p.183]). Therefore, we can find ρV ∈ (0, 1) such that

‖u‖ ≤ ρV ⇒ |u(z)| ≤ δ for a.a. z ∈ Ω. (56)

Hence if u ∈ V with ‖u‖ ≤ ρV , then

ϕ(u) ≤ 1

p
‖u‖p + [c17 − ηc18] ‖u‖q

for some c17, c18 > 0 (see (55) and (56)). Choosing η > c17
c18

, we obtain

ϕ(u) ≤ 1

p
‖u‖p − c19‖u‖q for some c19 > 0.

Since q < p, choosing ρV ∈ (0, 1) even smaller if necessary, we have

ϕ(u) ≤ −c∗ < 0 for all u ∈ V with ‖u‖ρV .
This completes the proof.

Now we can generate a sequence of low energy nodal solutions. In fact our
conclusion is stronger since we have that the nodal solutions themselves converge
to zero in C1

0 (Ω̄).

Theorem 4.7. If hypotheses H0 and H ′2 hold, then problem (1) has a sequence
{un}n∈N ⊆ C1

0 (Ω̄) of nodal solutions such that un → 0 in C1
0 (Ω̄) (hence ϕ(un)→ 0).

Proof. Clearly, ϕ(·) is even. Also from Proposition 4.1 we know that ϕ(·) is coercive.
Therefore, ϕ(·) is bounded below and satisfies the C-condition (see Proposition 5.1,
p.369, of Papageorgiou-Rădulescu-Repovs̆ [19]). Then these facts and Proposition

4.6, permit the use of Theorem 1 of Kajikiya [9]. So, we can find un ∈ W 1,p
0 (Ω),

n ∈ N such that

un ∈ Kϕ, n ∈ N and ‖un‖ → 0 as n→∞. (57)

From Ladyzhenskaya-Uraltseva [10, p.286] (see also Papageorgiou-Rădulescu [16,
Proposition 2.10]), we have that

{un}n∈N ⊆ L∞(Ω) is bounded.

Then the nonlinear regularity theory of Lieberman [12] implies that there exist
α ∈ (0, 1) and c20 > 0 such that

un ∈ C1,α
0 (Ω̄), ‖un‖C1,α

0 (Ω̄) ≤ c20 for all n ∈ N. (58)

The compact embedding of C1,α
0 (Ω̄) into C1

0 (Ω̄) and (57), imply that

un → 0 in C1
0 (Ω̄) as n→∞. (59)
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Since u∗ ∈ intC+, v∗ ∈ -intC+, we see that

intC1
0 (Ω̄)[v

∗, u∗] 6= ∅.

So, we can find n0 ∈ N such that

un ∈ intC1
0 (Ω̄)[v

∗, u∗] for all n ≥ n0 (see (59)).

The extremity of u∗ and of v∗ imply that

{un}n≥n0 are nodal solutions of (1)

and we have un → 0 in C1
0 (Ω̄).
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plications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996.

[26] J. Zhang and W. Zhang, Semiclassical states for coupled nonlinear Schrödinger system with
competing potentials, J. Geom. Anal., 32 (2022), Paper No. 114, 36 pp.

[27] J. Zhang, W. Zhang and X. Tang, Ground state solutions for Hamiltonian elliptic system

with inverse square potential, Discrete Contin. Dyn. Syst., 37 (2017), 4565–4583.
[28] J.-H. Zhao and P.-H. Zhao, Existence of infinitely many weak solutions for the p-Laplacian

with nonlinear boundary conditions, Nonlinear Anal., 69 (2008), 1343–1355.

Received for publication February 2022; early access May 2022.

E-mail address: npapg@math.ntua.gr

E-mail address: radulescu@inf.ucv.ro

E-mail address: zhangjian433130@163.com

http://www.ams.org/mathscinet-getitem?mr=MR3562940&return=pdf
http://dx.doi.org/10.1515/ans-2016-0023
http://dx.doi.org/10.1515/ans-2016-0023
http://www.ams.org/mathscinet-getitem?mr=MR3836199&return=pdf
http://dx.doi.org/10.1007/s00033-018-1001-2
http://dx.doi.org/10.1007/s00033-018-1001-2
http://www.ams.org/mathscinet-getitem?mr=MR3619074&return=pdf
http://dx.doi.org/10.3934/dcds.2017111
http://dx.doi.org/10.3934/dcds.2017111
http://www.ams.org/mathscinet-getitem?mr=MR3890060&return=pdf
http://dx.doi.org/10.1007/978-3-030-03430-6
http://dx.doi.org/10.1007/978-3-030-03430-6
http://www.ams.org/mathscinet-getitem?mr=MR4237564&return=pdf
http://dx.doi.org/10.1142/S0219199720500066
http://dx.doi.org/10.1142/S0219199720500066
http://www.ams.org/mathscinet-getitem?mr=MR3823796&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2356201&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3669779&return=pdf
http://dx.doi.org/10.1007/s00526-017-1214-9
http://dx.doi.org/10.1007/s00526-017-1214-9
http://www.ams.org/mathscinet-getitem?mr=MR3505194&return=pdf
http://dx.doi.org/10.1016/j.jde.2016.04.032
http://dx.doi.org/10.1016/j.jde.2016.04.032
http://www.ams.org/mathscinet-getitem?mr=MR1400007&return=pdf
http://dx.doi.org/10.1007/978-1-4612-4146-1
http://www.ams.org/mathscinet-getitem?mr=MR4372907&return=pdf
http://dx.doi.org/10.1007/s12220-022-00870-x
http://dx.doi.org/10.1007/s12220-022-00870-x
http://www.ams.org/mathscinet-getitem?mr=MR3642277&return=pdf
http://dx.doi.org/10.3934/dcds.2017195
http://dx.doi.org/10.3934/dcds.2017195
http://www.ams.org/mathscinet-getitem?mr=MR2426695&return=pdf
http://dx.doi.org/10.1016/j.na.2007.06.036
http://dx.doi.org/10.1016/j.na.2007.06.036
mailto:npapg@math.ntua.gr
mailto:radulescu@inf.ucv.ro
mailto:zhangjian433130@163.com

	1. Introduction
	2. Mathematical background and auxiliary results
	3. High energy solutions
	4. Low energy solutions
	Acknowledgments
	REFERENCES

