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Abstract
This paper is concerned with the existence and multiplicity of solutions for
a class of problems involving the Φ-Laplacian operator with general assump-
tions on the nonlinearities, which include both semipositone cases and critical
concave convex problems. The research is based on the subsupersolution tech-
nique combined with a truncation argument and an application of theMountain
Pass Theorem. The results in this paper improve and complement some recent
contributions to this field.
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1 INTRODUCTION

Let Ω be a bounded domain in ℝ𝑁(𝑁 ≥ 3) with smooth boundary. In this paper, we consider the problem

⎧⎪⎨⎪⎩
−ΔΦ𝑢 = 𝜆𝑓(𝑥, 𝑢) + 𝜇𝑔(𝑥, 𝑢) in Ω,

𝑢 > 0 in Ω,

𝑢 = 0 on 𝜕Ω,

(𝑃)

where 𝜆 > 0 and 𝜇 ∈ ℝ are parameters, 𝑓, 𝑔 ∶ Ω × ℝ → ℝ are Carathéodory functions, and ΔΦ denotes the Φ-Laplacian
operator, which is defined by

ΔΦ𝑤 ∶= div(𝜙(|∇𝑤|)∇𝑤), (1.1)
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with

Φ(𝑡) ∶= ∫
|𝑡|

0

𝜙(𝑠)𝑠 𝑑𝑠, (1.2)

where 𝜙 ∶ [0, +∞) → [0, +∞) belongs to 𝐶1([0, +∞),ℝ) and satisfies the following properties:

𝜙(𝑡), (𝑡𝜙(𝑡))′ > 0, for all 𝑡 > 0, (𝜙1)

lim
𝑡→0+

𝑡𝜙(𝑡) = 0, lim
𝑡→+∞

𝑡𝜙(𝑡) = +∞, (𝜙2)

and

𝓁 − 1 ≤ (𝜙(𝑡)𝑡)
′

𝜙(𝑡)
≤ 𝑚 − 1, for all 𝑡 > 0, (𝜙′3)

for some 𝓁,𝑚 ∈ (1,𝑁), such that 𝓁 ≤ 𝑚 < 𝓁⋆ ∶= 𝑁𝓁∕(𝑁 − 𝓁).
Note that (𝜙3)′ is a particular case of the more general condition

𝓁 ≤ 𝜙(𝑡)𝑡2

Φ(𝑡)
≤ 𝑚, for all 𝑡 > 0. (𝜙3)

Regarding the nonlinearities 𝑓 and 𝑔, it will be considered that 𝑔 maps bounded sets in bounded sets and that there are
constants 𝐶1, 𝐶2 ≥ 0 such that

0 ≤ 𝑓(𝑥, 𝑡) ≤ 𝐶1𝑡
𝑞−1 + 𝐶2, for all 𝑡 ≥ 0, a.e. in Ω, (𝑓1)

for some 1 ≤ 𝑞 < 𝓁 and

𝑓(𝑥, 𝑡) ≥ 𝐶3, for all 𝑡 ≥ 𝑡0, a.e. in Ω, (𝑓2)

for constants 𝐶3, 𝑡0 > 0.
A weak solution of (𝑃) is a strictly positive function 𝑢 ∈ 𝑊1,Φ

0 (Ω) satisfying

∫
Ω

𝜙(|∇𝑢|)∇𝑢∇𝑣 = ∫
Ω

(𝜆𝑓(𝑥, 𝑢) + 𝜇𝑔(𝑥, 𝑢))𝑣, for all 𝑣 ∈ 𝑊1,Φ
0 (Ω).

According to the hypotheses (𝜙1)−(𝜙3), a wide class of operators can be incorporated in the problem (𝑃), for instance:

(1) Φ(𝑡) = |𝑡|𝑝, 𝑝 > 1. The operator ΔΦ is the 𝑝-Laplacian operator.
(2) Φ(𝑡) = |𝑡|𝑝−2 + |𝑡|𝑞−2, 1 < 𝑝 < 𝑞. The operator ΔΦ is the (𝑝, 𝑞)-Laplacian operator, which arises in applications in

quantum physics, see, for intance, [7].
(3) Φ(𝑡) = (1 + 𝑡2)𝛼 − 1, 𝛼 ∈ (1,𝑁∕(𝑁 − 2)). The associated operatorΔΦ is considered in nonlinear elasticity problems as

pointed in [17, 19].
(4) Φ(𝑡) = |𝑡|𝑝ln(1 + |𝑡|), 1 < (−1 +√1 + 4𝑁

)
∕2 < 𝑝 < 𝑁 − 1,𝑁 ≥ 3. The operator ΔΦ is used to model plasticity

problems, see [16, 18].

(5) Φ(𝑡) = ∫ |𝑡|
0

𝑠1−𝛼
(
sinh

−1
𝑠
)𝛽
𝑑𝑠, 0 ≤ 𝛼 ≤ 1, 𝛽 > 0. As quoted in [18], the operator ΔΦ arises in the study of generalized

Newtonian fluids.

Related problems to (𝑃) were considered previously in the literature. For example, in [10], existence, multiplicity, and
nonexistence of solutions was obtained, by means of subsupersolutions, for the problem

⎧⎪⎨⎪⎩
−Δ𝑢 = 𝜆𝑓(𝑢) + 𝜇𝑔(𝑢) in Ω,

𝑢 > 0 in Ω,

𝑢 = 0 on 𝜕Ω,
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where 𝜆, 𝜇 > 0 are constants and 𝑓 and 𝑔 are functions, which behave with a sublinear and superlinear growth,
respectively, 𝑔(0) > 0, 𝑓(0) < 0, with 𝑓 eventually strictly positive.
Perera and Shivaji [26], by means of subsupersolutions and the Mountain Pass Theorem, obtained existence and

multiplicity of solutions for the problem

⎧⎪⎨⎪⎩
−Δ𝑝𝑢 = 𝜆𝑓(𝑥, 𝑢) + 𝜇𝑔(𝑥, 𝑢) in Ω,

𝑢 > 0 in Ω,

𝑢 = 0 on 𝜕Ω,

whereΔ𝑝𝑢 ∶= div
(|∇𝑢|𝑝−2∇𝑢), 𝑝 > 1, is the𝑝-Laplacian operator, 𝜆 > 0 and𝜇 ∈ ℝ are parameters, and𝑓 and 𝑔 are func-

tions satisfying some conditions that allow the inequality 𝜆𝑓(𝑥, 0) + 𝜇𝑔(𝑥, 0) < 0 in a set of positive measures. By using
classical arguments, the authors considered a subcritical problem, and using the abstract tools of [29], they considered a
case with critical behavior. An important point to quote is that the homogeneity of the 𝑝-Laplacian operator played an
important role in the construction of the subsupersolutions.
On the other hand, there is by now an increasing interest in problems involving the operator (1.1), see, for instance, [2,

4, 8, 12, 14, 15, 18, 19, 24, 25, 27, 28, 31] and the references therein. In [2], which was motivated by Castro, de Figueiredo,
and Lopera [11], the existence results for the semipositone problem were obtained, given by

⎧⎪⎨⎪⎩
−ΔΦ𝑢 = 𝑓(𝑢) − 𝑎 in Ω,

𝑢 > 0 in Ω,

𝑢 = 0 on 𝜕Ω,

where 𝑓 ∶ [0, +∞) → [0, +∞) is a continuous function with subcritical growth and 𝑎 > 0 is a parameter. By using vari-
ational methods, the existence of a solution for the above problem for 𝑎 small enough was obtained. In the best of our
knowledge, the paper [2] was the first one to consider semipositone problems in Orlicz–Sobolev spaces.
Motivated by the classical paper by Ambrosetti, Brezis, and Cerami [5], the authors of [12] used the Nehari method to

consider a concave-convex problem with a critical superlinear term of the form

⎧⎪⎨⎪⎩
−ΔΦ𝑢 = 𝜆𝑎(𝑥)𝑓(𝑢) + 𝑏(𝑥)𝑔(𝑢) in Ω,

𝑢 > 0 in Ω,

𝑢 = 0 on 𝜕Ω,

(𝑃)

where Φ is an 𝑁-function satisfying certain conditions, 𝜆 > 0 is a parameter, 𝑓, 𝑔 ∶ [0, +∞) → [0, +∞) are continu-
ous functions, and 𝑎, 𝑏 ∶ Ω → ℝ are functions that can change sign. We also quote [15, Theorem 2] where, by means
of subsupersolution arguments, a class of problems that include a critical concave-convex problem related to

(
𝑃
)

was considered.
In [23], the problem with critical growth is considered:{

−ΔΦ𝑢 = 𝜆|𝑢|𝓁⋆−2𝑢 + 𝑓(𝑥, 𝑢) in Ω,

𝑢 = 0 on 𝜕Ω,

where 𝑓 satisfy a symmetry condition. By an application of the Symmetric Mountain Pass Theorem and a concentration-
compactness principle, it is proved that there is 𝜆𝑖 > 0 such that the problem admits 𝑖 pairs of nontrivial weak solutions
for 𝜆 ∈

(
0, 𝜆𝑖

)
.

Motivated by the papers [2, 12, 26, 27], we propose to obtain, by using sub-supersolutions and the Mountain Pass
Theorem, existence and multiplicity results for (𝑃). In what follows, we describe the results obtained.
In the first result, we combine subsupersolutions with a minimization argument in convex sets to prove the existence

of a weak solution for (𝑃). We quote that no growth restrictions are imposed on 𝑔.

Theorem 1.1. Consider (𝑓1)–(𝑓2) and that 𝑔 maps bounded sets in bounded sets. There exists 𝜆0 > 0 such that for each
𝜆 ≥ 𝜆0, there is 𝜇0(𝜆) > 0 for which (𝑃) has a 𝐶1,𝛼

(
Ω
)
solution for 𝜇 ∈ ℝ with |𝜇| ≤ 𝜇0(𝜆).

Consider Φ⋆(𝑡) = ∫ |𝑡|
0

𝜙⋆(𝑠)𝑠 the Sobolev conjugate 𝑁-function of (1.2) (see Section 2).
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2558 RĂDULESCU et al.

By using a truncation of the nonlinearities, the subsolution obtained in the proof of Theorem 1.1, and the Mountain
Pass Theorem [6, Theorem 2.1], we obtain the multiplicity result below.

Theorem 1.2. Consider the conditions of Theorem 1.1. Let 𝜆0 be as in Theorem 1.1. Then, for each 𝜆 ≥ 𝜆0, there is 𝜇 ∈

(0, 𝜇0(𝜆)) for which (𝑃) has two solutions whenever 0 < 𝜇 < 𝜇(𝜆) under one the following assumptions:

(𝑔1) (Subcritical case) There are 1 ≤ 𝑟 < 𝓁⋆, 𝜃 > 𝑚 and 𝑡1 > 0 such that |𝑔(𝑥, 𝑡)| ≤ 𝐶4𝑡
𝑟−1 + 𝐶5, for all 𝑡 ≥ 0, a.e. inΩ and

0 < 𝜃𝐺(𝑥, 𝑡) ≤ 𝑡𝑔(𝑥, 𝑡), 𝑡 ≥ 𝑡1, a.e. inΩ, where 𝐺(𝑥, 𝑡) ∶= ∫ 𝑡

0
𝑔(𝑥, 𝑠);

(𝑔2) (Critical case) 𝑔(𝑥, 𝑡) = 𝜙⋆(|𝑡|)𝑡 and 𝑞 < (𝓁⋆∕𝑚⋆)𝓁, where 𝑞 is provided in (𝑓1).

Note that in the case 𝜇 > 0, we have that Theorem 1.1 and the first part of Theorem 1.2 contain, for example, the
semipositone case 𝑓(𝑥, 𝑡) = |𝑡|𝑞−2𝑡, 1 < 𝑞 < 𝑙, and 𝑔(𝑥, 𝑡) = |𝑡|𝑟−2𝑡 − 1,𝑚 < 𝑟 < 𝓁⋆. Observe also that the second part of
Theorem 1.2 allows to consider a problem with critical growth.

Remark 1.3. We point out that our arguments can be adapted to prove the result of the second part of Theorem 1.2 in the
case 𝑔(𝑥, 𝑡) = |𝑡|𝓁⋆−2𝑡.
Regarding the above results, we highlight the following points.

(1) The lack of homogeneity of (1.1) implies additional difficulties when one intends to consider a subsupersolution
approach. Thus, the arguments of [26] are not applicable to (𝑃). There are few papers that consider subsupersolution
arguments for problems involving Orlicz–Sobolev spaces, see, for instance, [15].

(2) The content of Theorems 1.1 and 1.2 completes the existence and multiplicity results contained in [26, Theorem 1.1]
and [26, Theorem 1.2], respectively. The multiplicity result pointed in Remark 1.3 completes the study of [23] due to
the fact that no symmetry condition is required in nonlinearity 𝑓 in (𝑃).

(3) The results obtained allow to obtain existence andmultiplicity of solutions for (𝑃) for a class of semipositone problems
that was not considered in [2].

(4) The proof of the second part of Theorem 1.2 is based on the ideas of the proof of [26, Theorem 1.2] that depends on
several results of [29], which are not available in the case considered. In order to overcome such difficulties, we used
some ideas of [27, 29].

(5) In the best of our knowledge, only the papers [12, 15] consider critical concave-convex problems in the Orlicz–Sobolev
spaces setting. In the mentioned papers, it was needed to consider a small positive parameter in the sublinear term to
obtain the existence of solutions, which does not occur in Theorem 1 and Remark 1. Consequently, we complete the
classical results by Ambrosetti, Brezis, and Cerammi [5].

The remainder of this paper is organized as follows: In Section 2, we present the needed properties in Orlicz and Orlicz–
Sobolev spaces. Section 3 contains the proofs of Theorems 1.1 and 1.2. We also quote that 𝐶1, 𝐶2, … will denote (possibly
different) strictly positive constants.

2 PRELIMINARIES

In this section, we present some basic facts regarding Orlicz and Orlicz–Sobolev spaces and results that will be used in
this work.
We say that Φ ∶ ℝ → [0,+∞) is an 𝑁-function if it is continuous, convex, even, Φ(𝑡) = 0, if and only if 𝑡 = 0,

lim𝑡→0 Φ(𝑡)∕𝑡 = 0 and lim𝑡→+∞ Φ(𝑡)∕𝑡 = +∞.
An 𝑁-function Φ verifies the Δ2-condition, if Φ(2𝑡) ≤ 𝐾Φ(𝑡) for all 𝑡 ≥ 𝑡, for some constants 𝐾, 𝑡 > 0, which can be

rewritten as: for each 𝑠 > 0, there are numbers𝑀𝑠 and 𝑡 > 0 such that Φ(𝑠𝑡) ≤ 𝑀𝑠Φ(𝑡), for all 𝑡 ≥ 𝑡.
Consider an open set Ω ⊂ ℝ𝑁 and an 𝑁-function Φ. Unless otherwise stated, it will be considered that 𝜕Ω is smooth.

The Orlicz space 𝐿Φ(Ω) is defined as

𝐿Φ(Ω) ∶=

{
𝑢 ∶ Ω → ℝmeasurable;∫

Ω

Φ
(𝑢
𝜃

)
< +∞ for some 𝜃 > 0

}
.
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RĂDULESCU et al. 2559

The space 𝐿Φ(Ω) equipped with the Luxemburg norm

‖𝑢‖Φ ∶= inf

{
𝜃 > 0;∫

Ω

Φ
(𝑢
𝜃

) ≤ 1

}
is a Banach space. In addition, if Φ satisfies the Δ2-condition, then

𝐿Φ(Ω) =

{
𝑢 ∶ Ω → ℝmeasurable;∫

Ω

Φ(𝑢) < +∞

}
.

The complement function of Φ, denoted by Φ̃, is given by the Legendre transformation, that is,

Φ̃(𝑠) ∶= sup
𝑡≥0 {𝑠𝑡 − Φ(𝑡)}.

We have the Young inequality given by

𝑠𝑡 ≤ Φ(𝑠) + Φ̃(𝑡), 𝑠, 𝑡 ≥ 0.

By using the previous inequality, it is possible to prove a Hölder-type inequality|||||∫Ω 𝑢𝑣
||||| ≤ 2‖𝑢‖𝐿Φ(Ω)‖𝑢‖𝐿Φ̃(Ω), 𝑢 ∈ 𝐿Φ(Ω) and 𝑣 ∈ 𝐿Φ̃(Ω). (2.1)

If Φ is an 𝑁-function of the form (1.2) where 𝜙 satisfies (𝜙1)–(𝜙3), then Φ and Φ̃ verify the Δ2-condition, see [17].
If Φ is an 𝑁-function satisfying the Δ2 condition, it holds that

𝑢𝑛 → 𝑢 in 𝐿Φ(Ω) ⟺ ∫
Ω

Φ(𝑢𝑛 − 𝑢) → 0.

For an 𝑁-function Φ, the corresponding Orlicz–Sobolev space is defined as the Banach space

𝑊1,Φ(Ω) =

{
𝑢 ∈ 𝐿Φ(Ω) ∶

𝜕𝑢

𝜕𝑥𝑖
∈ 𝐿Φ(Ω), 𝑖 = 1, … ,𝑁

}
,

endowed with the norm

‖𝑢‖1,Φ = ‖∇𝑢‖𝐿Φ + ‖𝑢‖𝐿Φ.
We denote by𝑊1,Φ

0 (Ω) the completion of 𝐶∞
0 (Ω)with respect to the norm defined above, and so, it is a Banach with this

norm. It is important to point out that if Φ and Φ̃ satisfy the Δ2-condition, then 𝐿Φ(Ω),𝑊1,Φ(Ω),𝑊1,Φ
0 (Ω) are reflexive. If

Φ is an 𝑁-function that satisfies the Δ2 condition, then it holds the Poincaré-type inequality given by

∫
Ω

Φ(𝑢) ≤ Λ∫
Ω

Φ(|∇𝑢|), 𝑢 ∈ 𝑊1,Φ
0 (Ω), (2.2)

for some Λ > 0, see [21]. Thus, the norms ‖𝑢‖ ∶= ‖|∇𝑢|‖𝐿Φ(Ω) and ‖𝑢‖1,Φ on𝑊1,Φ
0 (Ω) are equivalent.

As quoted in [1], if Φ is an 𝑁-function such that

∫
1

0

Φ−1(𝑠)

𝑠(𝑁+1)∕𝑁
< +∞ and ∫

+∞

1

Φ−1(𝑠)

𝑠(𝑁+1)∕𝑁
= +∞, (2.3)

then the Sobolev conjugate 𝑁-function Φ⋆ of Φ is defined by

Φ−1
⋆ (𝑡) = ∫

𝑡

0

Φ−1(𝑠)

𝑠(𝑁+1)∕𝑁
for 𝑡 > 0 (2.4)

and Φ⋆(−𝑡) = Φ⋆(𝑡). Note that if an 𝑁-function of the form (1.2) satisfies (𝜙1)–(𝜙3), then (2.3) holds.
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2560 RĂDULESCU et al.

The following inequality holds:

‖𝑢‖𝐿Φ⋆ ≤ 𝑆𝑁‖|∇𝑢|‖𝐿Φ, 𝑢 ∈ 𝑊1,Φ
0 (Ω), (2.5)

see [13]. In [13], it is also proved that if Ω ⊂ ℝ𝑁 is an open set and admissible, that is, it holds the continuous embedding
𝑊1,1(Ω) ↪ 𝐿1(Ω) and Ψ is an 𝑁-function such that

lim
𝑡→+∞

Ψ(𝑘𝑡)

Φ⋆(𝑡)
= 0, for all 𝑘 > 0,

then the embedding𝑊1,Φ
0 (Ω) ↪ 𝐿Ψ(Ω) is compact.

Below we point out some results that will be often used in this work and which can be found in [1, 2, 17, 27, 31]

Lemma 2.1. LetΦ be an𝑁-function satisfying (𝜙1), (𝜙2), and (𝜙3). Then,Φ⋆ given by (2.4) is a well-defined𝑁-function and
there exists a right continuous function 𝜙⋆ ∶ [0, +∞) → [0, +∞) such that Φ⋆(𝑡) = ∫ |𝑡|

0
𝜙⋆(𝑠)𝑠 and

𝓁⋆ ≤ 𝜙⋆(𝑡)𝑡
2

Φ⋆(𝑡)
≤ 𝑚⋆, for all 𝑡 > 0,

where 𝓁⋆ ∶= 𝑁𝑙∕(𝑁 − 𝑙) and𝑚⋆ ∶= 𝑁𝑚∕(𝑁 −𝑚).

Lemma 2.2. Let Φ be an𝑁-function satisfying (𝜙1), (𝜙2), and (𝜙3) and Φ⋆ given by Lemma 2.1. The𝑁-functions Φ, Φ̃, and
Φ⋆ satisfy

Φ̃(𝜙(𝑡)𝑡) ≤ Φ(2𝑡) and Φ̃⋆(𝜙⋆(𝑡)𝑡) ≤ Φ⋆(2𝑡), 𝑡 ≥ 0,

where Φ̃ and Φ̃⋆ are the Legendre transforms of Φ and Φ⋆ respectively.

Lemma 2.3. Let Φ be an𝑁-function satisfying (𝜙1), (𝜙2), and (𝜙3). Define

𝜁0(𝑡) = min
{
𝑡𝓁, 𝑡𝑚

}
and 𝜁1(𝑡) = max

{
𝑡𝓁, 𝑡𝑚

}
, 𝑡 ≥ 0.

Then, Φ satisfies

𝜁0(𝑡)Φ(𝜌) ≤ Φ(𝜌𝑡) ≤ 𝜁1(𝑡)Φ(𝜌), 𝜌, 𝑡 > 0,

and

𝜁0(‖𝑢‖Φ) ≤ ∫
Ω

Φ(𝑢) ≤ 𝜁1(‖𝑢‖Φ), 𝑢 ∈ 𝐿Φ(Ω).

Lemma 2.4. Let Φ⋆ be the𝑁-function given in Lemma 2.1. Define

𝜁2(𝑡) = min
{
𝑡𝓁

⋆
, 𝑡𝑚

⋆} and 𝜁3(𝑡) = max
{
𝑡𝓁

⋆
, 𝑡𝑚

⋆}
, 𝑡 ≥ 0,

where 𝓁⋆ ∶= 𝑁𝓁∕(𝑁 − 𝓁) and𝑚⋆ ∶= 𝑁𝑚∕(𝑁 −𝑚). Then Φ⋆ satisfies

𝜁2(𝑡)Φ⋆(𝜌) ≤ Φ⋆(𝜌𝑡) ≤ 𝜁3(𝑡)Φ⋆(𝜌), 𝜌, 𝑡 ≥ 0,

and

𝜁2
(‖𝑢‖Φ⋆

) ≤ ∫
Ω

Φ⋆(𝑢(𝑥)) ≤ 𝜁3
(‖𝑢‖Φ⋆

)
, 𝑢 ∈ 𝐿Φ⋆(Ω).

The following Simon-type inequality, which can be found in [3], will be needed.
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RĂDULESCU et al. 2561

Lemma 2.5. Let Φ be an𝑁-function satisfying (𝜙1)–(𝜙3). Then there is a constant Γ > 0 such that

⟨
𝜙(|𝜂|)𝜂 − 𝜙(|𝜂′|)𝜂′, 𝜂 − 𝜂′

⟩ ≥ Γ
||𝜂 − 𝜂′||

1 + |𝜂| + |𝜂′|Φ
(||𝜂 − 𝜂′||

4

)
,

for all 𝜂, 𝜂′ ∈ ℝ𝑁 , where ⟨⋅, ⋅⟩ denotes the usual scalar product.
Consider 𝑢, 𝑣 ∈ 𝑊1,Φ

0 (Ω). We say that −ΔΦ𝑢 ≤ −ΔΦ𝑣 in Ω if

∫
Ω

𝜙(|∇𝑢|)∇𝑢∇𝜑 ≤ ∫
Ω

𝜙(|∇𝑣|)∇𝑣∇𝜑,
for all 𝜑 ∈ 𝑊1,Φ

0 (Ω) with 𝜑 ≥ 0.
The results below can be found in [31].

Lemma 2.6. Let 𝑢, 𝑣 ∈ 𝑊1,Φ
0 (Ω) with −ΔΦ𝑢 ≤ −ΔΦ𝑣 in Ω and 𝑢 ≤ 𝑣 in 𝜕Ω

(
i.e., (𝑢 − 𝑣)+ ∈ 𝑊1,Φ

0 (Ω)
)
, then 𝑢(𝑥) ≤ 𝑣(𝑥)

a.e. inΩ.

Lemma 2.7. LetΩ ⊂ ℝ𝑁 be a bounded domain and admissible. Let 𝜆 > 0 be a constant. Then, the unique solution 𝑢 of the
problem {

−ΔΦ𝑢 = 𝜆 inΩ,
𝑢 = 0 on 𝜕Ω,

belongs to 𝐿∞(Ω) with ‖𝑢‖𝐿∞(Ω) ≤ 𝐶max
{
𝜆1∕(𝓁−1), 𝜆1∕(𝑚−1)

}
,

where 𝐶 is a constant that does not depend on 𝑢 and 𝜆.

3 PROOF OF THEOREM 1.1

In order to prove Theorem 1.1, we will combine subsupersolutions and a minimization argument.
We say that 𝑢, 𝑢 ∈ 𝑊1,Φ

0 (Ω) ∩ 𝐿∞(Ω) are a subsolution and a supersolution, respectively, for (𝑃) if

(1) 0 < 𝑢(𝑥) ≤ 𝑢(𝑥) a.e. in Ω,
(2) for each 𝑣 ∈ 𝑊1,Φ

0 (Ω) with 𝑣(𝑥) ≥ 0 a.e. in Ω, the following inequalities hold:

∫
Ω

𝜙(|∇𝑢|)∇𝑢∇𝑣 ≤ ∫
Ω

(𝜆𝑓(𝑥, 𝑢) + 𝜇𝑔(𝑥, 𝑢))𝑣

and

∫
Ω

𝜙(|∇𝑢|)∇𝑢∇𝑣 ≥ ∫
Ω

(𝜆𝑓(𝑥, 𝑢) + 𝜇𝑔(𝑥, 𝑢))𝑣.

The next result will be needed.

Lemma 3.1. Suppose that (𝑓1)–(𝑓2) hold and that 𝑔 is bounded in bounded sets. Then, there exists 𝜆0 > 0with the following
property: There exists 𝜇0 > 0 such that for each 𝜆 ≥ 𝜆0 and |𝜇| ≤ 𝜇0, the problem (𝑃) has a subsolution and a supersolution
(𝑢, 𝑢) ∈

(
𝑊1,Φ

0 (Ω) ∩ 𝐿∞(Ω)
)
×
(
𝑊1,Φ

0 (Ω) ∩ 𝐿∞(Ω)
)
.

Proof. The proof will begin by considering a subsolution 𝑢. Since 𝜕Ω is𝐶2, there is a constant 𝛿 > 0 such that 𝑑 ∈ 𝐶2
(
Ω3𝛿

)
with |∇𝑑| ≡ 1 inΩ, where 𝑑(𝑥) ∶= 𝑑𝑖𝑠𝑡(𝑥, 𝜕Ω) andΩ3𝛿 ∶=

{
𝑥 ∈ Ω; 𝑑(𝑥) ≤ 3𝛿

}
(see [20, Lemma 14.16] and its proof). Let
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2562 RĂDULESCU et al.

𝜎 ∈ (0, 𝛿). As pointed in [15, p. 4156], the function defined by

𝜂(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑒𝑘𝑑(𝑥) − 1, if 𝑑(𝑥) < 𝜎,

𝑒𝑘𝜎 − 1 + ∫ 𝑑(𝑥)

𝜎
𝑘𝑒𝑘𝜎

(
2𝛿−𝑡

2𝛿−𝜎

)𝑚∕(𝑙−1)

𝑑𝑡, if 𝜎 ≤ 𝑑(𝑥) < 2𝛿,

𝑒𝑘𝜎 − 1 + ∫ 2𝛿

𝜎
𝑘𝑒𝑘𝜎

(
2𝛿−𝑡

2𝛿−𝜎

)𝑚∕(𝑙−1)

𝑑𝑡, if 2𝛿 ≤ 𝑑(𝑥),

belongs to 𝐶1
0

(
Ω
)
, where 𝑘 > 0 is an arbitrary number and satisfies

−ΔΦ𝜂 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−𝑘2𝑒𝑘𝑑(𝑥)
𝑑

𝑑𝑡
(𝜙(𝑡)𝑡)

|||𝑡=𝑘𝑒𝑘𝑑(𝑥) − 𝜙
(
𝑘𝑒𝑘𝑑(𝑥)

)
𝑘𝑒𝑘𝑑(𝑥)Δ𝑑 if 𝑑(𝑥) < 𝜎,

𝑘𝑒𝑘𝜎
(

𝑚

𝑙−1

)(
2𝛿−𝑑(𝑥)

2𝛿−𝜎

)𝑚∕(𝑙−1)−1(
1

2𝛿−𝜎

)
𝑑

𝑑𝑡
(𝜙(𝑡)𝑡)

|||||𝑡=𝑘𝑒𝑘𝜎( 2𝛿−𝑑(𝑥)

2𝛿−𝜎

)
−𝜙

(
𝑘𝑒𝑘𝜎

(
2𝛿−𝑑(𝑥)

2𝛿−𝜎

)𝑚∕(𝑙−1)
)
𝑘𝑒𝑘𝜎

(
2𝛿−𝑑(𝑥)

2𝛿−𝜎

)𝑚∕(𝑙−1)

Δ𝑑 if 𝜎 < 𝑑(𝑥) < 2𝛿,

0 if 2𝛿 < 𝑑(𝑥).

(3.1)

Consider 𝑛 ∈ ℕ such that 𝑒 + 𝑛 − 1 ≥ 𝑡0, where 𝑡0 is given in (𝑓2) and define 𝜎 ∶= [ln(𝑒 + 𝑛)]∕𝑘, 𝑘 > 0.
We will estimate −ΔΦ𝜂 in the case 𝑑(𝑥) < 𝜎 for 𝑥 ∈ Ω. There exist 𝐶5 > 0 and 𝑘0 ≥ 1 such that 𝑘(𝑙 − 1) + Δ𝑑(𝑥) ≥ 𝐶5

if 𝑑(𝑥) < 𝛿 and for all 𝑘 ≥ 𝑘0. Note that by (𝜙3), (𝜙3)′ and Lemma 2.3, there exists 𝐶6 > 0 such that

−ΔΦ𝜂 = −𝑘2𝑒𝑘𝑑(𝑥)
𝑑

𝑑𝑡
(𝜙(𝑡)𝑡)

||||𝑡=𝑘𝑒𝑘𝑑(𝑥) − 𝜙
(
𝑘𝑒𝑘𝑑(𝑥)

)
𝑘𝑒𝑘𝑑(𝑥)Δ𝑑

≤ −𝑘2𝑒𝑘𝑑(𝑥)(𝑙 − 1)𝜙
(
𝑘𝑒𝑘𝑑(𝑥)

)
− 𝜙
(
𝑘𝑒𝑘𝑑(𝑥)

)
𝑘𝑒𝑘𝑑(𝑥)Δ𝑑

= 𝑘𝑒𝑘𝑑(𝑥)𝜙
(
𝑘𝑒𝑘𝑑(𝑥)

)
(−𝑘(𝓁 − 1) − Δ𝑑)

≤ 𝓁
Φ
(
𝑘𝑒𝑘𝑑(𝑥)

)
𝑘𝑒𝑘𝑑(𝑥)

(−𝐶6)

≤ −𝓁𝐶6Φ(1)
𝜁0
(
𝑘𝑒𝑘𝑑(𝑥)

)
𝑘𝑒𝑘𝑑(𝑥)

= −𝐶7𝑘
𝑙−1

(3.2)

for a larger 𝑘0 and 𝑘 ≥ 𝑘0, where 𝐶7 > 0 is a constant that does not depend on 𝑘. Consider 𝜆 > 0. From (𝑓1) and (3.2), we
obtain in the case 𝑑(𝑥) < 𝜎 that

−ΔΦ𝜂 ≤ −𝐶7𝑘
𝑙−1 ≤ −1 ≤ 𝜆𝑓(𝑥, 𝜂) − 1, (3.3)

for all 𝜆 > 0 and for 𝑘 ≥ 𝑘0 with 𝑘0 large enough, which does not depend on 𝜆 > 0.
Now suppose that 𝜎 ≤ 𝑑(𝑥) < 2𝛿. A similar argument with respect to [15, p. 4157] implies

−ΔΦ𝜂 ≤ 𝐶8𝑘
𝑚−1, (3.4)

for 𝜎 ≤ 𝑑(𝑥) < 2𝛿, where 𝐶8 > 0 is a constant that does not depend on 𝑘 ≥ 𝑘0 ≥ 1.
Consider 𝜆0 > 0, depending only on the fixed 𝑘 > 0, such that𝐶8𝑘

𝑚−1 ≤ 𝜆𝐶3 − 1 for all 𝜆 ≥ 𝜆0, where𝐶3 is the constant
given in (𝑓2). If 𝜎 < 𝑑(𝑥) < 2𝛿, we have 𝜂(𝑥) ≥ 𝑒𝑘𝜎 − 1 = 𝑒 + 𝑛 − 1 ≥ 𝑡0. Thus, it follows from (𝑓2) that

−ΔΦ𝜂 ≤ 𝐶8𝑘
𝑚−1 ≤ 𝜆𝐶3 − 1 ≤ 𝜆𝑓(𝑥, 𝜂) − 1, (3.5)

for all 𝜆 ≥ 𝜆0 and 𝜎 < 𝑑(𝑥) < 2𝛿.
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RĂDULESCU et al. 2563

Consider 2𝛿 < 𝑑(𝑥). In this case, we have 𝜂(𝑥) ≥ 𝑒𝑘𝜎 − 1 ≥ 𝑡0. Then, by using (3.1), we have

−ΔΦ𝜂 = 0 ≤ 𝜆𝐶3 − 1 ≤ 𝜆𝑓(𝑥, 𝜂) − 1, (3.6)

for 2𝛿 < 𝑑(𝑥). Then, it follows from (3.3), (3.5), and (3.6) that

−ΔΦ𝜂 ≤ 𝜆𝑓(𝑥, 𝜂) − 1 in Ω (3.7)

for all 𝜆 ≥ 𝜆0.
By using the fact that 𝑔 is bounded in bounded sets, we have that there exists 𝜇0 > 0 small enough such that

𝜇0‖𝑔(⋅, 𝜂)‖𝐿∞ ≤ 1∕2. Thus, by (3.7) we obtain in Ω that

−ΔΦ𝜂 ≤ 𝜆𝑓(𝑥, 𝜂) − 1 ≤ 𝜆𝑓(𝑥, 𝜂) + 𝜇𝑔(𝑥, 𝜂), (3.8)

for all 𝜇 ∈ ℝ with |𝜇| ≤ 𝜇0.
Now, the supersolution will be considered. Fix 𝜆 ≥ 𝜆0 satisfying (3.8). Let 𝜃 > 0 be a constant to be chosen before and

consider 𝑧𝜃 ∈ 𝑊1,Φ
0 (Ω) the solution of the problem{

−ΔΦ𝑧𝜃 = 𝜃 in Ω,

𝑧𝜃 = 0 on 𝜕Ω.

Since 𝑞 < 𝑙, it is possible to choose 𝜃 > 0 large enough such that

max
{
𝐶1, 𝐶2, 𝐶

𝑞−1
}
𝜆
(
1 + 𝜃(𝑞−1)∕(𝑙−1)

)
< 𝜃, (3.9)

where 𝐶1, 𝐶2 > 0 and 𝐶 > 0 are the constants given in (𝑓1) and Lemma 2.7, respectively.
Consider a smaller 𝜇0 > 0, which depends only on 𝜆, such that

max{𝐶1, 𝐶2, 𝐶
𝑞−1}𝜆

(
1 + 𝜃(𝑞−1)∕(𝑙−1)

)
+ 𝜇0‖𝑔(𝑥, 𝑧𝜃)‖𝐿∞ < 𝜃. (3.10)

Then by (3.9), (3.10), and Lemma 2.7, we have

𝜆𝑓(𝑥, 𝑧𝜃) + 𝜇𝑔(𝑥, 𝑧𝜃) ≤ −ΔΦ𝑧𝜃 in Ω (3.11)

for all 𝜇 ∈ ℝ with |𝜇| ≤ 𝜇0. Since −ΔΦ𝜂 is bounded, it is possible to choose 𝜃 > 0 such that (3.11) occurs and −ΔΦ𝜂 ≤
−ΔΦ𝑧𝜃 in Ω. From Lemma 2.6, we have 𝜂(𝑥) ≤ 𝑧𝜃(𝑥) a.e. in Ω. □

Proof of Theorem 1.1. Consider the function

𝑤(𝑥, 𝑡) =

⎧⎪⎨⎪⎩
𝜆𝑓(𝑥, 𝑢(𝑥)) + 𝜇𝑔(𝑥, 𝑢(𝑥)), 𝑡 > 𝑢(𝑥),

𝜆𝑓(𝑥, 𝑡) + 𝜇𝑔(𝑥, 𝑡), 𝑢(𝑥) ≤ 𝑡 ≤ 𝑢(𝑥),

𝜆𝑓(𝑥, 𝑢(𝑥)) + 𝜇𝑔(𝑥, 𝑢(𝑥)), 𝑡 < 𝑢(𝑥),

(3.12)

for (𝑥, 𝑡) ∈ Ω × ℝ, where 𝑢, 𝑢 ∈ 𝑊1,Φ
0 (Ω) are the functions given in Lemma 3.1. Define the energy functional

𝐽(𝑢) ∶= ∫
Ω

Φ(|∇𝑢|) − ∫
Ω

𝑊(𝑥, 𝑢), 𝑢 ∈ 𝑊1,Φ
0 (Ω),

where𝑊(𝑥, 𝑡) ∶= ∫ 𝑡

0
𝑤(𝑥, 𝑠). From the hypothesis on 𝑓 and 𝑔, we have 𝐽 ∈ 𝐶1

(
𝑊1,Φ

0 (Ω),ℝ
)
with

𝐽′(𝑢)𝑣 = ∫
Ω

𝜙(|∇𝑢|)∇𝑢∇𝑣 − ∫
Ω

𝑤(𝑥, 𝑢)𝑣, 𝑢, 𝑣 ∈ 𝑊1,Φ
0 (Ω).
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2564 RĂDULESCU et al.

We claim that 𝐽 is coercive. In fact, we have from Lemma 2.3 and the continuous embeddings𝑊1,Φ
0 (Ω) ↪ 𝐿Φ(Ω) and

𝐿Φ(Ω) ↪ 𝐿1(Ω) that

𝐽(𝑢) ≥ ∫
Ω

Φ(|∇𝑢|) − 𝐶9∫
Ω

|𝑢|
≥ 𝜁0

(‖∇𝑢‖𝐿Φ) − 𝐶10‖∇𝑢‖𝐿Φ.
Thus, 𝐽(𝑢) → +∞ as ‖𝑢‖→ +∞. Since𝑤 is bounded, we have that 𝐽 is a weak lower semicontinuous functional. The set

 ∶=
{
𝑣 ∈ 𝑊1,Φ

0 (Ω); 𝑢(𝑥) ≤ 𝑣(𝑥) ≤ 𝑢(𝑥) a.e. in Ω
}

is convex and closed in𝑊1,Φ
0 (Ω), thus by the reflexivity of𝑊1,Φ

0 (Ω) and [30, Theorem 1.2], we obtain that 𝐽|| attains its
infimum at a point 𝑢 in. Repeating the arguments of [30, Theorem 2.4], we see that 𝑢 weakly solves the problem{

−ΔΦ𝑣 = 𝑤(𝑥, 𝑣) in Ω,

𝑣 = 0 on 𝜕Ω.

Thus, since 𝑢 ∈ , from the definition of 𝑤 given in (3.12), we have that 𝑢 solves (𝑃). Since the function 𝑤 is bounded, it
follows from the 𝐶1,𝛼 estimates up to the boundary (see [24]) that 𝑢 ∈ 𝐶1,𝛼

(
Ω
)
. □

4 PROOF OF THEOREM 1.2

Before proving Theorem 1.2, some facts will be needed.
Let 𝑢 be as in Lemma 3.1. Consider the functions

𝑓(𝑥, 𝑡) =

{
𝑓(𝑥, 𝑡), 𝑡 ≥ 𝑢(𝑥),

𝑓(𝑥, 𝑢(𝑥)), 𝑡 < 𝑢(𝑥),
and 𝑔(𝑥, 𝑡) =

{
𝑔(𝑥, 𝑡), 𝑡 ≥ 𝑢(𝑥),

𝑔(𝑥, 𝑢(𝑥)), 𝑡 < 𝑢(𝑥),

where 𝑔 satisfies (𝑔1) or (𝑔2). Consider the problem{
−ΔΦ𝑢 = 𝜆𝑓(𝑥, 𝑢) + 𝜇𝑔(𝑥, 𝑢) in Ω,

𝑢 = 0 on 𝜕Ω,
(4.1)

whose solutions coincide with the critical points of the 𝐶1 functional

𝐿(𝑢) = ∫
Ω

Φ(|∇𝑢|) − 𝜆∫
Ω

𝐹(𝑥, 𝑢) − 𝜇∫
Ω

𝐺(𝑥, 𝑢), 𝑢 ∈ 𝑊1,Φ
0 (Ω),

where 𝐹(𝑥, 𝑡) = ∫ 𝑡

0
𝑓(𝑥, 𝑠) and 𝐺(𝑥, 𝑡) = ∫ 𝑡

0
𝑔(𝑥, 𝑠).

4.1 Subcritical case

In order to prove the first part of Theorem 1.2, the result below will be needed.

Lemma 4.1. Suppose that (𝑔1) holds. Then, the functional 𝐿 satisfies the Palais–Smale condition at any level 𝑐 ∈ ℝ.

Proof. Consider (𝑥, 𝑡) ∈ Ω × ℝ with 𝑡 < 𝑢(𝑥). Note that

𝑔(𝑥, 𝑡)𝑡 − 𝜃𝐺(𝑥, 𝑡) = 𝑔(𝑥, 𝑢(𝑥))𝑡 − 𝜃𝐺(𝑥, 𝑡)

≥ −𝐶11|𝑡| − 𝐶12.
(4.2)
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RĂDULESCU et al. 2565

On the other hand, if 𝑡 ≥ 𝑢(𝑥) with 𝑡 ≥ 𝑡1 or 𝑡 < 𝑡1, we have from (𝑔1) and the fact that 𝑔 is bounded on bounded sets
that

𝑔(𝑥, 𝑡)𝑡 − 𝜃𝐺(𝑥, 𝑡) = 𝑔(𝑥, 𝑡)𝑡 − 𝜃

(
∫

𝑢(𝑥)

0

𝑔(𝑥, 𝑠) 𝑑𝑠 + ∫
𝑡

𝑢(𝑥)

𝑔(𝑥, 𝑠) 𝑑𝑠

)
= 𝑔(𝑥, 𝑡)𝑡 − 𝜃𝐺(𝑥, 𝑡) − 𝜃𝑢(𝑥)𝑔(𝑥, 𝑢(𝑥)) + 𝜃𝐺(𝑥, 𝑢(𝑥))

≥ −𝐶13,

(4.3)

where 𝐶13 ∶= sup(𝑥,𝑡)∈Ω×[0,𝑡1] |𝑔(𝑥, 𝑡)𝑡 − 𝜃𝐺(𝑥, 𝑡)| + sup𝑥∈Ω | − 𝜃𝑢(𝑥)𝑔(𝑥, 𝑢(𝑥)) + 𝜃𝐺(𝑥, 𝑢(𝑥))|.
Consider 𝑐 ∈ ℝ and let (𝑢𝑛) be a sequence in𝑊1,Φ

0 (Ω) such that 𝐿(𝑢𝑛) → 𝑐 and 𝐿′(𝑢𝑛) → 0. By using (𝑓1), (4.2), (4.3),
and (𝜙3), we have

𝐿(𝑢𝑛) −
1

𝜃
𝐿′(𝑢𝑛)𝑢𝑛 ≥ (1 − 𝑚

𝜃

)
∫
Ω

Φ(|∇𝑢𝑛|) − 𝐶14

(
∫
Ω

|𝑢𝑛|𝑞 + |𝑢𝑛|) − 𝐶15. (4.4)

Let 𝜀 > 0 be an arbitrary number. Note that

𝑡 + 𝑡𝑞 ≤ 𝐶16 + 𝜀Φ(𝑡) (4.5)

for all 𝑡 ≥ 0, where 𝐶16 > 0 is a constant that depends on 𝜀 > 0. In fact, we have from Lemma 2.3 that

0 ≤ 𝑡 + 𝑡𝑞

Φ(𝑡)
≤ 𝑡 + 𝑡𝑞

Φ(1)𝑡𝓁
,

for all 𝑡 ≥ 1. Since 1 < 𝑞 < 𝓁, we have lim𝑡→+∞
𝑡+𝑡𝑞

Φ(𝑡)
= 0. Then, we conclude that given 𝜀 > 0, there is 𝑡 > 1 such that

𝑡 + 𝑡𝑞 ≤ 𝜀Φ(𝑡),

for all 𝑡 ≥ 𝑡. By continuity, the function Λ(𝑡) ∶= 𝑡 + 𝑡𝑞, 𝑡 ∈
[
0, 𝑡
]
is bounded. Therefore, we have the estimate (4.5).

Thus, by using (2.2), (4.4), and (4.5), for a suitable choice of 𝜀 > 0 we obtain

𝑐 + 1 + ‖𝑢𝑛‖ ≥ 𝐿(𝑢𝑛) −
1

𝜃
𝐿′(𝑢𝑛)𝑢𝑛 ≥ 𝐶17∫

Ω

Φ(|∇𝑢𝑛|) − 𝐶18. (4.6)

By using (4.6) and Lemma 2.3, we obtain that (𝑢𝑛) is bounded in𝑊1,Φ
0 (Ω).

From the fact that 𝑊1,Φ
0 (Ω) is reflexive and the compact embedding 𝑊1,Φ

0 (Ω) ↪ 𝐿𝜉(Ω), 1 ≤ 𝜉 < 𝑙⋆, we have up to a
subsequence, still denoted by (𝑢𝑛), that

⎧⎪⎨⎪⎩
𝑢𝑛 ⇀ 𝑢 in𝑊1,Φ

0 (Ω),

𝑢𝑛 → 𝑢 in 𝐿𝜉(Ω), 1 ≤ 𝜉 < 𝑙⋆,

𝑢𝑛(𝑥) → 𝑢(𝑥) a.e. in Ω,

(4.7)

for some 𝑢 ∈ 𝑊1,Φ
0 (Ω). Note that

∫
Ω

⟨𝜙(|∇𝑢𝑛|)∇𝑢𝑛 − 𝜙(|∇𝑢|)∇𝑢,∇(𝑢𝑛 − 𝑢)⟩
= 𝐽′(𝑢𝑛)(𝑢𝑛 − 𝑢) + ∫

Ω

𝜆𝑓(𝑥, 𝑢𝑛)(𝑢𝑛 − 𝑢) + ∫
Ω

𝜇𝑔(𝑥, 𝑢𝑛)(𝑢𝑛 − 𝑢) − ∫
Ω

𝜙(|∇𝑢|)∇𝑢∇(𝑢𝑛 − 𝑢).

The weak convergence in (4.7) implies that

∫
Ω

𝜙(|∇𝑢|)∇𝑢∇(𝑢𝑛 − 𝑢) → 0. (4.8)
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2566 RĂDULESCU et al.

By using the Lebesgue Dominated Convergence Theorem, we obtain

∫
Ω

𝜆𝑓(𝑥, 𝑢𝑛)(𝑢𝑛 − 𝑢) → 0 and ∫
Ω

𝜇𝑔(𝑥, 𝑢𝑛)(𝑢𝑛 − 𝑢) → 0. (4.9)

From (4.8), (4.9), the boundness of (𝑢𝑛) in𝑊1,Φ
0 (Ω), and the fact that 𝐿′(𝑢𝑛) → 0, we obtain

∫
Ω

⟨𝜙(|∇𝑢𝑛|)∇𝑢𝑛 − 𝜙(|∇𝑢|)∇𝑢,∇(𝑢𝑛 − 𝑢)⟩→ 0.

Then, it follows from [2, Lemma 2.2] that 𝑢𝑛 → 𝑢 in𝑊1,Φ
0 (Ω). □

Proof of Theorem 1.2 (first part). Note that (𝑔1) imply that 𝐿 satisfy the Palais–Smale condition at any level. From (𝑓1),
(𝑔1), Lemma 2.3 and the embeddings𝑊

1,Φ
0 (Ω) ↪ 𝐿𝑞(Ω) and𝑊1,Φ

0 (Ω) ↪ 𝐿𝑟(Ω), we have

𝐿(𝑢) ≥ 𝜁0(‖𝑢‖) − 𝐶19(‖𝑢‖𝑞 + 1) − 𝐶20𝜇(‖𝑢‖𝑟 + 1),

where 𝐶19, 𝐶20 > 0 are constants with 𝐶20 not depending on 𝜇 > 0. Then, it follows that

inf
𝜕𝐵𝑅

𝐿 > 0, (4.10)

where𝐵𝑅 =
{
𝑢 ∈ 𝑊1,Φ

0 (Ω); ‖𝑢‖ < 𝑅
}
, for 𝑅 > 0 large enough and 𝜇 > 0 small. Since 𝐿(0) = 0, it follows from the Ekeland

variational principle that 𝐿 attains its minimum on 𝐵𝑅. Then, by (4.10), we conclude that the minimum is attained at a
critical point 𝑢 ∈ 𝐵𝑅. We claim that 𝑢(𝑥) ≥ 𝑢(𝑥) a.e. in Ω. In fact, by considering the test function function (𝑢 − 𝑢)+ ∈

𝑊1,Φ
0 (Ω), we obtain

∫
Ω

𝜙(|∇𝑢|)∇𝑢∇(𝑢 − 𝑢)+ = ∫
{𝑢<𝑢}

(𝜆𝑓(𝑥, 𝑢) + 𝜇𝑔(𝑥, 𝑢))(𝑢 − 𝑢)+

= ∫
{𝑢<𝑢}

(𝜆𝑓(𝑥, 𝑢) + 𝜇𝑔(𝑥, 𝑢))(𝑢 − 𝑢)+

≥ ∫
Ω

𝜙(|∇𝑢|)∇𝑢∇(𝑢 − 𝑢)+.

Thus, by using Lemma 2.5, we have

0 ≥ ∫
{𝑢>𝑢}

⟨𝜙(|∇𝑢|)∇𝑢 − 𝜙(|∇𝑢|)∇𝑢,∇𝑢 − ∇𝑢⟩
≥ Γ∫

Ω

|∇(𝑢 − 𝑢)+|
1 + |∇𝑢| + |∇𝑢|Φ

(|∇(𝑢 − 𝑢)+|
4

)
,

which imply that ∇(𝑢 − 𝑢)+(𝑥) = 0 a.e. inΩ. From (2.5), we obtain 𝑢(𝑥) ≤ 𝑢(𝑥) a.e. inΩ. From the definition of 𝑓 and 𝑔,
it follows that 𝑢 is a solution for (𝑃).
Now, the existence of a second solution for (𝑃) will be proved. From (𝑔1), we have

𝐺(𝑥, 𝑡) ≥ 𝐶21𝑡
𝜃 − 𝐶22, 𝑡 > 0, a.e. in Ω. (4.11)

Let 𝜑 ∈ 𝐶∞
0 (Ω) ⧵ {0} be a nonnegative function. Then, by (4.11) we have 𝐿(𝑡𝜑) < 0 for 𝑡 > 0 large enough. Consider also

that 𝑡 > 𝑅∕‖𝜑‖. The Mountain Pass Theorem provides a critical point 𝑢 ∈ 𝑊1,Φ
0 (Ω) for 𝐿 at the level

𝑐 = inf
𝛾∈Γ

max
𝑢∈max 𝛾([0,1])

𝐿(𝑢) ≥ inf
𝜕𝐵𝑅

𝐿 > 0,

where Γ =
{
𝛾 ∈ 𝐶([0, 1],𝑊1,Φ

0 (Ω)); 𝛾(0) = 0, 𝛾(1) = 𝑡𝜑
}
. As before, we have 𝑢(𝑥) ≥ 𝑢(𝑥) a.e. inΩ. Since 𝐿(𝑢) ≤ 0 < 𝐿(𝑢),

the result is proved. □
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RĂDULESCU et al. 2567

4.2 Critical case

In the next results, the behavior of the Palais–Smale sequences for the functional 𝐿 it will be considered. By adapting the
ideas of Lemma 4.1, we have the result below.

Lemma 4.2. Suppose that (𝑔2) holds and consider 𝜆 ≥ 𝜆0 as in Lemma 3.1. If (𝑢𝑛) ⊂ 𝑊1,Φ
0 (Ω) is a Palais–Smale sequence at

the level 𝑐, then (𝑢𝑛) is bounded in𝑊
1,Φ
0 (Ω). Fix𝑀 ∈ ℝ and 𝜇 > 0. If 𝑐 < 𝑀, then there exists a constant 𝐶𝑀 > 0, depending

only on𝑀,𝜇, and 𝓁, such that ‖𝑢𝑛‖ ≤ 𝐶𝑀 for all 0 < 𝜇 ≤ 𝜇.

The next result will play an important role for proving that the functional 𝐿 satisfies the Palais–Smale condition at
certain levels.

Lemma 4.3. Consider the conditions of Lemma 4.2. Fix 𝑀 ∈ ℝ and 𝜇 > 0 and let (𝑢𝑛) ⊂ 𝑊1,Φ
0 (Ω) be a Palais–Smale

sequence at the level 𝑐 with 𝑐 < 𝑀.Then

𝑀 + 𝐶𝑀 ≥ 𝐿(𝑢𝑛) −
1

𝑚
𝐿′(𝑢𝑛)𝑢𝑛 ≥ 𝜇𝐶36∫

Ω

Φ⋆(𝑢𝑛) − 𝐶37 − 𝐶38

(
∫
Ω

Φ⋆(𝑢𝑛)

)𝑞∕𝓁⋆

− 𝐶39𝜇, (4.12)

for all 𝑛 ∈ ℕ and 0 < 𝜇 ≤ 𝜇, where𝐶36, 𝐶39 > 0 are constants depending on𝑀, the constants𝐶36, 𝐶37, 𝐶38, 𝐶39 do not depend
on 𝜇, and 𝐶𝑀 is given in Lemma 4.2.

Proof. From (𝑓1), we have

𝑓(𝑥, 𝑡)𝑡

𝑚
− 𝐹(𝑥, 𝑡) ≥ −𝐶29 − 𝐶30|𝑡|𝑞, for all 𝑡 ∈ ℝ, a.e. in Ω. (4.13)

From (𝜙3) we have

𝐿(𝑢𝑛) −
1

𝑚
𝐿′(𝑢𝑛)𝑢𝑛 =∫

Ω

Φ(𝑢𝑛) −
1

𝑚
𝜙(|∇𝑢𝑛|)|∇𝑢𝑛|2 + 𝜆∫

Ω

[
1

𝑚
𝑓(𝑥, 𝑢𝑛)𝑢𝑛 − 𝐹(𝑥, 𝑢𝑛)

]
+ 𝜇∫

Ω

[
1

𝑚
𝑔(𝑥, 𝑢𝑛)𝑢𝑛 − 𝐺(𝑥, 𝑢𝑛)

]
≥ 𝜆∫

Ω

[
1

𝑚
𝑓(𝑥, 𝑢𝑛)𝑢𝑛 − 𝐹(𝑥, 𝑢𝑛)

]
+ 𝜇∫

Ω

[
1

𝑚
𝑔(𝑥, 𝑢𝑛)𝑢𝑛 − 𝐺(𝑥, 𝑢𝑛)

]
.

(4.14)
If 𝑢𝑛(𝑥) < 𝑢(𝑥), then

1

𝑚
𝑔(𝑥, 𝑢𝑛)𝑢𝑛 − 𝐺(𝑥, 𝑢𝑛) =

(
1

𝑚
𝜙⋆(𝑢)𝑢𝑢𝑛 − ∫

𝑢𝑛(𝑥)

0

𝑔(𝑥, 𝑠) 𝑑𝑠

)

=
1

𝑚
𝜙⋆(𝑢)𝑢𝑢𝑛 − ∫

𝑢𝑛(𝑥)

0

𝜙⋆(𝑢)𝑢 𝑑𝑠 ≥ −2|𝑢𝑛| sup
𝑥∈Ω

(𝜙⋆(𝑢(𝑥))𝑢(𝑥)).

(4.15)

Suppose that 𝑢𝑛(𝑥) ≥ 𝑢(𝑥). From Lemma 2.4, we have

1

𝑚
𝑔(𝑥, 𝑢𝑛)𝑢𝑛 − 𝐺(𝑥, 𝑢𝑛) =

1

𝑚
𝜙⋆(𝑢𝑛)𝑢

2
𝑛 − ∫

𝑢𝑛(𝑥)

0

𝑔(𝑥, 𝑠) 𝑑𝑠

=
1

𝑚
𝜙⋆(𝑢𝑛)𝑢

2
𝑛 −

(
∫

𝑢(𝑥)

0

𝑔(𝑥, 𝑠) 𝑑𝑠 + ∫
𝑢𝑛(𝑥)

𝑢(𝑥)

𝑔(𝑥, 𝑠) 𝑑𝑠

)

=
1

𝑚
𝜙⋆(𝑢𝑛)𝑢

2
𝑛 −

(
∫

𝑢(𝑥)

0

𝜙⋆(𝑢)𝑢 𝑑𝑠 + ∫
𝑢𝑛(𝑥)

𝑢(𝑥)

𝜙⋆(𝑠)𝑠 𝑑𝑠

)

=
1

𝑚
𝜙⋆(𝑢𝑛)𝑢

2
𝑛 − (𝜙⋆(𝑢)𝑢

2 + Φ⋆(𝑢𝑛) − Φ⋆(𝑢))

≥
(
𝓁⋆

𝑚
− 1

)
Φ⋆(𝑢𝑛) + (1 − 𝑚⋆)Φ⋆(𝑢). (4.16)
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2568 RĂDULESCU et al.

By using (4.13), (4.14), (4.15), (4.16), Lemma 2.4, the continuous embeddings 𝑊1,Φ
0 (Ω) ↪ 𝐿1(Ω),𝑊1,Φ

0 (Ω) ↪ 𝐿Φ⋆(Ω),
and the fact that ‖𝑢𝑛‖ ≤ 𝐶𝑀, 𝑛 ∈ ℕ, where 𝐶𝑀 is given in Lemma 4.2, we have

𝐿(𝑢𝑛) −
1

𝑚
𝐿′(𝑢𝑛)𝑢𝑛 ≥ 𝜆∫

Ω

[
1

𝑚
𝑓(𝑥, 𝑢𝑛)𝑢𝑛 − 𝐹(𝑥, 𝑢𝑛)

]
+ 𝜇∫

Ω

[
1

𝑚
𝑔(𝑥, 𝑢𝑛)𝑢𝑛 − 𝐺(𝑥, 𝑢𝑛)

]
≥ 𝜇

(
𝓁⋆

𝑚
− 1

)
∫
{𝑢𝑛≥𝑢}

Φ⋆(𝑢𝑛) + 𝜆∫
Ω

[
1

𝑚
𝑓(𝑥, 𝑢𝑛)𝑢𝑛 − 𝐹(𝑥, 𝑢𝑛)

]
+ 𝜇∫

{𝑢𝑛<𝑢}

[
1

𝑚
𝑔(𝑥, 𝑢𝑛)𝑢𝑛 − 𝐺(𝑥, 𝑢𝑛)

]

+𝜇(1 − 𝑚⋆)∫
Ω

Φ⋆(𝑢)

≥ 𝜇

(
𝓁⋆

𝑚
− 1

)(
∫
Ω

Φ⋆(𝑢𝑛) −∫
{𝑢𝑛<𝑢}

Φ⋆(𝑢𝑛)

)
+ 𝜆

(
−𝐶29|Ω| − 𝐶30 ∫

Ω

|𝑢𝑛|𝑞)

−𝜇𝐶31 ∫
Ω

|𝑢𝑛| + 𝜇(1 − 𝑚⋆)∫
Ω

Φ⋆(𝑢)

≥ 𝜇

(
𝓁⋆

𝑚
− 1

)(
∫
Ω

Φ⋆(𝑢𝑛) − 𝜁3(‖𝑢𝑛‖Φ⋆
)

)
+ 𝜆

(
−𝐶29|Ω| − 𝐶30 ∫

Ω

|𝑢𝑛|𝑞)
−𝜇𝐶31∫

Ω

|𝑢𝑛| + 𝜇(1 − 𝑚⋆)∫
Ω

Φ⋆(𝑢)

≥ 𝜇

(
𝓁⋆

𝑚
− 1

)
∫
Ω

Φ⋆(𝑢𝑛) + 𝜆

(
−𝐶29|Ω| − 𝐶30 ∫

Ω

|𝑢𝑛|𝑞) − 𝜇𝐶32, (4.17)

where 𝐶32 > 0 is a constant not depending on 𝑛 ∈ ℕ and 𝜇. Note that

|𝑡|𝓁⋆ ≤ 𝐶33(1 + Φ⋆(𝑡)), 𝑡 ∈ ℝ. (4.18)

In fact, we have from Lemma 2.4 that Φ⋆(𝑠) ≥ 𝑠𝓁
⋆
Φ⋆(1) for all 𝑠 ≥ 1. By continuity, the function Λ⋆ ∶= Φ⋆(𝑠) − 𝑠𝓁

⋆
,

𝑠 ∈ [0, 1] is bounded. Thus, there is a constant 𝐶33 > 0 such that

𝑠𝓁
⋆ ≤ 𝐶33(1 + Φ⋆(𝑠))

for all 𝑠 ≥ 0. Considering 𝑠 = |𝑡|, 𝑡 ∈ ℝ, in the last inequality and since Φ⋆(𝑡) = Φ⋆(|𝑡|) for all 𝑡 ∈ ℝ, (4.18) follows.
By using the continuous embedding 𝑊1,Φ

0 (Ω) ↪ 𝐿Φ∗(Ω) and the inequality (4.18), it follows that 𝑢𝑛 ∈ 𝐿𝓁
⋆
(Ω) for all

𝑛 ∈ ℕ. By using the Hölder inequality, (4.18), and the fact that (𝑎 + 𝑏)𝑞∕𝓁
⋆ ≤ 𝑎𝑞∕𝓁

⋆
+ 𝑏𝑞∕𝓁

⋆ for all 𝑎, 𝑏 ≥ 0 (see, for
instance, [22, Lemma 2.5]), we obtain

−𝐶29|Ω| − 𝐶30 ∫
Ω

|𝑢𝑛|𝑞 ≥ −𝐶29|Ω| − 𝐶34

(
∫
Ω

|𝑢𝑛|𝓁⋆)𝑞∕𝓁⋆

≥ −𝐶29|Ω| − 𝐶35

(
∫
Ω

Φ⋆(𝑢𝑛)

)𝑞∕𝓁⋆

− 𝐶34(𝐶33|Ω|)𝑞∕𝓁⋆ .
(4.19)

By using (4.17) and (4.19), we have

𝐿(𝑢𝑛) −
1

𝑚
𝐿′(𝑢𝑛)𝑢𝑛 ≥ 𝜇𝐶36 ∫

Ω

Φ⋆(𝑢𝑛) − 𝐶37 − 𝐶38

(
∫
Ω

Φ⋆(𝑢𝑛)

)𝑞∕𝓁⋆

− 𝐶39𝜇,

where 𝐶36, 𝐶39 > 0 are constants depending on𝑀 and the constants 𝐶36, 𝐶37, 𝐶38, 𝐶39 do not depend on 𝜇. □

As a consequence of Lemma 4.2, if (𝑢𝑛) is a Palais–Smale sequence at some level, then there is a subsequence, still
denoted by (𝑢𝑛), and 𝑢 ∈ 𝑊1,Φ

0 (Ω), such that
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RĂDULESCU et al. 2569

(1) 𝑢𝑛 ⇀ 𝑢 in𝑊1,Φ
0 (Ω);

(2) 𝑢𝑛 ⇀ 𝑢 in 𝐿Φ⋆(Ω);

(3) 𝑢𝑛 → 𝑢 in 𝐿Φ(Ω);

(4) 𝑢𝑛(𝑥) → 𝑢(𝑥) a.e. in Ω.

By using the Concentration Compactness Lemma by Lions for Orlicz–Sobolev spaces found in [17], it follows that there
are two nonnegative measures 𝜄, 𝜈 ∈ (

ℝ𝑁
)
(the space of the Radonmeasures inℝ𝑁), a countable set  , points (𝑥𝑗)𝑗∈

in Ω, and sequences
(
𝜄𝑗
)
𝑗∈ ,

(
𝜈𝑗
)
𝑗∈ ⊂ (0, +∞), such that

Φ(|∇𝑢𝑛|) ⇀ 𝜄 ≥ Φ(|∇𝑢|) + ∑
𝑗∈

𝜄𝑗𝛿𝑥𝑗 weakly in(
ℝ𝑁
)
, (4.20)

Φ⋆(𝑢𝑛) ⇀ 𝜈 = Φ⋆(𝑢) +
∑
𝑗∈

𝜈𝑗𝛿𝑥𝑗 weakly in(
ℝ𝑁
)
, (4.21)

𝜈𝑗 ≤ max
{
𝑆𝓁

⋆

𝑁 𝜄
𝓁⋆∕𝓁

𝑗
, 𝑆𝑚

⋆

𝑁 𝜄
𝑚⋆∕𝓁

𝑗
, 𝑆𝓁

⋆

𝑁 𝜄
𝓁⋆∕𝑚

𝑗
, 𝑆𝑚

⋆

𝑁 𝜄
𝑚⋆∕𝑚

𝑗

}
, (4.22)

where 𝑆𝑁 is the constant provided in (2.5) and 𝛿𝑥𝑗 is the Dirac mass at 𝑥𝑗 .
In what follows, an important estimate for

(
𝜈𝑗
)
𝑗∈ is proved.

Lemma 4.4. Suppose that (𝑔2) holds. If (𝑢𝑛) is a Palais–Smale sequence for 𝐿 with 𝜇 > 0 and
(
𝑣𝑗
)
𝑗∈ is given as above,

then for each 𝑗 ∈  , it holds that

𝜈𝑗 ≥
(

𝓁

𝜇𝑚⋆

)𝛽∕(𝛽−1)

𝑆𝑁
−𝛼∕(𝛽−1) or 𝜈𝑗 = 0,

for some 𝛼 ∈ {𝓁⋆,𝑚⋆} and 𝛽 ∈
{
𝓁⋆∕𝓁,𝑚⋆∕𝓁, 𝓁⋆∕𝑚,𝑚⋆∕𝑚

}
.

Proof. Let 𝜓 ∈ 𝐶∞
0

(
ℝ𝑁
)
be a function satisfying

𝜓 ≡ 1 in 𝐵1∕2, supp 𝜓 ⊂ 𝐵1 and 0 ≤ 𝜓(𝑥) ≤ 1, 𝑥 ∈ ℝ𝑁.

For each 𝑗 ∈  and 𝜀 > 0, define

𝜓𝜀(𝑥) = 𝜓

(
𝑥 − 𝑥𝑗

𝜀

)
, 𝑥 ∈ ℝ𝑁.

The sequence (𝜓𝜀𝑢𝑛)𝑛∈ℕ is bounded in𝑊1,Φ
0 (Ω). Since 𝐿′(𝑢𝑛) → 0, we obtain

𝐿′(𝑢𝑛)(𝜓𝜀𝑢𝑛) = 𝑜𝑛(1).

From the fact that 𝑔(𝑥, 𝑡) ≥ 0 for all 𝑡 ∈ ℝ, a.e. in Ω and the definition of 𝑔, we obtain

∫
Ω

𝜙(|∇𝑢𝑛|)∇𝑢𝑛∇(𝑢𝑛𝜓𝜀) = 𝑜𝑛(1) + 𝜆∫
Ω

𝑓(𝑥, 𝑢𝑛)𝑢𝑛𝜓𝜀 + 𝜇∫
{𝑢𝑛<𝑢}

𝑔(𝑥, 𝑢)𝑢𝑛𝜓𝜀 + 𝜇∫
{𝑢𝑛≥𝑢}

𝑔(𝑥, 𝑢𝑛)𝑢𝑛𝜓𝜀

≤ 𝑜𝑛(1) + 𝜆∫
Ω

𝑓(𝑥, 𝑢𝑛)𝑢𝑛𝜓𝜀 + 𝜇𝐶40∫
Ω

|𝑢𝑛|𝜓𝜀 + 𝜇∫
{𝑢𝑛≥𝑢}

𝜙⋆(𝑢𝑛)𝑢
2
𝑛𝜓𝜀

≤ 𝑜𝑛(1) + 𝜆∫
Ω

𝑓(𝑥, 𝑢𝑛)𝑢𝑛𝜓𝜀 + 𝜇𝐶40∫
Ω

|𝑢𝑛|𝜓𝜀 + 𝜇𝑚⋆∫
Ω

Φ⋆(𝑢𝑛)𝜓𝜀.

(4.23)
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2570 RĂDULESCU et al.

Since the embeddings𝑊1,Φ
0 (Ω) ↪ 𝐿𝓁(Ω) and 𝐿𝓁(Ω) ↪ 𝐿𝑞(Ω) are compact and continuous, respectively, it follows from

the Lebesgue Dominated Convergence Theorem that

lim
𝑛→+∞∫

Ω

𝑓(𝑥, 𝑢𝑛)𝑢𝑛𝜓𝜀 = ∫
Ω

𝑓(𝑥, 𝑢)𝑢𝜓𝜀.

On the other hand, we have from Lemma 2.3 that

∫
Ω

𝜙(|∇𝑢𝑛|)∇𝑢𝑛∇(𝑢𝑛𝜓𝜀) = ∫
Ω

𝜙(|∇𝑢𝑛|)|∇𝑢𝑛|2𝜓𝜀 + ∫
Ω

𝜙(|∇𝑢𝑛|)(∇𝑢𝑛∇𝜓𝜀)𝑢𝑛

≥ 𝓁∫
Ω

Φ(|∇𝑢𝑛|)𝜓𝜀 + ∫
Ω

𝜙(|∇𝑢𝑛|)(∇𝑢𝑛∇𝜓𝜀)𝑢𝑛.

(4.24)

We claim that the sequence 𝜙(|∇𝑢𝑛|) 𝜕𝑢𝑛
𝜕𝑥𝑖

, 𝑖 = 1, … ,𝑁, is bounded in 𝐿Φ̃(Ω). In fact, from Lemma 2.2, we have that

Φ̃

(
𝜙(|∇𝑢𝑛|)𝜕𝑢𝑛𝜕𝑥𝑖

)
≤ Φ̃(𝜙(|∇𝑢𝑛|)|∇𝑢𝑛|) ≤ Φ(2|∇𝑢𝑛|) ≤ 𝐶41Φ(|∇𝑢𝑛|),

where𝐶41 > 0 is a constant not depending on 𝑛 ∈ ℕ, verifies the claim. Thus, for each 𝑖 = 1, … ,𝑁, there exists𝑤𝑖 ∈ 𝐿Φ̃(Ω)

such that

𝜙(|∇𝑢𝑛|)𝜕𝑢𝑛𝜕𝑥𝑖
⇀ 𝑤𝑖 in 𝐿Φ̃(Ω), (4.25)

which implies that

∫
Ω

𝜙(|∇𝑢𝑛|)(∇𝑢𝑛∇𝜓𝜀)𝑢𝑛 → ∫
Ω

(𝑤∇𝜓𝜀)𝑢, (4.26)

where 𝑤 = (𝑤1, … ,𝑤𝑁) ∈
(
𝐿Φ̃(Ω)

)
𝑁 .

From the boundness of 𝜙(|∇𝑢𝑛|) 𝜕𝑢𝑛
𝜕𝑥𝑖

, 𝑖 = 1, … ,𝑁, in 𝐿Φ̃(Ω), (4.26), and the fact that 𝑢𝑛 → 𝑢 in 𝐿Φ(Ω), we get

∫
Ω

𝜙(|∇𝑢𝑛|)(∇𝑢𝑛∇𝜓𝜀)𝑢𝑛 − (𝑤∇𝜓𝜀)𝑢 = ∫
Ω

𝜙(|∇𝑢𝑛|)∇𝑢𝑛∇𝜓𝜀(𝑢𝑛 − 𝑢) + 𝑜𝑛(1). (4.27)

From (4.20), (4.21), (4.23), (4.24), (4.27), and that 𝑢𝑛 → 𝑢 in 𝐿Φ(Ω), we obtain

𝓁∫
Ω

𝜓𝜀 𝑑𝜄 + ∫
Ω

(𝑤∇𝜓𝜀)𝑢 ≤ 𝜇𝑚⋆∫
Ω

𝜓𝜀 𝑑𝜈 + ∫
Ω

𝑓(𝑥, 𝑢)𝑢𝜓𝜀 + 𝜇‖𝑢‖𝐿Φ‖𝜓𝜀‖𝐿Φ̃ . (4.28)

From Lebesgue’s Dominated Convergence Theorem, we have ‖𝜓𝜀‖𝐿Φ̃ → 0 as 𝜀 → 0+.
Now we will prove that the second term on the left-hand side of (4.28) converges to 0 as 𝜀 → 0+.

We claim that
(
𝑓(𝑥, 𝑢𝑛)

)
is bounded in 𝐿Φ̃⋆(Ω). In fact, from (𝑓1) and Lemma 2.4, we have lim|𝑡|→+∞

|||| 𝑓(𝑥,𝑡)

𝜙⋆(|𝑡|)𝑡
|||| = 0

uniformly a.e. in Ω. Therefore, ||𝑓(𝑥, 𝑡)|| ≤ 𝐶41 + 𝐶42𝜙⋆(|𝑡|)|𝑡|, for all 𝑡 ∈ ℝ, a.e. in Ω. Then, it follows from the convexity
of Φ̃⋆ that

Φ̃⋆

(||𝑓(𝑥, 𝑡)||) ≤ Φ̃⋆(𝐶41 + 𝐶42𝜙⋆(|𝑡|)|𝑡|) ≤ 𝐶43

(
1 + Φ̃⋆(𝜙⋆(|𝑡|)|𝑡|)).

Therefore, by using Lemma 2.2

∫
Ω

Φ̃⋆

(||𝑓(𝑥, 𝑢𝑛)||) ≤ 𝐶44

(
1 + ∫

Ω

Φ⋆(𝑢𝑛)

)
,

for some constant 𝐶44 > 0 not depending on 𝑛 ∈ ℕ. From the continuous embedding 𝑊1,Φ
0 (Ω) ↪ 𝐿Φ⋆(Ω), the bound-

ness of (𝑢𝑛) in𝑊1,Φ
0 (Ω) and Lemma 2.4, the claim follows. Note that 𝑔(𝑥, 𝑢𝑛) is bounded in 𝐿Φ̃⋆(Ω), thus it follows that
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RĂDULESCU et al. 2571

there exists 𝑤 ∈ 𝐿Φ̃⋆(Ω) such that

𝜆𝑓(𝑥, 𝑢𝑛) + 𝜇𝑔(𝑥, 𝑢𝑛) ⇀ 𝑤 in 𝐿Φ̃⋆(Ω). (4.29)

Since 𝐿′(𝑢𝑛) → 0, we have from (4.25) and (4.29) that

∫
Ω

𝑤∇𝑣 − 𝑤𝑣 = 0,

for all 𝑣 ∈ 𝑊1,Φ
0 (Ω). By considering 𝑣 = 𝑢𝜓𝜀, we have

∫
Ω

𝑤∇(𝑢𝜓𝜀) − 𝑤𝑢𝜓𝜀 = 0,

which implies that

∫
Ω

(𝑤∇𝜓𝜀)𝑢 = −∫
Ω

(𝑤∇𝑢 − 𝑤𝑢)𝜓𝜀.

By Lebesgue’s Dominated Convergence Theorem, we have ∫
Ω
(𝑤∇𝑢 − 𝑤𝑢)𝜓𝜀 → 0 as 𝜀 → 0+, therefore ∫

Ω
(𝑤∇𝜓𝜀)𝑢 → 0 as

𝜀 → 0+.
Letting 𝜀 → 0+ in (4.28) we have 𝓁𝜄𝑗 ≤ 𝜇𝑚⋆𝜈𝑗 . Thus, it follows from (4.22) that

𝑆−𝛼𝑁 𝜈𝑗 ≤ 𝜄
𝛽

𝑗
≤
(
𝜇𝑚⋆

𝓁

)𝛽

𝜈
𝛽

𝑗
,

for some 𝛼 ∈ {𝓁⋆,𝑚⋆} and 𝛽 ∈
{
𝓁⋆∕𝑙,𝑚⋆∕𝑙, 𝓁⋆∕𝑚,𝑚⋆∕𝑚

}
, which implies the result. □

The next result will be needed.

Lemma 4.5. Consider the conditions of Lemma 4.4. Then, given 𝑀,𝜇 > 0 there exists 𝜇 ∈ (0, 𝜇), depending on 𝑀 and 𝜇,
such that 𝐽 satisfies the Palais–Smale condition at the level 𝑐 for 𝑐 < 𝑀 and 0 < 𝜇 < 𝜇.

Proof. Let 𝑐 < 𝑀 and let (𝑢𝑛) be a sequence in 𝑊1,Φ
0 (Ω) such that 𝐿(𝑢𝑛) → 𝑐 and 𝐿′(𝑢𝑛) → 0. Consider 𝜇 ∈ (0, 𝜇) such

that

1 ≤
(

𝓁

𝑚⋆𝜇

)𝛽∕(𝛽−1)

𝑆
−𝛼∕(𝛽−1)
𝑁

and

𝜇
𝛽∕(𝛽−1)−1∕(1−𝑞∕𝓁⋆)

<

(
𝓁

𝑚⋆

)𝛽∕(𝛽−1)

𝑆
−𝛼∕(𝛽−1)
𝑁

[𝐶36(𝑀 + 𝐶𝑀 + 𝐶37 + 𝐶38 + 𝐶39𝜇)]
1∕(1−𝑞∕𝓁⋆)

, (4.30)

where 𝐶36, 𝐶37, 𝐶38, 𝐶39 > 0 are the constants given in (4.12). Note that it is possible to choose 𝜇 > 0 satisfying (4.30)
because 1∕(1 − 𝑞∕𝓁⋆) = 𝓁⋆∕(𝓁⋆ − 𝑞), 𝑞 < (𝓁⋆∕𝑚⋆)𝓁, and

0 <
1

1 −
𝑞

𝓁⋆

<
𝛽

𝛽 − 1
,

for all 𝛽 ∈
{
𝓁⋆∕𝓁,𝑚⋆∕𝓁, 𝓁⋆∕𝑚,𝑚⋆∕𝑚

}
.

We claim that ∫
Ω
1 𝑑𝜈 <

(
𝓁

𝑚⋆𝜇

)𝛽∕(𝛽−1)
𝑆
−𝛼∕(𝛽−1)
𝑁 for all 0 < 𝜇 < 𝜇.

If ∫
Ω
1 𝑑𝜈 ≤ 1, then

∫
Ω

1 𝑑𝜈 ≤ 1 ≤
(

𝓁

𝑚⋆𝜇

)𝛽∕(𝛽−1)

𝑆
−𝛼∕(𝛽−1)
𝑁 ≤

(
𝓁

𝑚⋆𝜇

)𝛽∕(𝛽−1)

𝑆
−𝛼∕(𝛽−1)
𝑁 ,

for all 𝜇 ∈ (0, 𝜇).
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If ∫
Ω
1 𝑑𝜈 > 1, then it follows from (4.12) that

𝜇𝐶36∫
Ω

1 𝑑𝜈 ≤ 𝑀 + 𝐶𝑀 + 𝐶37 + 𝐶38

(
∫
Ω

1 𝑑𝜈

)𝑞∕𝓁⋆

+ 𝐶39𝜇

≤ (𝑀 + 𝐶𝑀 + 𝐶37 + 𝐶38 + 𝐶39𝜇)

(
∫
Ω

1 𝑑𝜈

)𝑞∕𝓁⋆

,

which implies that

∫
Ω

1 𝑑𝜈 ≤
[
𝑀 + 𝐶𝑀 + 𝐶37 + 𝐶38 + 𝐶39𝜇

𝜇𝐶36

]1∕(1−𝑞∕𝓁⋆)
.

For 𝜇 ∈ (0, 𝜇), from (4.30) we have

𝜇𝛽∕(𝛽−1)−1∕(1−𝑞∕𝓁
⋆) < 𝜇

𝛽∕(𝛽−1)−1∕(1−𝑞∕𝓁⋆)
<

(
𝓁

𝑚⋆

)𝛽∕(𝛽−1)

𝑆
−𝛼∕(𝛽−1)
𝑁

[𝐶36(𝑀 + 𝐶𝑀 + 𝐶37 + 𝐶38 + 𝐶39𝜇)]
1∕(1−𝑞∕𝓁⋆)

.

Therefore,

𝜈𝑗 ≤ ∫
Ω

1 𝑑𝜈 <

(
𝓁

𝑚⋆𝜇

)𝛽∕(𝛽−1)

𝑆
−𝛼∕(𝛽−1)
𝑁 ,

for all 𝑗 ∈  and 𝜇 ∈ (0, 𝜇). Thus, by using Lemma 4.4, we obtain 𝜈𝑗 = 0, for all 𝑗 ∈  , which leads to

∫
Ω

Φ⋆(𝑢𝑛) → ∫
Ω

Φ⋆(𝑢). (4.31)

Combining (4.31) with the Brézis–Lieb lemma [9], we obtain

∫
Ω

Φ⋆(𝑢𝑛 − 𝑢) → 0.

Therefore, 𝑢𝑛 → 𝑢 in 𝐿Φ⋆(Ω). Since 𝐿′(𝑢𝑛)𝑢𝑛 = 𝑜𝑛(1), we have

∫
Ω

𝜙(|∇𝑢𝑛|)|∇𝑢𝑛|2 = 𝑜𝑛(1) + 𝜇 ∫
Ω

(
𝜙⋆(𝑢𝑛)𝑢

2
𝑛 + 𝜆𝑓(𝑥, 𝑢𝑛)𝑢𝑛

)
.

Define

𝑃𝑛(𝑥) = ⟨𝜙(|∇𝑢𝑛(𝑥)|)∇𝑢𝑛(𝑥) − 𝜙(|∇𝑢(𝑥)|)∇𝑢(𝑥), ∇𝑢𝑛(𝑥) − ∇𝑢(𝑥)⟩.
Since 𝑢𝑛 ⇀ 𝑢 in𝑊1,Φ

0 (Ω), we have

∫
Ω

𝜙(|∇𝑢|)∇𝑢∇(𝑢𝑛 − 𝑢) → 0,

which leads to

∫
Ω

𝑃𝑛 = 𝑜𝑛(1) + ∫
Ω

𝜙(|∇𝑢𝑛|)|∇𝑢𝑛|2 − ∫
Ω

𝜙(|∇𝑢𝑛|)∇𝑢𝑛∇𝑢. (4.32)

Combining (4.32) with the fact that 𝑜𝑛(1) = 𝐿′(𝑢𝑛)𝑢𝑛 − 𝐿′(𝑢𝑛)𝑢, we obtain

𝑜𝑛(1) = ∫
Ω

𝑃𝑛 + 𝜇 ∫
Ω

𝜙⋆(𝑢𝑛)(𝑢 − 𝑢𝑛) + 𝜆 ∫
Ω

𝑓(𝑥, 𝑢𝑛)(𝑢 − 𝑢𝑛).
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From Lemma 2.2 and the boundness of (𝑢𝑛) in 𝐿Φ⋆(Ω), we have that the sequence 𝜙⋆(𝑢𝑛)𝑢𝑛 is bounded in 𝐿Φ̃⋆(Ω). By
using the Hölder inequality (2.1), we have|||||∫Ω 𝜙⋆(𝑢𝑛)(𝑢 − 𝑢𝑛)

||||| ≤ 2‖𝜙⋆(𝑢𝑛)𝑢𝑛‖𝐿Φ̃⋆‖𝑢 − 𝑢𝑛‖𝐿Φ⋆ → 0.

From Lebesgue’s Dominated Convergence Theorem, we obtain

∫
Ω

𝑓(𝑥, 𝑢𝑛)(𝑢 − 𝑢𝑛) → 0.

Therefore, ∫
Ω
𝑃𝑛 → 0. Then, it follows from [2, Lemma 2.2] that 𝑢𝑛 → 𝑢 in𝑊1,Φ

0 (Ω). □

Proof of Theorem 1.2 (second part). Consider the notations of the proof of the first part of Theorem 1.2. Let 𝛾0 be the line
segment joining 0 and 𝑡𝜑 and let 𝐿0 be the functional obtained by setting 𝜇 = 0 in 𝐿. Since 𝜇 > 0 and 𝐺(𝑥, 𝑡) ≥ 0 for 𝑡 ≥ 0,
we have

𝑐 ≤ max
𝑢∈𝛾0([0,1])

𝐿(𝑢) ≤ max
𝑢∈𝛾0([0,1])

𝐿0(𝑢) ∶= 𝑐0.

By Lemma 4.5, the functional 𝐿 satisfies the Palais–Smale condition at all levels ≤ 𝑐0 for 𝜇 > 0 small enough, so the
conclusion follows as in the proof of the first part of the result. □
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