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1. Introduction

Bifurcation phenomena arise in many parts of mathematical physics and an
understanding of their nature is of practical as well as theoretical importance.
Bifurcation theory aims to explain a diversity of natural phenomena that have
been observed and characterized over the years. For instance, the buckling of
the Euler rod, the appearance of Taylor vortices, and the emergence of per-
turbations in an electric circuit, all have the same cause: a physical parameter
crosses a threshold, pressuring the system to assemble itself into a new state
that differs significantly from the previous state. Here we refer to the pioneer-
ing global bifurcation results established by Crandall and Rabinowitz [4] and
Rabinowitz [18]. We also refer to the seminal papers by Brezis et al. [2], Brezis
and Vázquez [3], and Garcia Azorero et al. [6] in the framework of bifurcation
problems with Dirichlet boundary condition.

Brezis et al. [2] established the existence of an “extreme value” λ∗ of
the bifurcation parameter λ such that a large class of problems with convex
and increasing nonlinearity has a smooth positive solution for all 0 < λ < λ∗,
but no solution exists if λ > λ∗. On the other hand, Garcia Azorero et al. [6]
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proved that for all λ < λ∗ there are at least two solutions. The analysis carried
out in [6] is developed in the case of competition phenomena of convex and
concave nonlinearities.

The analysis developed in this paper corresponds to a logistic equation
with reaction of super-diffusive type. Indeed, if f(z, x) = f(x) = (x+)τ−1 −
(x+)r−1 with p < τ < r, which is the prototype super-diffusive reaction, then
this f(·) function satisfies our hypotheses H1 (see Sect. 2). Logistic equations
are important in models of mathematical biology and describe the steady state
of a biological population in the presence of constant rates of reproduction
and mortality (see Gurtin and MacCamy [9]). Such equations were studied by
Afrouzi and Brown [1] (semilinear equidiffusive problems) and Takeuchi [19]
(nonlinear problems). The wotk of Takeuchi [19] revealed that super-diffusive
equations exhibit bifurcation phenomena for large values of the parameter λ.
This is in contrast with the situation described above for equations with the
competing effects of concave and convex nonlinearities.

Motivated by the above mentioned pioneering contributions, we develop
in this paper an exhaustive bifurcation analysis in the framework of a general
Robin boundary condition. To the best of our knowledge, this is the first analy-
sis carried out for logistic equations with super-diffusive reaction and nonlinear
Robin boundary condition.

1.1. Statement of the Problem

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper, we

study the following nonlinear parametric Robin problem (eigenvalue problem)
⎧
⎨

⎩

−Δpu(z) + ξ(z)u(z)p−1 = λf(z, u(z)) in Ω,
∂u

∂np
+ β(z)up−1 = 0 on ∂Ω, u � 0, λ > 0.

(Pλ)

In this problem, Δp (1 < p < ∞) denotes the p-Laplace differential operator
defined by

Δpu = div(|Du|p−2Du) for all u ∈ W 1,p(Ω).
Also, λ > 0 is a parameter and f(z, x) is a Carathéodory function (that is,
for all x ∈ R, the function z �→ f(z, x) is measurable and for a.a. z ∈ Ω, the
mapping x �→ f(z, x) is continuous) which exhibits (p − 1)-sublinear growth
as x → +∞. Our conditions are general and incorporate as a special case, the
so-called superdiffusive reaction of the p-logistic equation.

Our aim is to prove an existence and multiplicity result for the positive
solutions of (Pλ), which is global in the parameter λ > 0 (a “bifurcation-type”
result). In this way we can have a precise picture of the set of positive solutions
of (Pλ) as the parameter λ moves in the open half-axis R̊+ = (0,+∞). Our
work here complements the recent one by Gasiński-Papageorgiou [7] where a
related problem was studied when f(z, ·) is (p−1)-superlinear. We will see that
the situation is different. Our main result here will show that the “bifurcation”
occurs at large values of the parameter, while in Gasiński-Papageorgiou [7] with
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the superlinear reaction, the “bifurcation” occurs at small values of λ > 0.
We should also mention the work of Papageorgiou-Qin-Rădulescu [13], where
the authors examine an analogous eigenvalue problem for nonlinear Robin
equations driven by the (p, q)-Laplacian. The emphasis there is on the existence
of nodal (sign-changing) solutions and consequently the tools and methods
used are different. Finally, we also refer to the recent works of [21–23] for the
qualitative and asymptotic analysis of solutions to double phase problems.

We mention that in the boundary condition,
∂u

∂np
denotes the conormal

derivative of u ∈ W 1,p(Ω) corresponding to the p-Laplacian. This is interpreted
using the nonlinear Green’s identity (see Papageorgiou-Rădulescu-Repovš [16,
p.35]). So, according to this identity, if u ∈ C1(Ω̄), then exists a unique element

∂u

∂np
∈ W−1/p′,p′

(∂Ω)
(

1
p

+
1
p′ = 1

)

,

which by extension we denote by

∂u

∂np
= |Du|p−2(Du, n)RN = |Du|p−2 ∂u

∂n
,

with n(·) being the outward unit normal on ∂Ω.
Our goal is to study the existence, nonexistence and multiplicity of pos-

itive solutions as the parameter λ > 0 varies. More precisely, we prove a
bifurcation-type result for large values of the parameter λ > 0 (bifurcation
near +∞). So, we establish the existence of a critical parameter value λ∗ > 0
such that for every λ > λ∗ problem (Pλ) admits at least two positive solutions,
when for λ = λ∗ problem (Pλ) has at least one positive solution and finally
for all λ ∈ (0, λ∗) problem (Pλ) has no positive solutions.

An important role in our analysis is played by the regularity theory of
Lieberman [10], who established regularity up to the boundary (global regu-
larity) for solutions of equations driven by a broad class of nonhomogeneous
differential operators, which includes as a special case the p-Laplacian. The re-
sults of Lieberman [10] extend local regularity results of DiBenedetto [5] and
Tolksdorf [20].

2. Mathematical Background and Hypotheses

The main spaces used in the analysis of problem (Pλ) are the Sobolev space
W 1,p(Ω), the Banach space C1(Ω̄) and the boundary Lebesgue spaces Lτ (∂Ω),
1 � τ � ∞.

With ‖ · ‖ we denote the norm of the Sobolev space W 1,p(Ω) given by

‖u‖ =
[‖u‖p

p + ‖Du‖p
p

]1/p for all u ∈ W 1,p(Ω).
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The Banach space C1(Ω̄) is an ordered Banach space with positive (order)
cone

C+ = {u ∈ C1(Ω̄) : u(z) � 0 for all z ∈ Ω̄}.

This cone has a nonempty interior given by

int C+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ Ω̄

}
.

On ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·).
Then using σ(·) we can define in the usual way the “boundary” Lebesgue
spaces Lτ (∂Ω), 1 � τ � ∞. Recall that there exists a unique continuous linear
map γ0 : W 1,p(Ω) → Lp(∂Ω), known as the “trace map”, such that

γ0(u) = u|∂Ω for all u ∈ W 1,p(Ω) ∩ C(Ω̄).

The trace map extends the notion of boundary values to all Sobolev functions.
The trace map is compact into Lτ (∂Ω) for all τ ∈ [1, (N−1)p

N−p ) if p < N and into
Lτ (∂Ω) for all τ ∈ [1,∞) if N � p. In the sequel, for the sake of simplicity, we
drop the use of γ0(·). All restrictions of Sobolev functions on ∂Ω are understood
in the sense of traces.

We will also use another open cone in C1(Ω̄), namely

D+ =
{

u ∈ C+ : u(z) > 0 for all z ∈ Ω,
∂u

∂n
|∂Ω∩u−1(0) < 0

}

.

Consider the operator A : W 1,p(Ω) → W 1,p(Ω)∗ defined by

〈A(u), h〉 =
∫

Ω

|Du|p−2(Du,Dh)RN dz for all u, h ∈ W 1,p(Ω).

This operator has the following properties (see, Gasiński-Papageorgiou [8,
p.279]).

Proposition 1. The operator A(·) is bounded (that is, maps bounded sets to
bounded sets), continuous, monotone (hence maximal monotone too) and of
type (S)+, that is,

“un
w−→ u inW 1,p(Ω) and lim sup

n→∞
〈A(un), un − u〉 � 0 ⇒ un → u inW 1,p(Ω)′′.

If u : Ω → R is a measurable function, then u±(z) = max{±u(z), 0}. If
u ∈ W 1,p(Ω), then u± ∈ W 1,p(Ω). Also, we have

u = u+ − u− and |u| = u+ + u−.

If X is a Banach space and ϕ ∈ C1(X), then we say that ϕ(·) satisfies the
“C-condition”, if it has the following property:

“Every sequence {un}n∈N ⊆ X such that

{ϕ(un)}n∈N ⊆ R is bounded and (1 + ‖un‖X)ϕ′(un) → 0 in X∗,

admits a strongly convergent subsequence.′′
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By Kϕ we denote the critical set of ϕ, that is,

Kϕ = {u ∈ X : ϕ′(u) = 0}.

Also, p∗ denotes the Sobolev critical exponent corresponding to p. So, we have

p∗ =
{ Np

N−p , if p < N,

+∞, if N � p.

Now we introduce our hypotheses on the potential function ξ(·) and on
the boundary coefficient β(·).

H0 : ξ ∈ L∞(Ω), β ∈ C0,τ (∂Ω) with 0 < τ < 1, ξ � 0, β � 0 and ξ �≡ 0
or β �≡ 0.

Remark 1. These hypotheses incorporate in our framework the Neumann prob-
lem (case β ≡ 0).

Let γ : W 1,p(Ω) → R be the C1-functional defined by

γ(u) = ‖Du‖p
p +

∫

Ω

ξ(z)|u|pdz +
∫

∂Ω

β(z)|u|pdσ

for all u ∈ W 1,p(Ω).
Using Mugnai-Papageorgiou [11, Lemma 4.11] (case β ≡ 0) and Gasiński-

Papageorgiou [7, Lemma2.4] (case ξ ≡ 0), we have

γ(u) � c0‖u‖p for some c0 > 0, all u ∈ W 1,p(Ω). (1)

We consider the following nonlinear eigenvalue problem
⎧
⎨

⎩

−Δpu + ξ(z)|u|p−2u = λ̂|u|p−2u in Ω,
∂u

∂np
+ β(z)|u|p−2u = 0 on ∂Ω.

This problem has a smallest eigenvalue λ̂1 > 0 which is isolated, simple and

λ̂1 = inf
{

γ(u)
‖u‖p

p
: u ∈ W 1,p(Ω), u �= 0

}

. (2)

The infimum in (2) is realized on the corresponding one-dimensional
eigenspace. For details, see Papageorgiou-Rădulescu [14].

Finally, we mention that by | · |N we denote the Lebesgue measure on
R

N .
Our conditions on the reaction function f(z, x) are the following:
H1 : f : Ω×R → R is a Carathéodory function, f(z, 0) = 0 for a.a. z ∈ Ω
and

(i) |f(z, x)| � a(z)(1+xr−1) for a.a. z ∈ Ω, all x � 0, with a ∈ L∞(Ω),
p � r < p∗;

(ii) lim supx→+∞
f(z,x)
xp−1 � 0 uniformly for a.a. z ∈ Ω;

(iii) limx→0+
f(z,x)
xp−1 = 0 uniformly for a.a. z ∈ Ω;
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(iv) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ Ω,

x �→ f(z, x) + ξ̂ρ|x|p−1

is nondecreasing on [0, ρ] and there exists τ > p such that

y − x � s > 0 ⇒ f(z, x)
xτ−1

− f(z, y)
yτ−1

� η̃s > 0 for a.a. z ∈ Ω;

(v) there exists ũ ∈ Lr(Ω) such that
∫

Ω
F (z, ũ)dz > 0 with F (z, x) =

∫ x

0
f(z, s)ds.

Remark 2. Since we look for positive solutions and all the above hypotheses
concern the positive semiaxis R+ = [0,+∞), without any loss of generality
we may assume that f(z, x) = 0 for a.a. z ∈ Ω, all x � 0. Evidently these
conditions incorporate the case of a (p − 1)-sublinear reaction which is sign-
changing.

Example 1. The following function satisfies hypotheses H1. For the sake of
simplicity, we drop the z-dependence

f(x) =
{

(x+)r−1, if x � 1
xs−1 ln x + xτ−1, if 1 < x

with 1 < s � p < τ < r.

The main result of this work is the following global bifurcation-type the-
orem for problem (Pλ).

Theorem 1. If hypotheses H0 and H1 hold, then there exists λ∗ > 0 such that
(a) for all λ > λ∗, problem (Pλ) has at least two positive solutions u0, û ∈

intC+, u0 �= û;
(b) for λ = λ∗, problem (Pλ) has at least one positive solution u∗ ∈ intC+;
(c) for all λ ∈ (0, λ∗), problem (Pλ) has no positive solutions.

3. Positive Solutions

We introduce the following two sets:

L = {λ > 0 : problem (Pλ) has a positive solution} ,

and let Sλ be the set of positive solutions of (Pλ).
Also, let ϕλ : W 1,p(Ω) → R be the energy functional for problem (Pλ)

defined by

ϕλ(u) =
1
p
γ(u) −

∫

Ω

λF (z, u+)dz for all u ∈ W 1,p(Ω).

Evidently, ϕλ ∈ C1(W 1,p(Ω)).

Proposition 2. If hypotheses H0 and H1 hold, then L �= ∅ and for every λ > 0
in L , Sλ ⊆ intC+.
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Proof. On account of hypothesis H1-(iii), given ε > 0, we can find δ = δ(ε) > 0
such that

F (z, x) � ε

p
xp for a.a. z ∈ Ω, all 0 � x � δ. (3)

Let u ∈ C1(Ω̄) with ‖u‖C1(Ω̄) � δ. Then

ϕλ(u) =
1
p
γ(u) −

∫

Ω

λF (z, u+)dz

� 1
p
γ(u) − λε

p
‖u+‖p

p (see(3))

� 1
p

[

c0 − λε

λ̂1

]

‖u‖p, (see(1), (2)).

If ε ∈ (0, λ̂1c0
λ ), then we have

ϕλ(u) > 0 for all u ∈ C1(Ω̄), 0 < ‖u‖C1(Ω̄) � δ,

⇒ u = 0 is a local C1(Ω̄)-minimizer of ϕλ(·),
⇒ u = 0 is a local W 1,p(Ω)-minimizer of ϕλ(·),

(see Papageorgiou-Rădulescu [15, Proposition 2.12]).
We may assume that Kϕλ

is finite or otherwise we already have an infinity
of positive solutions of (Pλ) and so we are done. Then using [16, Theorem 5.7.6,
p.449], we can find ρ ∈ (0, 1) small such that

ϕλ(0) = 0 < inf
{

ϕλ(u) : ‖u‖ = ρ

}

= mλ. (4)

Hypothesis H1-(i) implies that the integral functional

u �→
∫

Ω

F (z, u)dz

is continuous on Lr(Ω). From hypothesis H1-(v), we have
∫

Ω

F (z, ũ)dz > 0.

Then the continuity of the integral functional and the density of W 1,p(Ω) in
Lr(Ω) imply that we can find ū ∈ W 1,p(Ω), ū � 0 (recall f(z, x) = 0 for a.a.
z ∈ Ω, all x � 0) such that

∫

Ω

F (z, ū)dz > 0.

So, choosing λ > 0 big, we have

ϕλ(ū) < 0. (5)

Hypotheses H1-(i) and H1-(ii) imply that given ε > 0, we can find cε > 0 such
that

F (z, x) � ε

p
xp + cε for a.a. z ∈ Ω, all x � 0. (6)
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Then for u ∈ W 1,p(Ω), we have

ϕλ(u) � 1
p

[

c0 − λε

λ̂1

]

‖u‖p − cε|Ω|N (see(1), (2), (6)).

Choosing ε ∈ (0, λ̂1c0
λ ), we see that ϕλ(·) is coercive. Hence by [16, Propo-

sition 5.1.15, p.369], we have that

ϕλ(·) satisfies the C-condition. (7)

We can always take ρ < ‖ū‖. Then from (4), (5), (7) and recalling that
ρ < ‖ū‖, we can apply the mountain pass theorem and find uλ ∈ W 1,p(Ω)
such that

uλ ∈ Kϕλ
and mλ � ϕλ(uλ) (see(4)). (8)

From (4) and (8), we see that uλ �= 0 and we have

〈A(uλ), h〉 +
∫

Ω

ξ(z)|uλ|p−2uλhdz +
∫

∂Ω

β(z)|uλ|p−2uλdσ =
∫

Ω

λf(z, u+
λ )hdz.

(9)
for all h ∈ W 1,p(Ω).

In (9), we use the test function h = −u−
λ ∈ W 1,p(Ω). Then

γ(u−
λ ) = 0,

⇒ c0‖u−
λ ‖ � 0 (see(1))

⇒ uλ � 0, uλ �= 0 (recall that λ > 0 is big)

⇒ L �= ∅.

From Proposition 2.10 of Papageorgiou-Rădulescu [15], we have that uλ ∈
L∞(Ω). Then Theorem 2 of Lieberman [10] implies that uλ ∈ C+\{0}. Let
ρ = ‖uλ‖∞ and let ξ̂ρ > 0 be as postulated by hypothesis H1-(iv). We have

− Δpuλ +
[
ξ(z) + ξ̂ρ

]
up−1

λ � 0 in Ω,

⇒ uλ ∈ int C+ (by the maximum principle, see [8, p.841]).

Therefore, we conclude that for all λ > 0, Sλ ⊆ int C+. �

Next, we establish a structural property for the set L . We show that L
is an upper half line.

Proposition 3. If hypotheses H0 and H1 hold, λ ∈ L and θ > λ, then θ ∈ L .

Proof. Since λ ∈ L , we can find uλ ∈ Sλ ⊆ int C+ (see Proposition 2). Let
t ∈ (0, 1) be such that tτ−pθ = λ (recall that by hypothesis H1-(iv), τ > p).
We have

− Δpuλ + ξ(z)up−1
λ = λf(z, uλ) = tτ−pθf(z, uλ),

⇒ tp−1

[

− Δpuλ + ξ(z)up−1
λ

]

= tτ−1θf(z, uλ).
(10)
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We set uλ = tuλ ∈ int C+. On account of hypothesis H1-(iv), we have

− Δpuλ + ξ(z)up−1
λ � θf(z, uλ),

∂uλ

∂np
+ β(z)up−1

λ = 0. (11)

We introduce the Carathéodory function g(z, x) defined by

g(z, x) =
{

f(z, uλ(z)), if x � uλ(z),
f(z, x), if uλ(z) < x.

(12)

Let G(z, x) =
∫ x

0
g(z, s)ds and consider the C1-functional ψθ : W 1,p(Ω) →

R defined by

ψθ(u) =
1
p
γ(u) −

∫

Ω

θG(z, u)dz for all u ∈ W 1,p(Ω).

As we did for ϕλ(·) in the proof of Proposition 2, using hypotheses H1-
(i), H1-(ii) and (12), we show that ψθ(·) is coercive. Also, by the Sobolev
embedding theorem and the compactness of the trace map, we see that ψθ(·)
is sequentially weakly lower semicontinuous. Hence by the Weierstrass-Tonelli
theorem, we can find uθ ∈ W 1,p(Ω) such that

ψθ(uθ) = inf
{

ψθ(u) : u ∈ W 1,p(Ω)
}

,

⇒ ψ′
θ(uθ) = 0,

⇒ 〈A(uθ), h〉 +
∫

Ω

ξ(z)|uθ|p−2uθhdz +
∫

∂Ω

β(z)|uθ|p−2uθhdσ,

=
∫

Ω

θg(z, uθ)hdz for all h ∈ W 1,p(Ω). (13)

In (13), we choose h = (uλ − uθ)+ ∈ W 1,p(Ω). Then

〈A(uθ), (uλ − uθ)+〉 +
∫

Ω

ξ(z)|uθ|p−2uθ(uλ − uθ)+dz

+
∫

∂Ω

β(z)|uθ|p−2uθ(uλ − uθ)+dσ

=
∫

Ω

θf(z, uλ)(uλ − uθ)+dz (see(12))

� 〈A(uλ), (uλ − uθ)+〉 +
∫

Ω

ξ(z)up−1
λ (uλ − uθ)+dz

+
∫

∂Ω

β(z)up−1
λ (uλ − uθ)+dσ(see(11))

⇒ uλ � uθ (see Proposition (1) and recall that ξ � 0, β � 0),

⇒ uθ ∈ Sθ ⊆ int C+(see(12), (13)).

So, θ ∈ L . �

We set λ∗ = inf L .
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Proposition 4. If hypotheses H0 and H1 hold, then λ∗ > 0.

Proof. Arguing by contradiction, suppose that λ∗ = 0. Consider {λn}n∈N ⊆ L
such that λn ↓ 0 and let un = uλn

∈ Sλn
⊆ int C+, n ∈ N. We have

〈A(un), h〉 +
∫

Ω

ξ(z)up−1
n hdz +

∫

∂Ω

β(z)up−1
n hdσ = λn

∫

Ω

f(z, un)hdz,

(14)

for all h ∈ W 1,p(Ω), all n ∈ N. Hypotheses H1-(i) and H1-(ii) imply that given
ε > 0, we can find cε > 0 such that

f(z, x) � εxp−1 + cε for a.a. z ∈ Ω, all x � 0. (15)

In (14), we choose the test function h = un ∈ W 1,p(Ω) and then use (15),
we obtain

γ(un) � λn

[

ε‖un‖p + cε|Ω|N
]

for all n ∈ N,

⇒
[

c0 − λ1ε

]

‖un‖p � cε|Ω|N (since λn � λ1 for all n ∈ N).

Choosing ε ∈ (0, c0
λ1

), we infer that

{un}n∈N ⊆ W 1,p(Ω) is bounded.

Proposition 2.10 of Papageorgiou-Rădulescu [15] implies that

un ∈ L∞(Ω) and ‖un‖∞ � c1 for some c1 > 0, all n ∈ N.

Then Theorem 2 of Lieberman [10] says that there exist α ∈ (0, 1) and c2 > 0
such that

un ∈ C1,α(Ω̄), ‖un‖C1,α(Ω̄) � c2 for all n ∈ N.

We know that C1,α(Ω̄) ↪→ C1(Ω̄) compactly. So by passing to a subse-
quence if necessary, we can say that

un → u∗ in C1(Ω̄). (16)

If in (14) we pass to the limit as n → ∞ and use (16), then

〈A(u∗), h〉 +
∫

Ω

ξ(z)up−1
∗ hdz +

∫

∂Ω

β(z)up−1
∗ hdσ = 0,

for all h ∈ W 1,p(Ω) (recall that λn ↓ 0).
Choosing h = u∗ ∈ W 1,p(Ω), we have

γ(u∗) = 0,

⇒ c0‖u∗‖p � 0 (see(1)) and so u∗ = 0.

Therefore, we have

un → 0 in C1(Ω̄) as n → ∞ (see (16). (17)
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According to hypothesis H1-(iii), given ε > 0, we can find δ = δε > 0
such that

f(z, x) � εxp−1 for a.a. z ∈ Ω, all 0 � x � δ. (18)

Then (17) and (18) imply that we can find n0 ∈ N such that

0 < λn � 1 and f(z, un(z))un(z) � εun(z)p for a.a. z ∈ Ω, all n � n0. (19)

In (14) we use the test function h = un ∈ W 1,p(Ω), we have

γ(un) � λn

∫

Ω

f(z, un)undz � ε‖un‖p for all n � n0, (see(19)),

⇒ [c0 − ε]‖un‖p � 0 for all n � n0.

Choosing ε ∈ (0, c0), we see that un = 0 for all n � n0, a contradiction.
Therefore, λ∗ > 0. �

So far, we have

(λ∗,∞) ⊆ L ⊆ [λ∗,∞). (20)

Now we show that for λ > λ∗, we have multiplicity of positive solutions.

Proposition 5. If hypotheses H0 and H1 hold, and λ > λ∗, then problem (Pλ)
has at least two positive solutions u0, û ∈ intC+, u0 �= û.

Proof. Let η ∈ (λ∗, λ), then η ∈ L (see (20)) and so we can find uη ∈ Sη ⊆
int C+. Reasoning as in the proof of Proposition 3, let t ∈ (0, 1) be such that
tτ−pλ = η. We set uη = tuη ∈ intC+, we have

− Δpuη + ξ(z)up−1
η

= tp−1
[−Δpuη + ξ(z)up−1

η

]

= tp−1ηf(z, uη) (recall that uη ∈ Sη)

= tp−1tτ−pλf(z, uη) (recall that η = tτ−pλ)

� λf(z, uη) (see hypothesis H1-(iv) and recall t ∈ (0, 1)). (21)

We introduce the Carathéodory functions k(z, x) defined by defined by

k(z, x) =
{

f(z, uη(z)), if x � uη(z),
f(z, x), if uη(z) < x.

(22)

We set K(z, x) =
∫ x

0
k(z, s)ds and consider the C1-functional ϕ̂λ : W 1,p

(Ω) → R defined by

ϕ̂λ(u) =
1
p
γ(u) −

∫

Ω

λK(z, u)dz for all u ∈ W 1,p(Ω).
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As before, using (1), (22) and hypothesis H1-(ii), we infer that ϕ̂λ(·) is
coercive. Also, it is sequentially weakly lower semicontinuous. So, we can find
u0 ∈ W 1,p(Ω) such that

ϕ̂λ(u0) = inf
[
ϕ̂λ(u) : u ∈ W 1,p(Ω)

]
,

⇒ 〈ϕ̂′
λ(u0), h〉 = 0 for all h ∈ W 1,p(Ω). (23)

Choosing h = (uη − u0)+ ∈ W 1,p(Ω) in (23) and arguing as in the proof
of Proposition 3, using (22) and (21), we obtain

uη � u0,

⇒ u0 ∈ Sλ ⊆ int C+ (see(24), (22)and(23)). (24)

Let ρ = ‖u‖∞ and let ξ̂ρ > 0 be as postulated by hypothesis H1-(iv). We
have

− Δpuη + [ξ(z) + λξ̂ρ]up−1
η

� λf(z, uη) + λξ̂ρu
p−1
η (see(21))

� λf(z, u0) + λξ̂ρu
p−1
0 (see(24) and hypothesis H1-(iv))

= −Δpu0 + [ξ(z) + λξ̂ρ]u
p−1
0 (since u0 ∈ Sλ). (25)

Let s = minΩ̄(1 − t)uη > 0 (recall uη ∈ intC+). Since t ∈ (0, 1), by
hypothesis H1-(iv), we have

f(z, uη)
tτ−1

− f(z, uη) � η̂s > 0. (26)

From (25), (26) and Proposition A4 of Papageorgiou-Rădulescu-Zhang
[17], we infer that

u0 − uη ∈ D+. (27)

Let

[uη) =
{
u ∈ W 1,p(Ω) : uη(z) � u(z) for a.a. z ∈ Ω

}
.

From (22), we see that

ϕλ|[uη) = ϕ̂λ|[uη) + μ0 with μ0 ∈ R. (28)

From (28) and (27), we see that

u0 is a local C1(Ω̄)-minimizer of ϕλ,

⇒ u0 is a local W 1,p(Ω)-minimizer of ϕλ,

(29)

(see Papageorgiou-Rădulescu)[8, p.2.12].
Also, from the proof of Proposition 2, we know that

u = 0 is a local W 1,p(Ω)-minimizer of ϕλ. (30)



Vol. 78 (2023) Global Existence and Multiplicity Page 13 of 17 133

We may assume that

ϕλ(0) = 0 � ϕλ(u0). (31)

The analysis is similar if the opposite inequality holds using this time
(30) instead of (29).

The nonlinear regularity theory and the nonlinear maximum principle
imply that

Kϕλ
⊆ int C+ ∪ {0}.

So, we may assume that Kϕλ
is finite or otherwise we already have an infinity

of positive smooth solutions of (Pλ) and so we are done. Using the finiteness
of Kϕλ

, (29) and [16, Theorem 5.7.6, p.449], we see that we can find ρ ∈ (0, 1)
small such that

ϕλ(0) = 0 � ϕλ(u0) < inf
{

ϕλ(u) : ‖u − u0‖ = ρ

}

= mλ, ‖u0‖ > ρ. (32)

Recall that ϕλ is coercive (see the proof of Proposition 2). Hence by
Proposition 5.1.15 of [16, p.369], we have

ϕλ(·) satisfies the C-condition. (33)

Then (31), (32) and the mountain pass theorem imply that there exists
û ∈ W 1,p(Ω) such that

û ∈ Kϕλ
,mλ � ϕλ(û),

⇒ û ∈ Sλ ⊆ int C+, û �= u0 (see (32)).

The proof is now complete. �

It remains to check what can be said about the critical parameter value
λ∗ > 0.

Proposition 6. If hypotheses H0 and H1 hold, then λ∗ ∈ L .

Proof. Let {λn}n∈N ⊆ L such that λn ↓ λ∗. Let un ∈ Sλn
⊆ int C+, n ∈ N.

As in the proof Proposition 4, we show that

{un}n∈N ⊆ W 1,p(Ω) is bounded.

From this and the nonlinear regularity theory (see the proof of Proposi-
tion 4), imply that

{un}n∈N ⊆ C1(Ω̄) is relatively compact.

So, we may assume that

un → u∗ in C1(Ω̄) as n → ∞.
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If u∗ = 0, then following the argument in the proof of Proposition 4 and
using hypothesis H1-(iii) (see (18)), we reach a contradiction. Therefore u∗ �= 0
and

〈A(u∗), h〉 +
∫

Ω

ξ(z)up−1
∗ hdz +

∫

∂Ω

β(z)up−1
∗ hdσ = λ∗

∫

Ω

f(z, u∗)hdz

for all h ∈ W 1,p(Ω) (see Proposition (1)),
⇒ u∗ ∈ Sλ∗ ⊆ int C+ and λ∗ ∈ L .

This completes the proof. �

Finally, we can say that

L = [λ∗,+∞)

and we have completed the proof of the Theorem.

Remark 3. Reviewing the proofs of the propositions, we see that we have used
repeatedly the (p − 1)-homogeneity of the p-Laplacian. So, our approach here
cannot be used to problems driven by a nonhomogeneous differential operator.
So, it is an interesting open problem whether the global multiplicity result
of this paper can be extended to anisotropic equations or to double phase
equations (see [12]). Clearly, a different approach is needed.
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[15] Papageorgiou, N.S., Rădulescu, V.D.: Nonlinear nonhomogeneous Robin prob-
lems with superlinear reaction term. Adv. Nonlinear Stud. 16, 737–764 (2016)
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