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We give an existence result for a double eigenvalue problem in Hemivariational Inequalities whose energetic
functional is not locally Lipschitz. It is used a finite dimensional approach based on Kakutani’s fixed point
theorem.
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1. INTRODUCTION AND FORMULATION OF THE PROBLEM

The concept of hemivariational inequality has been introduced by Panagiotopoulos as a
natural extension of the variational inequalities to the case of nonconvex functionals.
This extension is strongly motivated by many problems arising in Mechanics,
Engineering or Economics. For a comprehensive overview on this subject we refer to
the monographs [9,10].

In this article we deal with a new type of hemivariational inequalities called
‘‘double eigenvalue problems’’ which has been introduced by Motreanu and
Panagiotopoulos in an article where there are considered three different approaches:
minimization, minimax methods and (sub)critical theory on the sphere (see [7]).
Other results on this type of hemivariational inequalities can be found in [1]
(multiplicity results) and [2] (a perturbation result).

Let V be a Hilbert space and let � � Rm be an open bounded subset of R
m,

m � 1, with @� sufficiently smooth. We shall suppose that V is compactly embedded
into Lpð�;RN

Þ, N � 1, for some p 2 ð1, þ1Þ: In particular, the continuity of
this embedding implies the existence of a constant Cpð�Þ > 0 such that
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kukLp 	 Cpð�Þ 
 kukV , for all u 2 V , ð�Þ

where by k 
 kLp and k 
 kV we have denoted the norms in Lpð�;RN
Þ and V respectively.

Throughout the article the symbols V�, 
, 
ð ÞV , and h
, 
i will denote the dual space
of V, the inner product on V and the duality pairing over V� � V , respectively. We
suppose that V \ L1ð�;RN

Þ is dense in V : Let a1, a2 : V � V ! R be two bilinear
and continuous forms on V which are coercive in the sense that there exist two
real valued functions c1, c2 : Rþ ! Rþ, with lim

r!1
ciðrÞ ¼ þ1, such that for all v 2 V

aiðv, vÞ � ciðkvkV Þ 
 kvkV , i ¼ 1, 2:

We denote by A1,A2 : V ! V the operators associated to the forms considered
above, defined by

hAiu, vi ¼ aiðu, vÞ, i ¼ 1, 2:

The operators A1 and A2 are linear, continuous and coercive in the sense that for each
i ¼ 1, 2 we have

Aiu, uð ÞV� ciðkukV Þ 
 kukV , for all u 2 V :

In addition we shall suppose that the operators A1 and A2 are weakly continuous, i.e., if
un * u, weakly in V then Aiun * Aiu, also weakly in V , for each i ¼ 1, 2: Let us
now consider two bounded selfadjoint linear and weakly continuous operators
B1,B2 : V ! V : Let j : �� RN ! R be a Carathéodory function which is locally
Lipschitz in the second variable for a.e. x 2 �: Thus, we can define the directional
derivative

j0ðx; �, �Þ ¼ lim sup
½h, ��!½0, 0þ�

jðx, � þ hþ ��Þ � jðx, � þ hÞ

�
, for �, � 2 R

N ,

and the generalized gradient of Clarke [5]

@jðx; �Þ ¼ f� 2 RN : � 
 � 	 j0ðx, �, �Þ , 8� 2 RNg ,

for a.e. x 2 � and for all � 2 R
N : Here, the symbol ‘‘ 
 ’’ means the inner product on RN :

In order to ensure the integrability of jð
, uð
ÞÞ and j0ð
; uð
Þ, vð
ÞÞ for any
u, v 2 V \ L1ð�;RN

Þ we admit the existence of a function 	 : �� Rþ ! R fulfilling
the conditions

ð	1Þ 	ð
, rÞ 2 L1ð�Þ, for each r � 0;
ð	2Þ if r1 	 r2 then 	ðx, r1Þ 	 	ðx, r2Þ, for almost all x 2 �, and such that

j jðx, �Þ � jðx, �Þj 	 	ðx, rÞ 
 j� � �j, 8 �, � 2 BðO, rÞ, r � 0, ð1Þ

where BðO, rÞ ¼ f� 2 R
N : j�j 	 rg , ‘‘j 
 j’’ denoting the norm in R

N :
Concerning the conditions above, it is important to point out that in the homo-

genous case (when j is not depending explicitely on x 2 �) they are negligible (see
also [9], p. 146).
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Let 1 	 s < p and let k : � ! Rþ and � : � ! Rþ be two functions satisfying the
assumptions:

kð
Þ 2 Lqð�Þ, where
1

p
þ

1

q
¼ 1, ð2Þ

�ð
, rÞ 2 Ltð�Þ, for each r > 0, where t ¼
p

p� s
ð3Þ

and

if 0 < r1 	 r2 then �ðx, r1Þ 	 �ðx, r2Þ, for almost all x 2 �: ð4Þ

We shall impose the following directional growth conditions:

j0ðx, �, � �Þ 	 kðxÞ 
 j�j, for all � 2 R
N and a:e: x 2 �; ð5Þ

j0ðx, �, �� �Þ 	 �ðx, rÞ 1 þ j�jsð Þ, for all �, � 2 R
N ,

with � 2 BðO, rÞ, r > 0, and a:e: x 2 �:
ð6Þ

Remarks
1. We must pay attention to the fact that the growth conditions (5) and (6) do not

ensure the finite integrability of jð
, u ð
ÞÞ and j0ð
; uð
Þ, vð
ÞÞ in � for any u, v 2 V :
We can remark, also, that they do not guarantee that the functional J : V ! R

given by

JðvÞ ¼

Z
�

jðx, vðxÞÞdx,

is locally Lipschitz on V : In fact, (5) and (6) do not allow us to conclude even that
the effective domain of J coincides with the whole space V :

2. Notice that we do not impose any coerciveness assumption on the operators Bi

(i ¼ 1, 2), as done in [7], Section 4, for the case of a double eigenvalue problem on
a sphere. We suppose however that these operators satisfy the additional hypothesis
of weak continuity.

Let us consider two nonlinear monotone and demicontinuous operators
C1,C2 : V ! V : We are ready to consider the following double eigenvalue problem:

(P) Find u1, u2 2 V and �1, �2 2 R such that

a1ðu1, v1Þ þ a2ðu2, v2Þ þ C1ðu1Þ, v1ð ÞVþ C2ðu2Þ, v2ð ÞV

þ

Z
�

j0ðx; ðu1 � u2ÞðxÞ, ðv1 � v2ÞðxÞÞdx � �1 B1u1, v1ð ÞVþ�2 B2u2, v2ð ÞV , 8v1, v2 2 V :

From Remark 1 we derive that in order to find a solution for the Problem (P) we
cannot follow the classical technique of Clarke [5] and for this reason, the Problem
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(P) is a nonstandard one. First of all we have to point out what we shall mean by
solution of the problem considered above.

Definition 1 We say that an element ðu1, u2, �1, �2Þ 2 V � V � R � R is a solution of
(P) if there exists � 2 L1ð�;RN

Þ \ V such that

a1ðu1, v1Þ þ a2ðu2, v2Þ þ C1ðu1Þ, v1ð ÞVþ C2ðu2Þ, v2ð ÞVþ

Z
�

�ðxÞ 
 ðv1 � v2ÞðxÞdx

¼ �1 B1u1, v1ð ÞVþ�2 B2u2, v2ð ÞV , 8v1, v2 2 V \ L1ð�;RN
Þ ð7Þ

and

�ðxÞ 2 @jðx; ðu1 � u2ðxÞÞ, for a:e: x 2 �: ð8Þ

The aim of this article is to prove the following existence result concerning the double
eigenvalue Problem (P).

THEOREM 1 We assume that the hypotheses considered in this section are fulfilled. Then
the double eigenvalue Problem (P) has at least one solution.

The difficulties mentioned in the Remark 1 will be surmounted by employing the
Galerkin approximation method combined with the finite intersection property. For
the treatment of finite dimensional problem we shall use Kakutani’s fixed point
theorem for multivalued mappings. This technique has been introduced by Naniewicz
and Panagiotopoulos (see [9]).

2. A FINITE DIMENSIONAL APPROACH

Let � be the family of all finite dimensional subspaces F of V \ L1ð�;RNÞ, ordered by
inclusion. For any F 2 � we formulate the following finite dimensional problem

ðPF Þ Find u1F , u2F 2 F , �1, �2 2 R and �F 2 L1ð�;RN
Þ such that

a1ðu1F , v1Þ þ a2ðu2F , v2Þ þ C1ðu1F Þ, v1ð ÞVþ C2ðu2F Þ, v2ð ÞV

þ

Z
�

�F ðxÞ 
 ðv1 � v2ÞðxÞdx ¼ �1 B1u1F , v1ð ÞVþ�2 B2u2F , v2ð ÞV , 8v1, v2 2 F ð9Þ

and

�F ðxÞ 2 @jðx; ðu1F � u2F ÞðxÞÞ, for a:e: x 2 �: ð10Þ

Let �F : F ! 2L
1ð�;RN Þ defined by

�F ðvF Þ ¼

�
� 2 L1ð�;RN

Þ:

Z
�

�wdx 	

Z
�

j0ðx; vF ðxÞ,wðxÞÞdx, 8w 2 L1ð�;RN
Þ

�
:

It is immediately that if � 2 �F ðvF Þ then we have �ðxÞ 2 @jðx; vF ðxÞÞ, for a.e. x 2 �: Let
vF 2 F for some F 2 �: It is proved in [8] (see Lemma 3.1) that �ðvF Þ is a nonempty
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convex and weakly compact subset of L1ð�;RN
Þ: For F 2 �, we shall denote by

iF : F ! V and by i�F : V� ! F� the inclusion and the dual projection mappings
respectively. Throughout, by h
, 
iF we mean the duality pairing over F� � F : Let us
define �F : L1ð�;RNÞ ! F�, by

h�F�, viF ¼

Z
� 
 vdx, 8v 2 F :

We consider the map TF : F ! 2F
�

given by

TF ðvF Þ ¼ �F�F ðvF Þ:

The main properties of TF are pointed out by the following result which has been
established in [8].

LEMMA 1 For each vF 2 F , TF ðvF Þ is a nonempty bounded closed convex subset of
F�: Moreover, TF is upper semicontinuous as a map from F into 2F

�

:

We are now prepared to formulate the existence result for the finite dimensional
Problem ðPF Þ:

THEOREM 2 Suppose that the hypotheses made in Section 1 are fulfilled. Then, for each
F 2 �, there exist u1F , u2F 2 F , �1, �2 2 R and �F 2 L1ð�;RN

Þ which solve the Problem
ðPF Þ: Moreover, there exists a positive constant M, independent by F such that

ku1FkV þ ku2FkV 	 M: ð11Þ

Proof In what follows we shall be able to find a solution of the Problem ðPF Þ by
restraining the searching area for �i, i 2 f1, 2g on the class of all those numbers
�1, �2 2 R which satisfy the relation


 :¼ inf
w1,w22V\L1ð�;RN Þ

P2
i¼1½ðCiðwiÞ,wiÞV � �ikBikkwik

2
V �

ku1k þ ku2k
> �1: ð12Þ

Define A1F ¼ i�FA1iF ,A2F ¼ i�FA2iF , and let G : V � V ! V be the map given by

Gðv1, v2Þ ¼ v1 � v2:

Fix F 2 �: We denote by G the map G restricted to F � F : Let us consider the multi-
valued mapping � : F � F ! 2F

��F�

, defined by

�ðu1, u2Þ ¼
�
A1Fu1 þ C1ðu1Þ, u1ð ÞV��1 B1u1, 
ð Þ,

A2Fu2 þ C2ðu2Þ, 
ð ÞV��2 B2u2, 
ð ÞV
�
þ G� � TF � Gð Þðu1, u2Þ,

where by G� � TF � Gð Þðu1, u2Þ we mean the set

fG�ð f Þ : f 2 TF ðu1 � u2Þg � F� � F�:

INEQUALITY PROBLEMS WITH NONLOCALLY LIPSCHITZ ENERGY FUNCTION 565



The first step is to prove the upper semicontinuity of G� � TF � G: For this aim,
let us consider u1

n ! u1, u2
n ! u2, strongly in F and �n 2 G�ðTF ðu

1
n � u2

nÞÞ converging
strongly to � 2 F� � F�: It must be proved that � 2 G�ðTF ðu

1 � u2ÞÞ: First we
observe that G fulfills the set of conditions which permits to apply the Theorem II. 19
from [3]. From there we draw the conclusion that <ðG�Þ ¼ fG�� : � 2 F�g is closed. This
implies that � 2 <ðG�Þ (we have used the fact that �n 2 <ðG�Þ, 8n � 1 and �n ! � in
F� � F�Þ: Thus we obtain the existence of a �� 2 F� such that �n ¼ G�ð�F�nÞ: We have

hG�ð�F�n, ðv,wÞiF�F ! h�, ðv,wÞiF�F , for all v,w 2 F ,

which implies that h�F�n, v� wiF tends to h��, v� wiF , 8v,w 2 F and thus, due to the
fact that dimF < þ1 we get the strong convergence of �F�n to �� in F�: Since TF is
upper semicontinuous (see Lemma 1), we obtain that there exists � 2 �F ðu1 � u2Þ

such that �� ¼ �F�: Thus, � ¼ G�ð�F�Þ, which means that � 2 G� � TFð Þðu1 � u2Þ:
This ends the proof of the upper semicontinuity of G� � TF � G:

On the other side, the weak continuity of A1 and A2 implies the continuity of A1F and
A2F from F into F�: The hypotheses on Bi and Ci ði ¼ 1, 2Þ and the above considera-
tions lead us to the upper semicontinuity of � from F � F to 2F

��F�

: By using again
Lemma 1 and the hypotheses made on Bi, Ci and Ai, we can simply derive that for
each ðu1, u2Þ 2 F � F , �ðu1, u2Þ is a nonempty, bounded, closed and convex subset of
F� � F�: Moreover, from the coercivity of a1 and a2 and from the definition of TF

we have

h�ðu1, u2Þ, ðu1, u2ÞiF�F � c1ðku1kV Þku1kV þ c2ðku2kV Þku2kV þ C1ðu1Þ, u1ð ÞV

þ C2ðu2Þ, u2ð ÞV��1kB1k 
 ku1k
2
V � �2kB2k 
 ku2k

2
V

þ

Z
�

�ðu1 � u2Þdx,

where � 2 �F ðu1 � u2Þ: By (�) and (5) we obtain

h�ðu1, u2Þ, ðu1, u2ÞiF�F � c1ðku1kV Þku1kV þ c2ðku2kV Þku2kV þ C1ðu1Þ, u1ð ÞV

þ C2ðu2Þ, u2ð ÞV��1kB1k 
 ku1k
2
V � �2kB2k 
 ku2k

2
V

�

Z
�

j0ðx; ðu1 � u2ÞðxÞ, � ðu1 � u2ÞðxÞÞdx

� c1ðku1kV Þku1kV þ c2ðku2kV Þku2kV þ C1ðu1Þ, u1ð ÞV

þ C2ðu2Þ, u2ð ÞV��1kB1k 
 ku1k
2
V � �2kB2k 
 ku2k

2
V

� Cpð�ÞkkkLq ku1kV þ ku2kVð Þ:

Taking into account the relation (12) we easily obtain the coercivity of �: Thus, �
fulfills the conditions which allow us to apply Kakutani’s fixed point theorem (see [4],
Proposition 10, p. 270). Thus <ð�Þ ¼ F� � F�, which implies the existence of
u1F , u2F 2 F such that 0 2 �ðu1F , u2F Þ: From the definition of � we have that there
exists �F 2 L1ð�;RN

Þ such that (9) and (10) hold. In order to prove the final part of

566 P.D. PANAGIOTOPOULOS et al.



Theorem 2 we use the estimates:

�1kB1kku1Fk
2
V þ �2kB2kku2Fk

2
V � �1 B1u1F , u1Fð ÞVþ�2 B2u2F , u2Fð ÞV

¼ a1ðu1F , u1F Þ þ a2ðu2F , u2F Þ þ C1ðu1F Þ, u1Fð ÞV

þ C2ðu2F Þ, u2Fð ÞV þ

Z
�

�F ðu1F � u2F Þdx

� c1ðku1FkV Þku1FkV þ c2ðku2FkV Þku2FkV

þ C1ðu1F Þ, u1Fð ÞV þ C2ðu2F Þ, u2Fð ÞV

�

Z
�

j0ðx; ðu1F � u2F ÞðxÞ, � ðu1F � u2F ÞðxÞÞdx:

Taking into account the relations (5) and (12) we get

c1ðku1FkV Þku1FkV þ c2ðku2FkV Þku2FkV

ku1FkV þ ku2FkV
	 Cpð�ÞkkkLq � 
,

which by the properties of c1 and c2 implies the existence of a positive constant M such
that (11) holds.

LEMMA 2 For every F 2 �, let u1F , u2F 2 F , �1, �2 2 R and �F 2 L1ð�;RN
Þ which

solve the Problem ðPF Þ: Then the set f�F : F 2 �g is weakly precompact in L1ð�;RN
Þ:

Proof The proof is based on the well-known Dunford–Petis theorem. We have to
prove that for each � > 0, a 
� > 0 may be determined such that, for any ! � � with
measð!Þ < 
�, Z

!

j�F jdx < �, F 2 �:

Fix r > 0 and let � 2 R
N be such that j�j 	 r. From �F 2 @jðx; ðu1F � u2F ÞðxÞÞ,

for a.e. x 2 � we derive that

�F 
 �� ðu1F � u2F ÞðxÞð Þ 	 j0ðx; ðu1F � u2F ÞðxÞ, �� ðu1F � u2F ÞðxÞÞ:

Taking into account the relation (6) it follows that

�F ðxÞ 
 � 	 �F ðxÞ 
 ðu1F � u2F ÞðxÞ þ �ðx, rÞ 1 þ ju1F ðxÞ � u2F ðxÞj
sð Þ, for a.e. x 2 �:

ð13Þ

Let us denote by �FiðxÞ, i ¼ 1, 2, . . . ,N, the components of �F ðxÞ and set

�ðxÞ ¼
rffiffiffiffi
N

p sgn�F1ðxÞ, . . . , sgn�FnðxÞ
� �

:

We can easily verify that j�ðxÞj 	 r a.e. x 2 � and that

�F ðxÞ 
 �ðxÞ �
rffiffiffiffi
N

p 
 j�F ðxÞj:
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From (13) we obtain

rffiffiffiffi
N

p 
 j�F ðxÞj 	 �F ðxÞ 
 ðu1F � u2F ÞðxÞ þ �ðx, rÞ 1 þ ju1F ðxÞ � u2F ðxÞj
sð Þ:

Integrating over ! � � the above inequality yields

Z
!

j�F ðxÞjdx 	

ffiffiffiffi
N

p

r

Z
!

�F ðxÞ 
 ðu1F � u2F ÞðxÞdxþ

ffiffiffiffi
N

p

r
k�ð
, rÞkLq0 ð!Þ 
measð!Þs=p

þ

ffiffiffiffi
N

p

r
k�ð
, rÞkLq0 ð!Þ 
 ku1F � u2Fk

S
Lpð!Þ:

Thus, from (�) and (11) we obtain

Z
!

j�F ðxÞjdx 	

ffiffiffiffi
N

p

r

Z
!

�F ðxÞ 
 ðu1F � u2F ÞðxÞdxþ

ffiffiffiffi
N

p

r
k�ð
, rÞkLq0 ð�Þ 
measð!Þs=p

þ

ffiffiffiffi
N

p

r
k�ð
, rÞkLq0 ð!Þ 
 ðCpð�ÞÞ

S

 ku1F � u2Fk

S
V

	

ffiffiffiffi
N

p

r

Z
!

�F ðxÞ 
 ðu1F � u2F ÞðxÞdxþ

ffiffiffiffi
N

p

r
k�ð
, rÞkLq0 ð�Þ 
measð!Þs=p

þ

ffiffiffiffi
N

p

r
k�ð
, rÞkLq0 ð!Þ 
 ðCpð�Þ

S

MS: ð14Þ

We shall continue by observing that (5) implies

�F ðxÞ 
 ðu1F ðxÞ � u2F ðxÞÞ þ kðxÞ 
 1 þ ju1F ðxÞ � u2F ðxÞjð Þ � 0, for a:e: x 2 �:

Thus we have

Z
!

�F ðxÞ 
 ðu1F � u2F ÞðxÞ þ kðxÞð1 þ ju1F ðxÞ � u2F ðxÞjÞð Þdx

	

Z
�

�F ðxÞ 
 ðu1F � u2F ÞðxÞ þ kðxÞð1 þ ju1F ðxÞ � u2F ðxÞjÞð Þdx

and we derive that

Z
!

�F ðxÞ 
 ðu1F � u2F ÞðxÞdx 	

Z
�

�F ðxÞ 
 ðu1F � u2F ÞðxÞdxþkkkLqð�Þ 
Cpð�Þ 
 ku1F � u2FkV

þkkkLqð�Þ 
measð�Þ
1=p

	

Z
�

�F ðxÞ 
 ðu1F � u2F ÞðxÞdxþkkkLqð�Þ 
measð�Þ
1=p

þkkkLqð�Þ 
Cpð�Þ 
M:
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We have

Z
�

�F ðu1F � u2F Þdx ¼ � A1u1F , u1Fð ÞV� A2u2F , u2Fð ÞV� C1ðu1F Þ, u1Fð ÞV

�ðC2ðu2F Þ, u2F ÞVþ�1 B1u1F , u1Fð ÞVþ�2 B2u2F , u2Fð ÞV :

Taking into account that Ci are monotone operators and that Ai, being weakly contin-
uous maps bounded sets into bounded sets, the relation

Z
�

�F ðu1F � u2F Þdx 	
X2

i¼1

�
kAikkuiFk

2
V þ �ikBikkuiFk

2
V � CiðuiF Þ, uiFð ÞV

�
,

imply that there exists a positive constant ~CC such that

Z
�

�F ðu1F � u2F Þdx 	 ~CC: ð15Þ

Now, from (14) and (15) we obtain

Z
!

j�F ðxÞjdx 	

ffiffiffiffi
N

p

r

 C þ

ffiffiffiffi
N

p

r

 k�ð
, rÞkLq0 ð�Þ 
 measð!Þs=p

þ

ffiffiffiffi
N

p

r

 k�ð
, rÞkLq0 ð!Þ 
 ðCpð�ÞÞ

S

MS, ð16Þ

where we have denoted

C :¼ ~CC þ kkkLqð�Þ 
 measð�Þ
1=p

þ kkkLqð�Þ 
 Cpð�Þ 
M:

Let � > 0: We choose r > 0 such that
� ffiffiffiffi

N
p

=r
�

 C < �=2: Since �ð
, rÞ 2 Lq0 ð�Þ we can

determine 
� > 0 small enough such that if measð!Þ < 
�, we have

ffiffiffiffi
N

p

r
k�ð
, rÞkLq0 ð�Þ 
 measð!Þs=p þ

ffiffiffiffi
N

p

r
k�ð
, rÞkLq0 ð!Þ 
 ðCpð�ÞÞ

S

MS <

�

2
:

By the relation (16) it follows that

Z
!

j�F ðxÞjdx 	 �,

for any ! � � with measð!Þ < 
�: This means that the weak precompactness of
f�F :F 2 �g in L1ð�;RNÞ is established.
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3. PROOF OF THEOREM 1

We are ready to prove Theorem 1, which is our main existence result. We shall follow a
procedure introduced by Naniewicz and Panagiotopoulos (see, for example [9]). For
every F 2 � let

WF ¼
[
F 02�
F 0�F

f u1F 0 , u2F 0 ,�F 0ð Þg � V � V � L1ð�;RN
Þ,

with u1F 0 , u2F 0 ,�F 0ð Þ being a solution of ðPF 0 Þ: Moreover, let

Z ¼
[
F2�

f�F g � L1ð�;RN
Þ:

Denoting by weakclðWF Þ the weak closure of WF in V � V � L1ð�;RN
Þ and

by weakclðZÞ the weak closure of Z in L1ð�;RN
Þ we obtain, taking into account the

relation (12)

weakclðWF Þ � BV ðO,MÞ � BV ðO,MÞ � weakclðZÞ, for every F 2 �:

Since V is reflexive it follows that BV ðO,MÞ is weakly compact in V : Using Lemma 2
we get that the family fweakclðWF Þ : F 2 �g is contained in a weekly compact set of
V � V � L1ð�;RN

Þ: It follows that this family has the finite intersection property
and we may infer that

\
F2�

weakclðWF Þ 6¼ 6 0:

We choose ðu1, u2,�Þ belonging to the nonempty set above. In what follows we shall
prove that this is the searched solution for the Problem (P).

Let v1, v2 2 L1ð�;RN
Þ and let F be an element of � such that ðv1, v2Þ 2 F � F : We

note that such an F exists, for example we can take F ¼ spanfv1, v2g: Since
ðu1, u2,�Þ 2

T
F2� weakclðWF Þ it follows that there exists a sequence fðu1Fn , u2Fn

,�Fn Þg
in WF , simply denoted by ðu1n, u2n,�nÞ converging weakly to ðu1, u2,�Þ in
V � V � L1ð�;RN

Þ: We have uin * ui, weakly in V ði ¼ 1, 2Þ and �n * �, weakly in
L1ð�;RN

Þ: Since ðu1n, u2n,�nÞ is a solution of ðPF Þ we get

hA1u1n, v1iV þ hA2u2n, v2iV þ C1ðu1nÞ, v1ð ÞVþ C2ðu2nÞ, v2ð ÞVþ

Z
�

�nðv1 � v2Þdx

¼ �1 B1u1n, v1ð ÞVþ�2 B2u2n, v2ð ÞV :

The hypotheses on Ai,Bi,Ci ði ¼ 1, 2Þ and the convergences above imply the equality

X2

i¼1

�
hAiui, viiV þ CiðuiÞ, við ÞV��i Biui, við ÞV

�
þ

Z
�

�ðv1 � v2Þdx ¼ 0,
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which is satisfied for any v1, v2 2 V \ L1ð�;RN
Þ: By the density of V \ L1ð�;RNÞ in

V we draw the conclusion that the relation (7) is valid for any v1, v2 2 V :
In what follows we shall prove the relation (8). Due to the compact embedding

V � Lpð�;RN
Þ it results from the weak convergences uin * ui in V that we have

uin ! ui strongly in Lpð�;RNÞ, for each i ¼ 1, 2 :

So, by passing eventually to a subsequence we have

uin ! ui a:e: in �:

From the Egoroff theorem we obtain that for any � > 0 a subset ! � � with
measð!Þ < � can be determined such that for each i 2 f1, 2g

uin ! ui uniformly on �n!,

with ui 2 L1ð�n!;RN
Þ for every i 2 f1, 2g: Let v 2 L1ð�n!;RN

Þ be arbitrarily chosen.
The Fatou’s lemma now implies that for any � > 0 there exists 
� > 0 and a positive
integer N� such that

Z
�n!

jðx; ðu1n � u2nÞðxÞ � � þ �vðxÞÞ � jðx; ðu1n � u2nÞðxÞ � �Þ

�
dx

	

Z
�n!

j0ðx; ðu1 � u2ÞðxÞ, vðxÞÞdxþ �, ð17Þ

for every n � N�, j�j < 
� and � 2 ð0, 
�Þ: Taking into account that �n 2
@jðx; ðu1n � u2nÞðxÞÞ for a.e. x 2 � we have

Z
�n!

�nðxÞ 
 vðxÞdx 	

Z
�n!

j0ðx; ðu1n � u2nÞðxÞ, vðxÞÞdx: ð18Þ

Passing to the limit as � ! 0 in (17) and employing the relation (18) it follows that

Z
�n!

�nðxÞ 
 vðxÞdx 	

Z
�n!

j0ðx; ðu1 � u2ÞðxÞ, vðxÞÞdxþ �:

From the relation above and the weak convergence of �n to � in L1ð�;RN
Þ we

derive that

Z
�n!

�ðxÞ 
 vðxÞdx 	

Z
�n!

j0ðx; ðu1 � u2ÞðxÞ, vðxÞÞdxþ �:
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Since � > 0 was chosen arbitrarily,

Z
�n!

�ðxÞ 
 vðxÞdx 	

Z
�n!

j0ðx; ðu1 � u2ÞðxÞ, vðxÞÞdx, 8v 2 L1ð�n!;RNÞ:

The last inequality implies that

�ðxÞ 2 @jðx; ðu1 � u2ÞðxÞÞ, for a:e: x 2 �n!,

where measð!Þ < �: Since � > 0 was chosen arbitrarily we have that

�ðxÞ 2 @jðx; ðu1 � u2ÞðxÞÞ, for a:e: x 2 �,

which means that the relation (8) holds. The proof of Theorem 1 is now complete.

4. APPLICATION: THE MULTIPLE LOADING BUCKLING

We consider two elastic beams (linear elasticity) of length l measured along the axis Ox
of the coordinate system yOx, and with the same cross-section. The beams, numbered
here by i ¼ 1, 2, are simply supported at their ends x ¼ 0 and x ¼ l. On the interval
ðl1, l2Þ, l1 < l2 < l, they are connected with an adhesive material of negligible thickness.
The displacements of the ith beam are denoted by x ! uiðxÞ, i ¼ 1, 2, and the behavior
of the adhesive material is described by a nonmonotone possibly multivalued law
between �f ðxÞ and ½uðxÞ�, where x ! f ðxÞ denotes the reaction force per unit length
vertical to the Ox axis, due to the adhesive material (cf. [9] p. 110 and [10] p. 87) and
½u� ¼ u1 � u2 is the relative deflection of the two beams. Recall that ui is referred
to the middle line of the beam i (the dotted lines in Fig. 1) and that each beam has
constant thickness which remains the same after the deformation. The adhesive
material can sustain a small tensile force before rupture (debonding). In Fig. 1 a rupture
of zig-zag brittle type is depicted in the ð�f , uÞ diagramm. The beams are assumed
to have the same moduli of elasticity E and let I be the moment of inertia of them.
The sandwich beam is subjected to the compressive forces P1 and P2 and we want to
determine the buckling loading of it. This problem is yet open problem in
Engineering. From the large deflection theory of beams we may write the following
relations which describe the behavior of the ith beam:

ui
0000ðxÞ þ

1

a2
i

ui
00ðxÞ ¼ fiðxÞ on ð0, lÞ ; ð19Þ

uið0Þ ¼ uiðlÞ ¼ 0 , u00i ð0Þ ¼ u00i ðlÞ ¼ 0 i ¼ 1, 2 : ð20Þ

Here a2
i :¼ IE=Pi. We assume that the ð�f , ½u�Þ graph results from a nonlocally

Lipschitz function j : R ! R such that

�f ðxÞ 2 @jð½uðxÞ�Þ , 8x 2 ðl1, l2Þ , ð21Þ
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where @ denotes the generalized gradient of Clarke. We set

V :¼ H2ð�Þ \H1
0 ð�Þ � ¼ ð0, lÞ : ð22Þ

It is a Hilbert space with the inner product (see [6], p. 216, Lemma 4.2)
aðu, vÞ :¼

R l

0 u
00ðxÞv00ðxÞdx.

Let L : V ! V? be the linear operator defined by

hLu, vi :¼

Z l

0

u0ðxÞv0ðxÞdx , 8u, v 2 V : ð23Þ

We observe easily that L is bounded, weak continuous and satisfies

hLu, vi ¼ hLv, ui , for all u, v 2 V :

The superpotential law (21) implies that

j0ð½uðxÞ�; yÞ � �f ðxÞy , 8x 2 ðl1, l2Þ , 8y 2 R : ð24Þ

Multiplying (19) by viðxÞ � uiðxÞ, integrating over ð0, lÞ and adding the resulting
relations for i ¼ 1, 2, implies by taking into account the boundary condition (20), the
hemivariational inequality

u ¼ fu1, u2g 2 V � V ,

X2

i¼1

Z l

0

u00i ðxÞ½v
00
i ðxÞ � u00i ðxÞ�dx�

X2

i¼1

1

a2
i

Z l

0

u0iðxÞ½v
0
iðxÞ � u0iðxÞ�dx

þ

Z l2

l1

j0ð½uðxÞ�; ½vðxÞ� � ½uðxÞ�Þdx � 0 , 8v ¼ fv1, v2g 2 V � V : ð25Þ

Thus buckling of the beam occurs if �i :¼ ð1=a2
i Þ (i ¼ 1, 2) is an eigenvalue for the

following hemivariational inequality

X2

i¼1

aiðui, vi � uiÞ �
X2

i¼1

�i hui, vi � uii þ

Z l2

l1

j0ð½uðxÞ�; ½vðxÞ� � ½uðxÞ�Þdx � 0 , ð26Þ

for all v ¼ fv1, v2g 2 V � V . According to the Theorem 1 the present problem admits at
least one solution fu1, u2, �1, �2g, provided that j fulfills the growth assumption given in
Section 1, i.e., (1), (5) and (6).
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