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Abstract. We study a symmetric, nonlinear eigenvalue problem arising
in earthquake initiation, and we establish the existence of infinitely many
solutions. Under the effect of an arbitrary perturbation, we prove that
the number of solutions becomes greater and greater if the perturbation
tends to zero with respect to a prescribed topology. Our approach is
based on nonsmooth critical-point theories in the sense of De Giorgi
and Degiovanni.

1. Introduction

The minimax method has been used intensively in constructing critical
points for functionals defined on Hilbert or Banach spaces as solutions of
nonlinear partial differential equations or boundary-value problems for in-
equality problems. In particular, when the problems possess symmetry, one
can construct multiple critical points by the minimax method. This is the
general Lusternik-Schnirelmann-type theory (see [2, 18, 19, 21, 23, 25]).
When an order structure is present, one can also use fixed-point theory,
topological degree arguments, or variational methods to construct solutions
of differential equations or variational inequalities (see [1, 6, 7, 12, 14]). How-
ever, little work has been done for invariant energy functionals under group
actions when one expects to obtain multiplicity of critical points.

The main purpose of this paper is to consider a concrete nonlinear eigen-
value variational inequality arising in earthquake initiation and to establish,
in the setting of the nonsmooth Lusternik-Schnirelmann theory, the exis-
tence of infinitely many solutions. The main novelty in our framework is the
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presence of the convex cone of functions with nonnegative jump across an in-
ternal boundary which is composed of a finite number of bounded, connected
arcs.

Under some natural assumptions, we prove the existence of infinitely many
solutions, as well as further properties of eigensolutions and eigenvalues.
Since the associated energy functional is included neither in the theory of
monotone operators, nor in their Lipschitz perturbations, we employ the
notion of lower subdifferential which is originally due to De Giorgi.

Next, we are concerned with the study of the effect of a small nonsymmet-
ric perturbation, and we prove that the number of solutions of the perturbed
problem becomes greater and greater if the perturbation tends to zero with
respect to an appropriate topology. Our proof relies on powerful methods
from algebraic topology developed in Krasnoselski [18] combined with ade-
quate tools in the sense of the Degiovanni nonsmooth critical-point theory
(see [8, 12, 13]).

2. Physical motivation

Consider, as in [3, 5, 10, 16, 27], the anti-plane shearing on a system of
finite faults under a slip-dependent friction in a homogeneous linear elastic
domain. Let Ω ⊂ R2 be a domain, not necessarily bounded, containing a
finite number of cuts. Its boundary ∂Ω is supposed to be smooth and divided
into two disjoint parts: the exterior boundary Γd = ∂Ω̄ and the internal one
Γ composed of Nf bounded, connected arcs Γif , i = 1 . . . , Nf , called cracks
or faults. We suppose that the displacement field is 0 in directions Ox and
Oy and that uz does not depend on z. The displacement is therefore denoted
simply by w = w(t, x, y). The elastic medium has the shear rigidity G, the
density ρ and the shear velocity c =

√
G/ρ. The nonvanishing shear stress

components are σzx = τ∞x + G∂xw, σzy = τ∞y + G∂yw, and σxx = σyy = −S
(S > 0 is the normal stress on the fault plane). We look for w : R+×Ω→ R,
a solution of the wave equation,

∂ttw(t) = c2∆w(t) in Ω, (2.1)

with the boundary condition

w(t) = 0 on Γd. (2.2)

On Γ we denote by [ ] the jump across Γ (i.e., [w] = w+ − w−) and by
∂n = ∇ · n the corresponding normal derivative with the unit normal n
outwards on the positive side. On the contact zone Γ we have [∂nw] = 0
and a slip-dependent friction law (introduced in the geophysical context of
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earthquake modelling) is assumed:

G∂nw(t) = −µ(|[w(t)]|)Ssign([∂tw(t)])− q, if [∂tw(t)] 6= 0, (2.3)

|G∂nw(t) + q| ≤ µ(|[w(t)]|)S if ∂t[w(t)] = 0, (2.4)
where q = τ∞x nx + τ∞y ny. The initial conditions are

w(0) = w0, ∂tw(0) = w1 in Ω. (2.5)

Any solution of the above problem satisfies the following variational problem
(VP): find w : [0, T ] −→ V such that∫

Ω

1
c2

∂ttw(t)(v − ∂tw(t)) dx +
∫

Ω
∇w(t) · ∇(v − ∂tw(t)) dx + (2.6)∫

Γ

S

G
µ(|[w(t)]|)(|[v]| − |[∂tw(t)]|) dσ ≥

∫
Γ

1
G

q([v]− [∂tw(t)]) dσ,

for all v ∈ V , where

V = {v ∈ H1(Ω) : v = 0 on Γd}. (2.7)

The main difficulty in the study of the above evolution variational inequality
is the nonmonotone dependence of µ with respect to the slip |[w]|. However,
in modelling unstable phenomena, as earthquakes, we have to expect “bad”
mathematical properties of the operators involved in the abstract problem.
The existence of a solution w of the following regularity,

w ∈W 1,∞(0, T, V ) ∩W 2,∞(0, T, L2(Ω)), (2.8)

in the two-dimensional case was recently proved by Ionescu et al. [17]. The
uniqueness was obtained only in the one-dimensional case.

Since our intention is to study the evolution of the elastic system near
an unstable equilibrium position, we shall suppose that q = µ(0)S. We
remark that w ≡ 0 is an equilibrium solution of (2.6), and w0 and w1 may
be considered as small perturbations of it.

For simplicity, let us assume in the following that the friction law is ho-
mogeneous on the fault plane having the form of a piecewise-linear function
(see [24]),

µ(x, u) = µs −
µs − µd

2Dc
u if u ≤ 2Dc, µ(x, u) = µd if u > 2Dc, (2.9)

where u is the relative slip, µs and µd (µs > µd) are the static and dynamic
friction coefficients, and Dc is the critical slip. This piecewise-linear function
is a reasonable approximation of the experimental observations reported by
[22]. Since the initial perturbation (w0, w1) of the equilibrium (w ≡ 0) is
small we have [w(t, x))] ≤ 2Dc for t ∈ [0, Tc] for all x ∈ Γ, where Tc is a
critical time for which the slip on the fault reaches the critical value 2Dc at
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least at one point. Hence for a first period [0, Tc], called the initiation phase,
we deal with a linear function µ.

Our aim is to analyze the evolution of the perturbation during this initial
phase. That is why we are interested in the existence of solutions of the type

w(t, x) = sinh(|λ|ct)u(x), w(t, x) = sin(|λ|ct)u(x) (2.10)

during the initiation phase t ∈ [0, Tc]. If we put the above expression in
(2.6) and we have in mind that from (2.9) we have µ(s) = µs − (µs −
µd)/(2Dc)s, then we deduce that (u, λ2) is the solution of the nonlinear
eigenvalue problem find u ∈ K and λ2 ∈ R such that∫

Ω
∇u · ∇(v − u)dx− β

∫
Γ
[u] [v − u]dσ + λ2

∫
Ω

u(v − u)dx ≥ 0,
(2.11)

for all v ∈ K, where K is the convex closed cone centered at the origin

K = {v ∈ V : [v] ≥ 0 on Γ}
and β = (µs − µd)S/(2DcG) > 0. The first type of solution from (2.10)
has an exponential growth in time and corresponds to λ2 > 0. The second
one has the same amplitude during the initiation phase and corresponds to
λ2 < 0.

The nonlinear eigenvalue problem (2.11) can be written as a classical
eigenvalue for the Laplace operator with Signorini-type boundary conditions:

find u : Ω→ R and λ2 ∈ R such that
∆u = λ2u in Ω, u = 0 on Γd, (2.12)
[∂nu] = 0, [u] ≥ 0, ∂nu ≥ 0, [u](∂nu− β[u]) = 0 on Γ. (2.13)

The linear case, that is, equation (2.12) with the boundary condition

[∂nu] = 0, ∂nu− β[u] = 0 on Γ, (2.14)

was analyzed in [9]. For bounded domains, they proved that the spectrum
of (2.12) and (2.14) consists of a decreasing and unbounded sequence of
eigenvalues. The greatest one, λ2

0, which may be positive, is showed to be an
increasing function of the friction parameter β. Let us remark that if u is a
solution of (2.12) and (2.14) and [u] ≥ 0 on Γf , then u is a solution for (2.12)
and (2.13) too. For co-linear faults the first eigenfunction u0, corresponding
to λ2

0, was found in numerical computations to be positive on Γf (see [9, 10]);
hence the linear case was sufficient to give a good model for the initiation of
instabilities. If the faults are not co-linear, then this condition is not anymore
satisfied; that is, the first eigenfunction of the linear problem has no physical
significance. Hence, in modeling initiation-of-friction instabilities only the
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nonlinear eigenvalue problem has to be considered. As was reported in [28],
where the case of two parallel faults was analyzed, there exists an important
gap between the first eigenvalues of the linear and nonlinear problems.

3. The main results

Let Ω be a smooth, bounded open set in RN (N ≥ 2) as in the preceding
section, that is, containing a finite number of cuts. The internal boundary
is denoted by Γ and the exterior one by Γd. Denote by ‖ · ‖ the norm in the
space V , as defined in (2.7), and by Λ0 : L2(Ω)→ L2(Ω)∗ and Λ1 : V → V ∗

the duality isomorphisms defined by

Λ0u(v) =
∫

Ω
uv dx, for any u, v ∈ L2(Ω)

and
Λ1u(v) =

∫
Ω
∇u · ∇v dx, for any u, v ∈ V.

In order to reformulate our problem, consider the Lipschitz map γ = i ◦ η :
V → L2(Γ), where η : V → H1/2(Γ) is the trace operator, η(v) = [v] on Γ
and i : H1/2(Γ) → L2(Γ) is the embedding operator. Then γ is a compact
operator.

Thus, problem (2.11) can be written, equivalently,
find u ∈ K and λ2 ∈ R such that∫

Ω
∇u · ∇(v − u)dx +

∫
Γ

j′ (γ(u(x)); γ(v(x))− γ(u(x))) dσ+

λ2

∫
Ω

u(v − u)dx ≥ 0, ∀v ∈ K,

(3.1)

where j : R→ R, j(t) = −β
2 t2, and j′(· ; ·) stands for the Gâteaux directional

derivative.
Due to the homogeneity of (3.1), we can reformulate this problem in terms

of a constrained inequality problem as follows. For any fixed r > 0, set

M =
{

u ∈ V :
∫

Ω
u2dx = r2

}
.

Then M is a smooth manifold in the Hilbert space V . We shall study the
problem

find u ∈ K ∩M and λ2 ∈ R such that∫
Ω
∇u · ∇(v − u)dx +

∫
Γ

j′ (γ(u(x)); γ(v(x))− γ(u(x))) dσ+

λ2

∫
Ω

u(v − u)dx ≥ 0, ∀v ∈ K.

(3.2)
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Our multiplicity result is

Theorem 3.1. Problem (3.2) has infinitely many solutions (u, λ2), and the
set of eigenvalues {λ2} is bounded from above and its infimum equals −∞.
Let λ2

0 = sup{λ2}. Then there exists u0 such that (u0, λ
2
0) is a solution

of (3.2). Moreover, the function β 7−→ λ2
0(β) is convex and the following

inequality holds:∫
Ω
|∇v|2 dx + λ2

0(β)
∫

Ω
v2 dx ≥ β

∫
Γ
[v]2 dσ, ∀v ∈ K. (3.3)

Next, we study the effect of an arbitrary perturbation in problem (3.1).
More precisely, we consider the problem

find uε ∈ K and λ2
ε ∈ R such that∫

Ω
∇uε · ∇(v − uε)dx +

∫
Γ

(
j′ + εg′

)
(γ(uε(x)); γ(v(x))− γ(uε(x))) dσ+

λ2
ε

∫
Ω

uε(v − uε)dx ≥ 0, ∀v ∈ K,

(3.4)
where ε > 0 and g : R → R is a continuous function with no symmetry
hypothesis, but satisfies the growth assumption

∃ a > 0, ∃ 2 ≤ p ≤ 2(N − 1)
N − 2

such that |g(t)| ≤ a(1 + |t|p) , if N ≥ 3;

∃ a > 0, ∃ 2 ≤ p < +∞ such that |g(t)| ≤ a(1 + |t|p) , if N = 2.
(3.5)

We prove that the number of solutions of problem (3.4) becomes greater
and greater if the perturbation “tends” to zero. This is a very natural
phenomenon that occurs often in concrete situations. We illustrate it with
the following elementary example: consider on the real axis the equation
sinx = 1/2. This is a “symmetric” problem (due to the periodicity) with
infinitely many solutions. Let us now consider an arbitrary nonsymmetric
“small” perturbation of the above equation, say sinx = 1/2 + εx2. This
equation has finitely many solutions, for any ε 6= 0. However, the number
of solutions of the perturbed equation tends to infinity as the perturbation
(that is, |ε|) becomes smaller and smaller.

More precisely, we have

Theorem 3.2. For every positive integer n, there exists εn > 0 such that
problem (3.4) has at least n distinct solutions (uε, λ2

ε) if ε < εn. There exists
and is finite λ2

0ε = sup{λ2
ε}, and there exists u0ε such that (u0ε, λ

2
0ε) is a

solution of (3.4). Moreover, λ2
0ε converges to λ2

0 as ε tends to 0, where λ2
0

was defined in Theorem 3.1.
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4. Auxiliary results

Several times in this paper we shall apply the following basic embedding
inequality:

Proposition 4.1. (Lemma 5.1 in [15]). Let 2 ≤ α ≤ 2(N − 1)/(N − 2) if
N ≥ 3 and 2 ≤ α < +∞ if N = 2. Then for β = [(α − 2)N + 2]/(2α) if
N ≥ 3 or if N = 2 and α = 2 and for all (α − 1)/α < β < 1 if N = 2 and
α > 2, there exists C = C(β) such that(∫

Γ
|[u]|αdσ

)1/α
≤ C

(∫
Ω

u2dx
)(1−β)/2(∫

Ω
|∇u|2dx

)β/2
, for any u ∈ V.

(4.1)

An important role in our arguments in order to locate the solution of (3.2)
will be played by the indicator function of M ; that is,

IM (u) =
{

0 , if u ∈M
+∞ , if u ∈ V \M.

Then IM is lower semicontinuous. However, since the natural energy func-
tional associated to problem (3.2) is neither smooth nor convex, it is neces-
sary to introduce a more general concept of gradient. We shall employ the
following notion of lower subdifferential which is due to De Giorgi, Marino,
and Tosques [11]. The following definition agrees with the corresponding
notions of gradient and critical point in the sense of Fréchet (for C1 map-
pings), Clarke (for locally Lipschitz functionals), or in the sense of the convex
analysis.

Definition 4.2. Let X be a Banach space and let f : X → R ∪ {+∞} be
an arbitrary proper functional. Let x ∈ D(f). The gradient of f at x is the
(possibly empty) set

∂−f(x) =
{

ξ ∈ X∗ : lim inf
y→x

f(y)− f(x)− ξ(y − x)
‖y − x‖ ≥ 0

}
.

An element ξ ∈ ∂−f(x) is called a lower subdifferential of f at x.
Accordingly, we say that x ∈ D(f) is a critical (lower stationary) point of

f if 0 ∈ ∂−f(x).

Then ∂−f(x) is a convex set. If ∂−f(x) 6= ∅ we denote by grad−f(x) the
element of minimal norm of ∂−f(x); that is,

grad−f(x) = min{‖ξ‖X∗ ; ξ ∈ ∂−f(x)}.
This notion plays a central role in the statement of our basic compactness
condition.
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Definition 4.3. Let f : X → R∪{+∞} be an arbitrary functional. We say
that (xn) ⊂ D(f) is a Palais-Smale sequence if

sup
n
|f(xn)| < +∞ and lim

n→∞
grad−f(xn) = 0.

The functional f is said to satisfy the Palais-Smale condition provided that
any Palais-Smale sequence is relatively compact.

Remark 4.4. (i) Definition 4.2 implies that if g : X → R is Fréchet differ-
entiable and f : X → R ∪ {+∞} is an arbitrary proper function, then

∂−(f + g)(x) =
{
ξ + g′(x) : ξ ∈ ∂−f(x)

}
,

for any x ∈ D(f).
(ii) Similary, if f : X → R ∪ {+∞} is an arbitrary proper functional and

g : X → R ∪ {+∞} is proper, convex, and lower semicontinuous, then

∂−(f + g)(x) =
{
ξ + g′(x) : ξ ∈ ∂−f(x)

}
,

for any x ∈ D(f) ∩D(g).

As established in [7],

∂−IM (u) = {λΛ0u : λ ∈ R} ⊂ L2(Ω)∗ ⊂ V ∗, for any u ∈M. (4.2)

In the proof of Theorems 3.1 and 3.2 we shall use several auxiliary notions
and properties. For the convenience of the reader we recall them in what
follows. For further details and proofs we refer to [12, 19, 21, 23, 26].

A topological space X is said to be contractible if the identity of X is
homotopical to a constant map; that is, there exists u0 ∈ X and a continuous
map F : X × [0, 1]→ X such that F (·, 0) = IdX and F (·, 1) = u0. A subset
M of X is said to be contractible in X if there exists u0 ∈ X and a continuous
map F : M × [0, 1]→ X such that F (·, 0) = IdM and F (·, 1) = u0. If A is a
subset of X, we define the category of A in X as follows:

CatX(A) = 0, if A = ∅.
CatX(A) = n, if n is the smallest integer such that A can be covered by

n closed sets which are contractible in X.
CatX(A) = +∞, otherwise.
Some basic properties of the notion of category are summarized in

Proposition 4.5. The following properties hold true:
(i) If A ⊂ B ⊂ X, then CatX(A) ≤ CatX(B).
(ii) CatX(A ∪B) ≤ CatX(A) + CatX(B)
(iii) Let h : A× [0, 1]→ X be a continuous mapping such that h(x, 0) = x

for every x ∈ A. If A is closed and B = h(A, 1), then CatX(A) ≤ CatX(B).
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Let (X, d) be a metric space. Consider h : X → R ∪ {+∞} an arbitrary
functional, and set, as usual, D(h) := {u ∈ X : h(u) < +∞}. We recall the
following definitions, which are due essentially to De Giorgi (see, e.g., De
Giorgi, Marino, and Tosques [11]).

Definition 4.6. (i) For u ∈ D(h) and ρ > 0, let hu(ρ) = inf{h(v) : d(v, u) <
ρ}. Then the number −D+hu(0) is called the slope of h at u, where D+

denotes the right lower derivative.
(ii) Let I ⊂ R be an arbitrary nontrivial interval, and consider a curve

U : I → X. We say that U is a curve of maximal slope for h if the following
properties hold true:

– U is continuous;
– h ◦ U(t) < +∞, for any t ∈ I;
– d(U(t2), U(t1)) ≤

∫ t2
t1

[
D+hU(t)(0)

]2
dt, for any t1, t2 ∈ I, t1 < t2;

– h ◦U(t2)−h ◦U(t1) ≤ −
∫ t2
t1

[
D+hU(t)(0)

]2
dt, for any t1, t2 ∈ I, t1 < t2.

In what follows, X denotes a metric space, A is a subset of X and i stands
for the inclusion map of A in X.

Definition 4.7. (i) A map r : X → A is said to be a retraction if it is
continuous, surjective, and r|A = Id.

(ii) A retraction r is called a strong deformation retraction provided that
there exists a homotopy ζ : X × [0, 1] → X of i ◦ r and IdX which satisfies
the additional condition ζ(x, t) = ζ(x, 0), for any (x, t) ∈ A× [0, 1].

(iii) The metric space X is said to be weakly locally contractible, if for
every u ∈ X there exists a neighborhood U of u contractible in X.

For every a ∈ R , denote fa = {u ∈ X : f(u) ≤ a}, where f : X → R is a
continuous function.

Definition 4.8. (i) Let a, b ∈ R with a ≤ b. The pair (f b, fa) is said to be
trivial provided that, for every neighbourhood [a′, a′′] of a and [b′, b′′] of b,
there exist some closed sets A and B such that fa

′ ⊆ A ⊆ fa
′′
, f b

′ ⊆ B ⊆ f b
′′
,

and such that A is a strong deformation retraction of B.
(ii) A real number c is an essential value of f provided that, for every

ε > 0, there exist a, b ∈ (c− ε, c + ε) with a < b such that the pair (f b, fa)
is not trivial.

The following property of essential values is due to Degiovanni and Lance-
lotti (see [12], Theorem 2.6).

Proposition 4.9. Let c be an essential value of f . Then for every ε > 0
there exists δ > 0 such that every continuous function g : X → R with

sup{|g(u)− f(u)| : u ∈ X} < δ
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admits an essential value in (c− ε, c + ε).

For every n ≥ 1, define Γn = {S ⊂ Sr : S ⊂ F , γ(S) ≥ n}, where F is the
class of closed, symmetric subsets of the sphere Sr of radius r in a certain
Banach space and γ(S) represents the Krasnoselski genus of S ∈ Γn, that
is, the smallest k ∈ N ∪ {+∞} for which there exists a continuous and odd
map from S into R k \ {0}.

5. Proof of Theorem 3.1

Define E = F + G : V → R ∪ {+∞}, where

F (u) =


1
2

∫
Ω
|∇u|2dx , if u ∈ K

+∞ , if u 6∈ K

and
G(u) = −β

2

∫
Γ
[γ(u(x))]2dσ.

Then E + IM is lower semicontinuous.
The following auxiliary result shows that E + IM is the canonical energy

functional associated to problem (3.2).

Proposition 5.1. If (u, λ2) is a solution of problem (3.2), then 0 ∈ ∂−(E +
IM )(u). Conversely, let u be a critical point of E + IM and denote λ2 =
−2E(u)r−2. Then (u, λ2) is a solution of problem (3.2).

Proof. Let (u, λ2) be a solution of problem (3.2). So, by the definition of
the lower subdifferential,

−λ2u ∈ ∂−E(u). (5.1)
On the other hand,

∂−(E + IM )(u) = ∂−E(u) + ∂−IM (u), for any u ∈ K ∩M. (5.2)

So, by (4.2) and (5.1), 0 ∈ ∂−(E + IM )(u).
Conversely, let 0 ∈ ∂−(E + IM )(u). Thus, by (4.2) and (5.2), there exists

λ2 ∈ R such that (u, λ2) is a solution of problem (3.2). If we put v = 0 in
(3.2) then we deduce λ2r2 ≤ −2E(u), and for v = 2u we get λ2r2 ≥ −2E(u),
that is, λ2 = −2E(u)r−2. ¤

The above result reduces our study to finding the critical points of E+IM .
In order to estimate the number of lower stationary points of this functional
we shall apply a nonsmooth version of the Lusternik-Schnirelmann theorem.
For this purpose we need some preliminary results.

We first observe that a direct argument combined with Proposition 5.1
shows that problem (3.2) has at least one solution. Indeed, the associated
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energy functional is bounded from below. This follows directly by our basic
inequality (4.1) since

(E + IM )(u) ≥ 1
2
‖u‖2 − |β| · ‖[u]‖2L2(Γ) ≥

1
2
‖u‖2 − C ‖u‖ ≥ C0, (5.3)

for any u ∈ V . So, by standard minimization arguments based on the
compactness of the embedding i◦η : V → L2(Γ) we deduce that there exists
a global minimum point u0 ∈ K ∩M of E + IM . Let λ2

0 = −2E(u0)/r2.
Hence 0 ∈ ∂−(E + IM )(u0) and (u0, λ

2
0) is a solution of problem (3.2). Since

for any eigenvalue λ2 there exists u ∈ K such that λ2 = −2E(u)r−2 we
deduce that λ2

0 = sup{λ2}.
The next step in our proof consists in showing that

Proposition 5.2. The functional E + IM satisfies the Palais-Smale condi-
tion.

Proof. Let (un) be an arbitrary Palais-Smale sequence of E + IM . So, by
(5.3), (un) is bounded in V . Thus, by the Rellich-Kondratchov theorem (see
for instance [4]) and passing eventually to a subsequence,

un ⇀ u weakly in V (5.4)

un → u strongly in L2(Ω) (5.5)

un → u strongly in L2(Γ). (5.6)

In particular, it follows that u ∈ K ∩M .
Using now the second piece of information contained in the statement of

the Palais-Smale condition and applying (4.2), we obtain a sequence (λn) of
real numbers such that

lim
n→∞

‖E′(un) + λnΛ0un‖V ∗ = 0. (5.7)

On the other hand, by the compact embeddings V ⊂ L2(Ω) and V ⊂ L2(Γ)
and using (5.4)–(5.6), it follows that

E′(un)→ E′(u) and Λ1un → Λ1u in V ∗.

So, by (5.7), the sequence (λn) is bounded. Hence we can assume that, up
to a subsequence, λn → λ as n→∞. Therefore 0 ∈ ∂−(E + IM )(u).

From (5.4) we get ‖u‖ ≤ lim infn→∞ ‖un‖; hence, it follows that for con-
cluding the proof it is enough to show that

‖u‖ ≥ lim sup
n→∞

‖un‖ . (5.8)
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But, since F is convex, F (u) ≥ F (un) + F ′(un)(u− un). It follows that

E(u) = F (u) + G(u) ≥ lim sup
n→∞

(
F (un) + F ′(un)(u− un) + G(un)

)
=

lim sup
n→∞

(
F (un) + F ′(un)(u− un) + G(un) + G′(un)(u− un)

)
=

lim sup
n→∞

(
F (un) + E′(un)(u− un)

)
+ lim
n→∞

G(un).

(5.9)
Using now λn → λ combined with (5.4)–(5.7), relation (5.9) yields

E(u) ≥ lim sup
n→∞

F (un) + G(u).

This inequality implies directly our claim (5.8), so the proof is completed. ¤
Due to the symmetry of our problem (3.2), we can extend our study to

the symmetric cone (−K). More precisely, if (u, λ2) is a solution of (3.2)
then u0 := −u ∈ (−K) ∩M satisfies∫

Ω
∇u0 · ∇(v − u0)dx +

∫
Γ

j′ (γ(u0(x)); γ(v(x))− γ(u0(x))) dσ+

λ2

∫
Ω

u0(v − u0)dx ≥ 0, for all v ∈ (−K).

This means that we can extend the energy functional associated to problem
(3.2) to the symmetric set K̃ := K ∪ (−K). We put, by definition,

Ẽ(u) =

 E(u) , if u ∈ K
E(−u) , if u ∈ (−K)
+∞ , otherwise.

We are interested from now on in finding the lower stationary points of the
extended energy functional J := Ẽ + IM .

We endow the set K̃ ∩M with the graph metric of Ẽ defined by

d(u, v) = ‖u− v‖+ |Ẽ(u)− Ẽ(v)|, for any u, v ∈ K̃ ∩M.

Denote by X the metric space (K̃ ∩M, d).
We are now in position to state the basic abstract result that we shall

apply for concluding the proof of Theorem 3.1. More precisely, we use the
following nonsmooth variant of the Lusternik-Schnirelmann theory that we
reformulate in terms of our energy functional J .

Theorem 5.3. (Marino and Scolozzi [20]). Assume that J satisfies the
following properties:

(i) J is bounded from below;
(ii) J satisfies the Palais-Smale condition;
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(iii) for any lower stationary point u of J there exists a neighborhood of
u in X which is contractible in X ;

(iv) there exists Θ : (K̃ ∩M) × [0,∞) → K̃ ∩M such that Θ(·, 0) = Id,
Θ(u, ·) is a curve of maximal slope for J (with respect to the usual metric in
V ), and, moreover, the mapping Θ : X × [0,∞)→ X is continuous.

Then J has at least CatX (K̃ ∩M) lower stationary points.
Moreover, if CatX (K̃ ∩M) = +∞, then J does not have a maximum and

sup{J(u) : u ∈ K̃ ∩M, 0 ∈ ∂−J(u)} = sup{J(u) : u ∈ K̃ ∩M}.

We have already proved (i) and (ii). Property (iii) is proved in a more
general framework in De Giorgi, Marino, and Tosques [11], while (iv) is
deduced in Chobanov, Marino, and Scolozzi [7]. So, using Theorem 5.3, it
follows that for concluding the proof of Theorem 3.1 it remains to prove

Proposition 5.4. We have

CatX (K̃ ∩M) = +∞. (5.10)

Proof. Fix ψ ∈ K \ {0} such that ‖ψ‖L2(Ω) > r, and let (en)n≥1 ⊂ V be an
orthonormal basis of L2(Ω). Fix arbitrarily an integer n ≥ 1 and denote

M (n) =
{ n∑
i=1

αiei;
n∑
i=1

α2
i = r2

}
.

As usual, we denote a+ = max{a, 0} and a− = max{−a, 0}, for any real
number a. Define the mapping ϕ1 : M (n) × [0, 1]→ V \ {0} by

ϕ1(u, t) = (1− t)
[
(u− ψ)+ − (u + ψ)−

]
+ PK (min{max(u,−ψ), ψ}) ,

where PK denotes the canonical projection onto K. Then

ϕ1(u, 1) ∈ K and ‖ϕ1(u, 1)‖L2 ≤ ‖u‖L2 ≤ r.

We also define ϕ2 : (K̃ \ {0})× [0, 1)→ K̃ \ {0} by

ϕ2(u, t) = min
[
max

( 1
1− t

u,−ψ
)
, ψ
]
.

Fix arbitrarily u ∈ ϕ1(M (n), 1). Then

lim
t↗1
‖ϕ2(u, t)‖L2 = ‖ψ‖L2 > r.

The compactness of ϕ1(M (n), 1) implies that there exists t0 ∈ (0, 1) such
that

‖ϕ2(u, t)‖L2 > r ∀t ∈ [t0, 1), ∀u ∈ ϕ1(M (n), 1).
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Let P be the canonical projection of V onto the closed ball of radius r in
L2(Ω) centered at the origin. Define the map Φ : M (n)× [0, 1+ t0]→ V \{0}
by

Φ(u, t) =
{

ϕ1(u, t) , if (u, t) ∈M (n) × [0, 1]
P (ϕ2(ϕ1(u, 1), t− 1)) , if (u, t) ∈M (n) × [0, 1 + t0].

Then Φ(u, 0) = 0 and Φ(u, 1 + t0) ∈M . Since Φ(·, t) is odd and continuous
from L2(Ω) in the L2-topology, it follows by Proposition 4.5 that

n ≤ CatL2(M (n)) ≤ CatL2

(
Φ(M (n), 1 + t0)

)
≤ CatH1

0

(
Φ(M (n), 1 + t0)

)
.

Since the set Φ(M (n), 1 + t0) is compact in V and the topology of X is
stronger than the H1

0 -topology, we obtain

n ≤ CatH1
0

(
Φ(M (n), 1 + t0)

)
≤ CatX

(
Φ(M (n), 1 + t0)

)
≤ CatX (K̃ ∩M).

This completes the proof of Proposition 5.4. ¤
Proof of Theorem 3.1 completed. Up to now, using Theorem 5.3, we
have established that problem (3.2) admits infinitely many solutions (u, λ2).
We first observe that the set of eigenvalues is bounded from above. Indeed,
if (u, λ2) is a solution of our problem then choosing v = 0 in (3.2) and using
(4.1), it follows that

λ2r2 ≤ −2‖u‖2 +
β

2
‖u‖2L2(Γ) ≤ C,

where C does not depend on u. It remains to prove that

inf{λ2 : λ2 is an eigenvalue of (3.2)} = −∞.

For this purpose, it is sufficient to show that sup{J(u) : u ∈ K̃ ∩M} = +∞.
But this follows directly from (4.1) and

sup
u∈K̃∩M

∫
Ω
|∇u|2dx = +∞.

In order to prove the last part of the theorem we remark that −λ0, as a
function of β, is the upper bound of a family of affine functions

−λ2
0(β) = inf

v∈K∩M
1
r2

{∫
Ω
|∇v|2 dx− β

∫
Γ
[v]2 dσ

}
; (5.11)

hence, it is a concave function. Thus β 7−→ λ2
0(β) is convex and (3.3) yields.

This concludes the proof of Theorem 3.1. ¤
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6. Proof of Theorem 3.2

We shall establish the multiplicity result with respect to a prescribed level
of energy. More precisely, let us fix r > 0. Consider the manifold

N =
{

u ∈ V :
∫

Γ
[u]pdσ = rp

}
,

where p is as in (3.5).
We reformulate problem (3.4) as follows:

find uε ∈ K ∩N and λ2
ε ∈ R such that∫

Ω
∇uε · ∇(v − uε)dx +

∫
Γ

(
j′ + εg′

)
(γ(uε(x)); γ(v(x))− γ(uε(x))) dσ

+λ2
ε

∫
Ω

uε(v − uε)dx ≥ 0, ∀v ∈ K.

(6.1)
We start with the preliminary result

Lemma 6.1. There exists a sequence (bn) of essential values of E such that
bn → +∞ as n→∞.

Proof. For any n ≥ 1, set an = infS∈Γn supu∈S E(u), where Γn is the family
of compact subsets of K ∩N of the form ϕ(Sn−1), with ϕ : Sn−1 → K ∩N
continuous and odd. The function E restricted to K ∩ N is continuous,
even, and bounded from below. So, by Theorem 2.12 in [12], it is sufficient
to prove that an → +∞ as n→∞. But, by Proposition 5.2, the functional
E restricted to K ∩ N satisfies the Palais-Smale condition. So, taking into
account Theorem 3.5 in [8] and Theorem 3.9 in [12], we deduce that the set
Ec has finite genus for any c ∈ R. Using now the definition of the genus
combined with the fact that K ∩ N is a weakly locally contractible metric
space, we deduce that an → +∞. This completes our proof. ¤

The canonical energy associated to problem (6.1) is the functional J re-
stricted to K ∩N , where J = E + Φ and Φ is defined by

Φ(u) = ε

∫
Γ

g(γ(u(x)))dσ.

A straightforward computation with the same arguments as in the proof of
Proposition 5.1 shows that if u is a lower stationary point of J then there
exists λ2 ∈ R such that (u, λ2) is a solution of problem (6.1). By virtue of
this result, it is sufficient for concluding the proof of Theorem 3.2 to show
that the functional J has at least n distinct critical values, provided that
ε > 0 is sufficiently small. We first prove that J is a small perturbation of
E. More precisely, we have
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Lemma 6.2. For every η > 0, there exists δ = δη > 0 such that

sup
u∈K∩N

|J(u)− E(u)| ≤ η,

provided that ε ≤ δ.

Proof. We have

|J(u)− E(u)| = |Φ(u)| ≤ ε

∫
Γ
|g(γ(u(x)))| dσ.

So, by (3.5) and Proposition 4.1,

|J(u)− E(u)| ≤ ε a

∫
Γ

(1 + [u(x)]p) dσ ≤ Cε ≤ η,

if ε is sufficiently small. ¤
By Lemma 6.1, there exists a sequence (bn) of essential values of E|K∩N

such that bn → +∞. Without loss of generality we can assume that bi <
bj if i < j. Fix an integer n ≥ 1 and choose ε0 > 0 such that ε0 <
1/2 min2≤i≤n(bi − bi−1). Applying now Proposition 4.9, we obtain that for
any 1 ≤ j ≤ n, there exists ηj > 0 such that if supK∩N |J(u) − E(u)| < ηj
then J|K∩N has an essential value cj ∈ (bj−ε0, bj+ε0). So, by Lemma 6.2 ap-
plied for η = min{η1, . . . , ηn}, there exists δn > 0 such that supK∩N |J(u)−
E(u)| < η, provided that ε ≤ δn. This shows that the energy functional J
has at least n distinct essential values c1, . . . , cn in (b1 − ε0, bn + ε0).

The next step consists in showing that c1, . . . , cn are critical values of
J|K∩N . Arguing by contradiction, let us suppose that cj is not a critical
value of J|K∩N . We show in what follows that
(A1) There exists δ̄ > 0 such that J|K∩N has no critical value in (cj−δ̄, cj+δ̄).
(A2) For every a, b ∈ (cj − δ̄, cj + δ̄) with a < b, the pair (Jb|K∩N , Ja|K∩N ) is
trivial.

Suppose, for the sake of contradiction, that (A1) is not valid. Then there
exists a sequence (dk) of critical values of J|K∩N with dk → cj as k → ∞.
Since dk is a critical value, it follows that there exists uk ∈ K ∩N such that

J(uk) = dk and 0 ∈ ∂−J(uk).

Using now the fact that J satisfies the Palais-Smale condition at the level
cj , it follows that, up to a subsequence, (uk) converges to some u ∈ K ∩N
as k → ∞. So, by the continuity of J and the lower semicontinuity of
gradJ( · ), we obtain J(u) = cj and 0 ∈ ∂−J(u), which contradicts the
initial assumption on cj .

Let us now prove assertion (A2). For this purpose we apply the noncritical
point theorem (see [8], Theorem 2.15]). So, there exists a continuous map
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χ : (K ∩N)× [0, 1]→ K ∩N such that

χ(u, 0) = u, J(χ(u, t)) ≤ J(u),
J(u) ≤ b⇒ J(χ(u, 1)) ≤ a, J(u) ≤ a⇒ χ(u, t) = u.

(6.2)

Define the map ρ : Jb|K∩N → Ja|K∩N by ρ(u) = χ(u, 1). From (6.2) we obtain
that ρ is well defined and it is a retraction. Set

J : Jb|K∩N × [0, 1]→ Jb|K∩N , J (u, t) = χ(u, t).

The definition of J implies that, for every u ∈ Jb|K∩N ,

J (u, 0) = u and J (u, 1) = ρ(u) (6.3)

and, for any (u, t) ∈ Ja|K∩N × [0, 1],

J (u, t) = J (u, 0). (6.4)

From (6.3) and (6.4) it follows that J is Ja|K∩N -homotopic to the iden-
tity of Ja|K∩N , that is, J is a strong deformation retraction, so the pair
(Jb|K∩N , Ja|K∩N ) is trivial. Assertions (A1) and (A2) and Definition 4.8 (ii)
show that cj is not an essential value of J|K∩N . This contradiction concludes
our proof. ¤
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