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Published online: 8 July 2020
© The Author(s) 2020

Abstract
Weconsider a thermoelastic theory inwhich the equations that govern the evolution are
linear with respect to the thermal displacement and nonlinear with regards to gradients
of displacements and temperature. Our results refer to the non-existence of solutions
for some mixed problems, considered in this context. We also address the instability
of solutions of the considered problems. We will treat separately the case where the
mechanical effects are neglected, taking into account only the thermal effect. In this
case our problem has a nonlinear structure.

Keywords Thermoelasticity without energy dissipation · Dipolar bodies · Semilinear
theory · Nonexistence · Instability
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1 Introduction

It can be noticed that in the last years great attention has been paid to the phenomenon
of heat transmission in elastic solids. Many studies, including those of Green and
Naghdi [1–3], have proposed abandoning Fourier’s classical law and considering some
theories that allow the propagation of thermal waves with finite speed. In this way, the
foundations of a new theory have been laid, namely thermoelasticity without energy
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dissipation. After the start given by the studies of Green and Naghdi, this theory
became very consistent by the presence of a large number of papers addressing all
aspects of this theory of thermoelasticity without energy dissipation. There are studies
that address the existence or non-existence of solutions, the uniqueness, the continuous
dependence, stability or instability of solutions. In this respect, wemust note the works
[4–7]. All these works are dedicated to the linear case only. Our study is an attempt to
address the semilinear framework, that is, models driven by equations that govern the
theory of elastic dipolar bodies. These models arise in the context of thermoelasticity
without energy dissipation and they are linear with respect to the thermal displacement
and nonlinear with regards to temperature and gradients of displacements. But it is
important to specify that in obtaining our results for the semilinear case we used some
suggestions given in nonlinear studies, but in the case of isothermal elasticity. Thus,
we have used methods and techniques found in the following papers: [8–13].

In our study we take into consideration an extra aspect, namely that of the dipolar
structure, which is part of themodern theories dedicated to themicrostructure.We have
to say that the first works dedicated to the microstructure are due to Eringen (see [14,
15]). In recent years the number of papers on this subject has increased significantly.
All aim to eliminate some shortcomings of classical theory. In this context, unlike the
classic case, the equation of energy contains some elastic terms and it is not a parabolic
type equation. Another important leap: in all theories dedicated to the microstructure,
the heat waves will propagate at a finite speed. As an important component of the
microstructure, the dipolar structure has attracted the attention of a large number of
researchers and as a consequence, many studies have been published on this topic. In
this regard, we must mention, in particular, the works [16–19]. In the studies [20–28]
we find some results dedicated to different aspects of the microstructure. The methods
and procedures used in the present paper have some similarities to those of classical
elasticity. However, the classical results are getting worse in the new context, since
the equations governing the behavior of these structures become more complicated.

In our paper we put down the equations that govern the behavior of a dipolar bodies
in the context of thermoelasticity without energy dissipation. The mixed problem is
completed by some specific initial and boundary conditions.

We highlight that the basic equations are linear with regards to the displacement
of the heat and nonlinear with regards to temperature and gradients of displacements.
Then we prove a conservation law, which will be useful in obtaining of the main
results, in the first place, in obtaining an energy inequality. The result of instability
of the solution is obtained for homogeneous boundary conditions. In the last part of
the study we neglect the mechanical effects and get a nonlinear problem regarding the
conduction of heat. We prove that some solutions cannot exist on a finite time interval.

2 Preliminaries

This paper is dedicated to a bodywith dipolar structure in the theory of thermoelasticity
without energy dissipation.Ourmaterial is anisotropic and is located in a regular region
D from usual space R3 and its boundary ∂D is supposed be a sufficient regular surface
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to permit the application of the divergence theorem. For the closure D̄ of the domain
D and we have D̄ = D ∪ ∂D.

A system of Cartesian axes Oxi , (i = 1, 2, 3) for the representation of the points
is used. The tensor notation is adopted (letters in boldface). A superposed dot is used
to designate the derivative with respect to time while for the differentiation regarding
the coordinates xi we will use the notation “,i”. The Einstein rule the summation over
repeated indices is assumed.

Throughout this paper, the following variables are used to characterize the evolution
of our dipolar material:

ui (t, x), ϕi j (t, x), θ(t, x), β(t, x), (t, x) ∈ [0, t0) × D. (1)

Here u = (ui ) is the vector of displacement and ϕ = (
ϕi j

)
is the tensor of dipolar

displacement.
Also, θ is the temperature, referred to the reference configuration, and β is the

displacement of the temperature, defined by

β(t, x) =
∫ t

0
θ(τ, x)dτ. (2)

With the help of the variables defined in Eq. (1), we define the tensors of the strain,
which have the components εi j , κi j and χi jk , by means of the geometric relations:

2εi j = u j,i + ui, j , κi j = u j,i − ϕi j , χi jk = ϕi j,k . (3)

All our considerations are made within a linear theory. Therefore, it is natural to think
that Helmholtz’s free energy is a quadratic form with respect to all its constitutive
variables. The Helmholtz’s free energy in the reference configuration will be denoted
by 
. So, in accordance with the principle of energy conservation of energy, we
develop in series the function 
 and we only keep the terms only until the second
order. Because the reference state was assumed be free of loadings, we deduce that
the Helmholtz’s free energy per mass can be considered of the following form


 = 1

2
Ai jmnεi j εmn + Di jmnεi jκmn + Fi jmnr εi jχmnr + 1

2
Bi jmnκi jκmn

+Gi jmnrκi jχmnr + 1

2
Ci jkmnrχi jkχmnr − ai j εi j θ − bi jκi j θ − ci jkχi jkθ − 1

2
cθ2.

(4)

We will use this form of free energy used in the entropy production inequality, where
we will deduce the motion equations. Also, from the same inequality the constitutive
equations are obtained. These equations express the tensors of stress with the help of
the tensors of deformation. We will denote the components of the stress measures by
τi j , σi j andμi jk . In this way, the constitutive equations establish a connection between
the tensors τi j , σi j , μi jk and the tensors εi j , κi j , χi jk .
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We will use a procedure similar to that used by Green and Rivlin in [16], so that
taking into account (4) we obtain

τi j = ∂


∂εi j
= Ai jmnεmn + Dmni jκmn + Fmnri jχmnr − ai jθ,

σi j = ∂


∂κi j
= Di jmnεmn + Bi jmnκmn + Gi jmnrχmnr − bi jθ,

μi jk = ∂


∂χi jk
=Fi jkmnεmn+Gmni jkκmn+Ci jkmnrχmnr −ci jkθ,

η = −∂


∂θ
= ai jεi j + bi jκi j + ci jkχi jk + cθ. (5)

Here we denoted by η the entropy per unit mass.
Also, we can deduce the main equations that govern the thermoelasticity of bodies

with a dipolar structure without energy dissipation (see also [19]), namely:
- the motion equations:

(
τi j + ηi j

)
, j +  fi = üi ,

μi jk,i + η jk + g jk = Ikr ϕ̈ jr ; (6)

- the equation of energy is given by (see [18]):

T0η̇ = qi,i + r . (7)

The signification of the notions that we introduced in previous equations is as fol-
lows: -the density of mass, which is a constant; Ii j -the tensor of microinertia; k-the
intrinsic inertia; εi j , κi j , χi jk-the strain tensors; τi j , ηi j , μi jk-the stress tensors;
hi -the components of the vector for equilibrated stress; fi -the body forces; g jk-the
dipolar charges; Ai jmn, Bi jmn, ..., ai j -the functions what describe the properties of the
material in terms of elasticity. Suppose the following symmetry relations take place:

Ai jmn = A jimn = Amni j , Bi jmn = Bmni j , ai j = a ji ,

Ci jkmnr = Cmnri jk, Fi jkmn = Fi jknm, Di jmn = Di jnm . (8)

Assuming that there are no supply terms and taking into account the constitutive Eq.
(5) and the kinematic Eq. (3), the Eqs. (6) and (7) receive the form

üi = [(
Ci jmn + Gi jmn

)
un,m + (

Gmni j + Bi jmn
) (
un,m − ϕmn

) +
+ (

Fmnri j + Di jmnr
)
ϕnr ,m − (

ai j + bi j
)
θ
]
, j ,

Ikr ϕ̈ jr = [
Fi jkmnun,m+Dmni jk

(
un,m − ϕmn

) + Ai jkmnrϕnr ,m − ci jkθ
]
,i +

+G jkmnum,n+Bjkmn
(
un,m−ϕmn

)+Djkmnrϕnr ,m−b jkθ,

ki j
(
β, j

)
,i = −T0

[
ai j u̇i, j + bi j

(
u̇ j,i − ϕ̇i j

) + ci jk ϕ̇i j,k + cθ̇
]
. (9)
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We will complete the mixed problem for dipolar bodies in the context of thermoelas-
ticity without energy dissipation by adding some prescribed initial conditions

ui (0, x) = u0i (x), u̇i (0, x) = u1i (x),

ϕ jk(0, x) = ϕ0
jk(x), ϕ̇ jk(0, x) = ϕ1

jk(x), (10)

θ(0, x) = θ0(x), β(0, x) = β0(x), x ∈ D̄,

and, also, the given boundary conditions

ui = 0, ϕ jk = 0, θ = 0 on ∂D. (11)

Clearly, taking into account the definition (2) and the fact that, according to (11), θ = 0
on ∂D, we deduce that β = 0 on ∂D.

We will denote by P the mixed initial boundary value problem of the theory of
thermoelasticity without energy dissipation for a dipolar material over the set �0 =
D × [0, t0) which consists of the system of Eq. (9), for all (t, x) ∈ �0, the boundary
conditions (11) and the initial conditions (10).

Naturally, an ordered array
(
ui , ϕi j , θ, β

)
can be a solution for the problem P if it

satisfies the system (9) and meet the conditions (10) and (11) of the problem.
Our first result relates to an energy conservation law corresponding to the solutions

of the problem P .
For the energy corresponding to a solution to the problemP wewill use the notation

E(t) = 1

2

∫

D

[
u̇i u̇i + I jk ϕ̇ jl ϕ̇kl

]
dV

+1

2

∫

D

[
Ai jmnεi jεmn + 2Di jmnεi jκmn + 2Fi jmnrεi jχmnr

+Bi jmnκi jκmn+2Gi jmnrκi jχmnr +Ci jkmnrχi jkχmnr

−2ai jεi jθ − 2bi jκi jθ − 2ci jkχi jkθ − cθ2
]
dV . (12)

If we take into account (4), energy E receives the simplified form

E(t) = 1

2

∫

D

[
u̇i u̇i + I jk ϕ̇ jl ϕ̇kl

]
dV +

∫

D

dV . (13)

Proposition 1 If the ordered array
(
ui , ϕi j , θ, β

)
is a solution of the problem P , then

the energy E satisfies the following conservation law:

E(t) = E(0). (14)

Proof We multiply the Eq. (9)1 by u̇i , (9)2 by ϕ̇ jk and (9)3 by u̇i . We sum up the
obtained equalities and the equality that result is integrated on the interval [0, t]. If we
take into account the boundary conditions from (11) and integrate on the domain D,
we obtain the desired relation (14). ��
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In what follows, we will consider that the material is linear with respect to the
thermal displacement gradient, that is βi , and can be nonlinear with respect to the
variables ui, j , ϕi j,k, θ . In other words, we can write the free energy in


 = ω
(
ui, j , ϕi j,k, θ

) + 1

2
Ki jβ,iβ, j , (15)

where the tensor Ki j is positively defined.
As a consequence, the law of energy conservation from (14) becomes

E(t) = 1

2

∫

D

[
u̇i u̇i + I jk ϕ̇ jl ϕ̇kl + Ki jβ,iβ,i

]
dV

+
∫

D

[
ω

(
ui, j , ϕi j,k, θ

) + ηθ
]
dV = E(0). (16)

Basedon the considerationsmade in the papers [10,12] in the case of classical elasticity,
without taking into account the thermal effect, we can replace the Eq. (16) with the
following inequality,

E(t) ≤ E(0). (17)

Also, if energy E is associated not with a classical solution of the system (9), but with
a weak solution, it is more appropriate to use the inequality (17) than the Eq. (16).

We now aim to achieve a result of instability. For this, we will first consider the
following boundary values problem

(
Ki jq, j

)
,i = −η

(
u0i, j , ϕ

0
i j,k, θ

0
)

,

q = 0, x ∈ ∂D, (18)

where the initial data
(
u0i, j , ϕ

0
i j,k, θ

0
)
are introduced in (10).

If q is a solution to the problem (18), then we introduce the notation

ϑ =
∫ t

0
β(τ)dτ + q.

In the following we will consider that energy has the following form:

E1(t) = 1

2

∫

D

[
uiui + I jkϕ jlϕkl + Ki jϑ,iϑ,i

]
dV . (19)

Theorem 1 We consider that a weak solution of the problem P is the ordered array(
ui , ϕi j , θ, β

)
. If, in addition, the following condition is met

∫

D

(
− ∂ω

∂ui, j
ui, j − ∂ω

∂ϕi j,k
ϕi j,k + ∂ω

∂θ
θ

)
dV ≥ 0, (20)
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then the energy E1(t) becomes unbounded, that is, the equilibrium state becomes
unstable.

Proof By direct calculations, from (19) we are led to the inequality

d2E1
dt2

=
∫

D

[
uiui + I jkϕ jlϕkl + Ki jβ,iβ, j

]
dV

+
∫

D

(
− ∂ω

∂ui, j
ui, j − ∂ω

∂ϕi j,k
ϕi j,k + ∂ω

∂θ
θ

)
dV . (21)

We take into account that  > 0 and the tensors Ii j and Ki j are positively defined.
Considering the condition (20) and using Schwarz’s inequality, we obtain the inequal-
ity

d2E1/2
1

dt2
≥ 0, (22)

which involves the condition

E1/2
1 (t) ≥ t dE1dt (0) + 2E1(0)

E1/2
1 (0)

. (23)

It is clear that if dE1
dt (0) > 0, then, the condition (23) guarantees that energy E1/2

1 (t)
becomes unbounded, which ends the demonstration of the theorem. ��

Now we will address a non-existence result of the solution of the problem P . To
this aim we will construct an auxiliary function F(t)(t), with the help of the function
E1 (from (19)), by

F(t) = E1(t) + 1

2
α (t + t0)

2 , α ≥ 0. (24)

Theorem 2 Suppose that the inequality (22) is satisfied and for ζ > 2 the following
condition is checked

∫

D

[
− ∂ω

∂ui, j
ui, j − ∂ω

∂ϕi j,k
ϕi j,k + ∂ω

∂θ
θ + ζ(ω + ηθ)

]
dV ≥ 0. (25)

Then, there is no a solution
(
ui , ϕi j , θ, β

)
of the problem P which should be defined

in finite time.

Proof By direct calculations we obtain

dF(t)

dt
=

∫

D

(
ui u̇i + I jkϕ jl ϕ̇kl + Ki jϑ,iβ, j

)
dV + α (t + t0) . (26)
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By using the energy inequality, from (26) we are led to

d2F(t)

dt2
≥ ζ + 2

2

∫

D

(
u̇i u̇i + I jk ϕ̇ jl ϕ̇kl + Ki jβ,iβ, j

)
dV

+
∫

D

(
− ∂ω

∂ui, j
ui, j − ∂ω

∂ϕi j,k
ϕi j,k + ∂ω

∂θ
θ + ζ(ω + ηθ)

)
dV + (α − ζE(0)),

(27)

and from here, with the help of Schwarz’s inequality, we get

d2F(t)

dt2
F(t) − ζ + 2

4

(
dF(t)

dt

)2

≥ −ζ(α + E(0))F(t). (28)

Taking into account that ζ > 2, we can reverse in inequality (28), so that using the
notation p = (ζ − 2)/2, inequality can be reformulated so

d2F−p(t)

dt2
F(t) ≤ 2p(2p + 1)F−(p+)(t)(α + E(0)). (29)

If we give to α a particular value, namely α = −E(0), then from inequality (28) we
obtain

d2F−p(t)

dt2
≤ 0,

which ensures the concavity of the function F−p(t).
Taking into account the definition (25) we deduce that

F(t) ≥ F(0)

(
1 − pt

dF

dt
(0)F(0)−1

)−1/p

, t ∈ [0, t0). (30)

We choose a t0 large enough to guarantee the positivity of the derivative dF/dt . As a
consequence, the lower bound from the right-hand side of the inequality (30) allows
to the function F to grow as much as possible in a finite time. Thus, the proof of the
theorem is completed. ��

In the last part of our study, we will neglect the mechanical effects. In other words,
we consider that the function W which designates the free energy is only depending
on temperature θ and of the gradient of the displacement of the heat β,i , that is,

W = ω (θ) + 1

2
Ki jβ,iβ, j . (31)

As such, we approach the problem (nonlinear) of the conduction of heat, consisting
of the nonlinear equation

d

dt

(
∂W

∂θ

)
+

(
∂W

∂β,i

)
= 0, (32)
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the following initial conditions

θ(0, x) = θ0(x), β(0, x) = β0(x), x ∈ D̄, (33)

and the homogeneous boundary condition

β = 0 on ∂D. (34)

In order to determine the conditions in which the mixed problem (32)–(34) admits a
solution, it is recommended the works [29,30].

We will show that, under specific conditions, the problem (32)–(34) can not admit
a solution in finite time.

To make evaluations on the solutions to the problem (32)–(34) we introduce the
function G(t), defined with the help of the free energy W (t) from (31), through

G(t) =
∫

D

∂W

∂θ
βdV . (35)

Let us suppose that the free energy W (t) satisfies the following condition

W + ∂W

∂β,i
β,i ≥ 0. (36)

Theorem 3 We consider a solution of problem (32)–(34) for which the initial data (33)
is chosen so that the energy E is negative.

If the function G(t) attached to this solution satisfies the condition (36), then the
solution ceases to exist for t → ∞.

Proof In fact, we have to show that the solution becomes unbounded if t → ∞.
If we take into account the condition (34) and use the theorem of divergence, from

(32) we are led to the relation:

G(t) =
∫ t

0

∫

D

(
∂W

∂θ
θ + ∂W

∂β,i
β,i

)
dVdτ + G(0). (37)

Clearly, by direct derivation in (37) we obtain the following identity

dG(t)

dt
=

∫

D

(
∂W

∂θ
θ + ∂W

∂β,i
β,i

)
dV ,

and from here, with the help of energy inequality, we are led to the next estimate

dG(t)

dt
≥

∫

D

(
W + ∂W

∂β,i
β,i

)
dV − E(0). (38)

Finally, taking into account the hypothesis (36), from (38) we get the inequality

G(t) ≥ −G(0) − tE(0),
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which ends the proof of the theorem. ��

3 Conclusions

In the analysis developed in the present paper, we approach a semilinear initial bound-
ary value problem describing thermoelastic dipolar bodies without energy dissipation.
In our setting, the basic equations that describe the problem are linear with regard to
the thermal displacement and nonlinear with respect to the gradients of displacements
and temperature. This approach is original and it cannot be found at present for envi-
ronments with dipolar structure. Our results refer to the non-existence of solutions
for some mixed problems, considered in this context. Another feature of this paper
is that we also address the instability of the solutions of the considered problems.
We have paid special attention to the case when the mechanical effects are absent. It
is noteworthy that if the mechanical effects are neglected, then the theory becomes
a nonlinear one. However, we have managed to achieve both a result regarding the
non-existence of the solutions and a result concerning instability issues.
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