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Abstract
In this paper, we are concerned with the existence of least energy sign-changing
solutions for the following fractional Kirchhoff problem with logarithmic and critical
nonlinearity:

{(
a + b[u]ps,p

)
(−�)spu = λ|u|q−2u ln |u|2 + |u|p∗

s −2u in �,

u = 0 in RN\�,

where N > sp with s ∈ (0, 1), p > 1, and

[u]ps,p =
∫∫

R2N

|u(x) − u(y)|p
|x − y|N+ps

dxdy,

p∗
s = Np/(N − ps) is the fractional critical Sobolev exponent, � ⊂ R

N (N ≥ 3) is
a bounded domain with Lipschitz boundary and λ is a positive parameter. By using
constraint variational methods, topological degree theory and quantitative deforma-
tion arguments, we prove that the above problem has one least energy sign-changing
solution ub. Moreover, for any λ > 0, we show that the energy of ub is strictly larger
than two times the ground state energy. Finally, we consider b as a parameter and study
the convergence property of the least energy sign-changing solution as b → 0.
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1 Introduction

In this paper, we are interested in the existence, energy estimates and the conver-
gence property of the least energy sign-changing solution for the following fractional
Kirchhoff problems with logarithmic and critical nonlinearity:

{(
a + b[u]ps,p

)
(−�)spu = λ|u|q−2u ln |u|2 + |u|p∗

s −2u in �,

u = 0 in RN\�,
(1.1)

where N > sp with s ∈ (0, 1), p > 1, and

[u]ps,p =
∫∫

R2N

|u(x) − u(y)|p
|x − y|N+ps

dxdy,

p∗
s = Np/(N − ps) is the fractional critical Sobolev exponent, � ⊂ R

N (N ≥ 3) is
a bounded domain with Lipshcitz boundary and λ is a positive parameter. We denote
by (−�)sp the fractional p-Laplace operator which, up to a normalization constant, is
defined as

(−�)spϕ(x) = 2 lim
ε→0+

∫
RN \Bε(x)

|ϕ(x) − ϕ(y)|p−2(ϕ(x) − ϕ(y))

|x − y|N+ps
dy, x ∈ R

N ,

for all ϕ ∈ C∞
0 (RN ). Henceforward, Bε(x) denotes the open ball of RN centered at

x ∈ R
N and radius ε > 0.

One of the classical topics in the qualitative analysis of PDEs is the study of exis-
tence and multiplicity properties of solutions for both the Kirchhoff problems and
the fractional Kirchhoff problems under various hypotheses on the nonlinearity. In
the recent past there is a vast literature concerning the existence and multiplicity of
solutions for the following Dirichlet problem of Kirchhoff type

⎧⎨
⎩

−
(
a + b

∫
�

|∇u|2dx
)

�u = f (x, u), x ∈ �,

u|∂� = 0.
(1.2)

Problem (1.2) is a generalization of a model introduced by Kirchhoff [24]. More
precisely, Kirchhoff proposed a model given by the equation

ρ
∂2u

∂t2
−

(
ρ0

h
+ E

2L

∫ L

0

∣∣∣∣∂u∂x

∣∣∣∣
2

dx

)
∂2u

∂x2
= 0, (1.3)

where ρ, ρ0, h, E, L are constants. This nonlocal model extends the classical
D’Alembert’s wave equation, by considering the effects of the changes in the length
of the strings during the vibrations. Since Lions [29] introduced an abstract frame-
work to Kirchhoff-type equations, the solvability of these nonlocal problems has been
well studied in the general dimension by various authors. We refer to D’Ancona and
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Shibata [13] and D’Ancona and Spagnolo [14] for the global solvability of various
classes of Kirchhoff-type problems. We also refer to Carrier [9,10] who used a more
rigorous method to model transverse vibration via the coupled governing equation of
planar vibration in order to recover the nonlinear integro partial-differential equation,
in which a more general Kirchhoff function was considered. In addition, the nonlocal
Kirchhoff problems of parabolic type can model several biological systems, such as
population density, see for example Ghergu and Rădulescu [21]. For more details on
mathematical theories and its applications of Kirchhoff-type problems, we refer the
readers to [4,14,23,26,27,41].

Problem (1.2) is a nonlocal problem because the term b
∫
�

|∇u|2dx�u appears in
the left-hand side of the equation, which results that (1.2) is not a pointwise identity.
Moreover, the energy functional associated to (1.2) has different propertieswith respect
to the local case corresponding to b = 0, hence several mathematical difficulties are
brought naturally out in the study of the nonlocal problems (b 	= 0) by means of
variational methods. Recently, Fiscella and Valdinoci [19] proposed a steady-state
Kirchhoffmodel involving the fractional Laplacian by taking into account the nonlocal
aspect of the tension arising from nonlocal measurements of the fractional length of
the string, see [19, Appendix A] for more details. Fractional Kirchhoff-type Laplacian
problems have been studied by many authors, refer [2,3,20,28,34,36,37,48,49,51].
Here we can refer the recent monograph about nonlocal fractional problems [35].
We note that the results dealing with the problem (1.2) with critical nonlinearity are
relatively scarce. The main difficulty in the study of these problems is due to the lack
of compactness caused by the presence of the critical Sobolev exponent.

Recently,most of the literature dealswith fractional Laplacian problemswith power
type nonlinearities, there are a few papers that deal with the existence and multiplic-
ity of solutions for fractional problems involving logarithmic nonlinearity. In [15],
d’Avenia et al. considered the following fractional logarithmic Schorödinger equation

(−�)su + ωu = u log |u|2, x ∈ R
N ,

where ω > 0. By employing the fractional logarithmic Sobolev inequality, [15]
obtained the existence of infinitely many solutions. Moreover, the regularity of solu-
tions was also discussed in [15]. In [42], Truong studied the following problem
fractional p-Laplacian equations with logarithmic nonlinearity

(−�)spu + V (x)|u|p−2u = λa(x)|u|p−2u ln |u|, x ∈ R
N ,

where a is a sign-changing function. Under some assumptions on V , a and λ, [42]
obtained two nontrivial solutions by using Nehari manifold approach. Very recently,
Xiang, Hu and Yang in [47] considered the following Kirchhoff problems with com-
bined nonlinearity of logarithmic and power type

{
M([u]ps,p)(−�)spu = h(x)|u|θ p−2u ln |u| + λ|u|q−2u x ∈ �,

u = 0 x ∈ R
N\�,
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where s ∈ (0, 1), 1 < p < N/s, � is a bounded domain in R
N with Lipschitz

boundary,M([u]ps,p) = [u](θ−1)p
s,p with θ ≥ 1, and h is a sign-changing function.When

λ is sufficiently small, [47] obtained two nonnegative local least energy solutions by
using Nehari manifold approach.

On the other hand, the existence of sign-changing solutionof nonlinear elliptic PDEs
with power nonlinearities has been studied extensively for the p-Laplacian operator as
well as the fractional p-Laplacian operator.We refer the reader to see [5,6,11,12,30,44]
and the references therein. Consider the nonlocal problem

{
(−�)spu = f (x, u), x ∈ �,

u = 0, x ∈ R
N\�.

(1.4)

For p = 2, the authors in [11], have studied the problem (1.4), where the frac-
tional Laplacian operator is defined through spectral decomposition to obtain the
sign-changing solution. The method of harmonic extension was introduced by Caf-
farelli and Silvestre [8] to transform the nonlocal problem in � to a local problem in
the half cylinder � × (0,∞), by using an equivalent definition of the fraction Lapla-
cian operator [7]. For p ∈ (1,∞), the problem studied by Chang et al. [12], where the
authors have guaranteed the existence of a sign-changing solutions by using Nehari
manifold method.

Recently, many authors pay their attention to find sign-changing solutions to prob-
lem (1.2) or similar Kirchhoff-type equations, and indeed, some interesting results
were obtained. For example, Zhang and Perera [50] and Mao and Zhang [32] used the
method of invariant sets of descent flow to obtain the existence of a sign-changing solu-
tion of problem (1.2). In [17], Figueiredo and Nascimento considered the following
Kirchhoff equation of the type:

{−M
(∫

�
|∇u|2dx) �u = g(u), x ∈ �,

u|∂� = 0,
(1.5)

where� is a bounded domain inR3, M is a generalC1 class function, and g is a super-
linear C1 class function with subcritical growth. By using the minimization argument
and a quantitative deformation lemma, the existence of a sign-changing solution for
this Kirchhoff equation was obtained. In unbounded domains, Figueiredo and Santos
Júnior [18] studied a class of nonlocal Schrödinger–Kirchhof problems involving only
continuous functions. Using a minimization argument and a quantitative deformation
lemma, they obtained a least energy sign-changing solution to Schrödinger–Kirchhof
problems. Moreover, when the problem presents symmetry, the authors showed that
it has infinitely many nontrivial solutions.

It is noted that combining constraint variational methods and quantitative deforma-
tion lemma, Shuai [38] proved that problem (1.2) has one least energy sign-changing
solution ub and the energy of ub strictly larger than the ground state energy. More-
over, the author investigated the asymptotic behavior of ub as the parameter b ↘ 0.
Later, under some more weak assumptions on g (especially, Nehari type mono-
tonicity condition been removed), with the aid of some new analytical skills and
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Non-Nehari manifold method, Tang and Cheng [40] improved and generalized some
results obtained in [38].

In [16], Deng, Peng, and Shuai studied the following Kirchhoff problem:

−
(
a + b

∫
R3

|∇u|2dx
)

�u = f (x, u), x ∈ R
3. (1.6)

The authors obtained the existence of radial sign-changing solutions with prescribed
numbers of nodal domains for Kirchhoff problem (1.6) in H1

r (R3), the subspace of
radial functions of H1(R3) by using a Nehari manifold and gluing solution pieces
together, when V (x) = V (|x |), f (x, u) = f (|x |, u) and satisfies some conditions.
Precisely, they proved the existence of a sign-changing solution, which changes signs
exactly k times for any k ∈ N. Moreover, they investigated the energy property and
the asymptotic behavior of the sign-changing solution. By using a combination of the
invariant set method and the Ljusternik–Schnirelman type minimax method, Sun et
al. [39] obtained infinitely many sign-changing solutions for Kirchhoff problem (1.6)
when f (x, u) = f (u) and f is odd in u. It is worth noticing that, in [39], the nonlinear
term may not be 4-superlinear at infinity; in particular, it includes the power-type
nonlinearity |u|p−2u with p ∈ (2, 4]. In [43], the authors obtained the existence of
least energy sign-changing solutions of Kirchhoff-type equation with critical growth
by using the constraint variational method and the quantitative deformation lemma.
For more results on sign-changing solutions for Kirchhoff-type equations, we refer
the reader to [16,25,31] and the references therein.

2 Abstract setting andmain results

To the best of our knowledge, there are no results concerning the existence of sign-
changing solutions for fractional Kirchhoff problems with logarithmic and critical
nonlinearity. Hence, a natural question is whether or not there exist nodal solutions
of problem (1.1)? The goal of the present paper is to develop a thorough qualitative
analysis in this direction.

We first recall some preliminary results on the fractional Sobolev space Ws,p
0 (�)

with respect to the norm ‖u‖ = [u]s,p. We then have that Ws,p
0 (�) is continuously

and compactly embedded into the Lebesgue space Lr (�) endowed the norm |u|r =(∫
�

|u|r dx) 1
r , p < r < p∗

s . Denote by Sr the best constant for this embedding, that
is,

Sr |u|r ≤ ‖u‖, ∀u ∈ Ws,p
0 (�). (2.1)

In particular, if S is the the best constant for the embedding Ws,p
0 (�) ↪→ L p∗

s (�),
then it is defined by

S = inf
u∈Ws,p

0 (�)\{0}

∫∫
R2N

|u(x)−u(y)|p
|x−y|N+ps dxdy

(∫
�

|u|p∗
s dx

) p
p∗s

. (2.2)
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For the weak solution, we mean the one satisfying the given definition.

Definition 2.1 We say that u ∈ Ws,p
0 (�) is a (weak) solution of problem (1.1) if

(
a + b[u]ps,p

)
L(u, v) = λ

∫
�

|u|q−2uv ln |u|2dx +
∫

�

|u|p∗
s −2uv dx, (2.3)

where

L(u, v) := L(u, v)

∫∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))

|x − y|N+sp
(v(x) − v(y))dxdy

(2.4)

for any v ∈ Ws,p
0 (�).

The corresponding energy functional I λ
b : Ws,p

0 (�) → R to problem (1.1) is defined
by

I λ
b (u) = a

p
[u]ps,p + b

2p
[u]2ps,p + 2λ

q2

∫
�

|u|qdx − λ

q

∫
�

|u|q ln |u|2dx − 1

p∗
s

∫
�

|u|p∗
s dx . (2.5)

It is easy to see that I λ
b belongs to C1(Ws,p

0 (�),R) and the critical points of I λ
b are

the solutions of (1.1). Furthermore, if we write

u+(x) = max{u(x), 0} and u−(x) = min{u(x), 0}

for u ∈ Ws,p
0 (�), then every solution u ∈ Ws,p

0 (�) of problem (1.1) with the property
that u± 	= 0 is a sign-changing solution of problem (1.1).

It is noticed that if u± 	≡ 0

I λ
b (u) = I λ

b (u+) + I λ
b (u−) + b

p
‖u+‖p‖u−‖p,

〈(I λ
b )′(u), u+〉 = 〈(I λ

b )′(u+), u+〉 + b‖u+‖p‖u−‖p,

〈(I λ
b )′(u), u−〉 = 〈(I λ

b )′(u−), u−〉 + b‖u+‖p‖u−‖p.

Our goal in this paper is then to seek the least energy sign-changing solutions of
problem (1.1). As we know, there are some very interesting studies, which studied the
existence and multiplicity of sign-changing solutions for the following problem:

− �u + V (x)u = f (x, u), x ∈ �, (2.6)

where � is an open subset of RN . However, these methods of seeking sign-changing
solutions heavily rely on the following decompositions:

J (u) = J (u+) + J (u−), (2.7)

〈J ′(u), u+〉 = 〈J ′(u+), u+〉, 〈J ′(u), u−〉 = 〈J ′(u−), u−〉, (2.8)
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where J is the energy functional of (2.4) given by

J (u) = 1

2

∫
�

(|∇u|2 + V (x)u2)dx −
∫

�

F(x, u)dx .

However, if b > 0, the energy functional I λ
b does not possess the same decompositions

as (2.7) and (2.8). In fact, a straightforward computation yields that

I λ
b (u) > I λ

b (u+) + I λ
b (u−),

〈(I λ
b )′(u), u+〉 > 〈(I λ

b )′(u+), u+〉 and 〈(I λ
b )′(u), u−〉 > 〈(I λ

b )′(u−), u−〉

for u± 	= 0. Therefore, the method to obtain sign-changing solutions for the local
problem (2.6) do not seem applicable to problem (1.1). In this paper, we follow the
approach in [5] by defining the following constrained set

Mλ
b = {u ∈ Ws,p

0 (�), u± 	= 0 and 〈(I λ
b )′(u), u+〉 = 〈(I λ

b )′(u), u−〉 = 0} (2.9)

and considering a minimization problem of I λ
b onMλ

b . Indeed, by using the paramet-
ric method and implicit theorem, Shuai [38] proved Mλ

b 	= ∅ in the absence of the
nonlocal term. However, the nonlocal term in problem (1.1), consisting of the bihar-
monic operator and the nonlocal term will cause some difficulties. Roughly speaking,
compared to the general Kirchhoff type problem (1.2), decompositions (2.7) and (2.8)
corresponding to I λ

b are much more complicated. This results in some technical diffi-
culties during the proof of the nonempty ofMλ

b . Moreover, we find that the parametric
method and implicit theorem are not applicable for problem (1.1) due to the complex-
ity of the nonlocal term there. Therefore, our proof takes a different route which is
inspired by [1], namely, we make use of a modified Miranda’s theorem (see [33]). We
are also able to prove that the minimizer of the constrained problem is also a sign-
changing solution via the quantitative deformation lemma and degree theory. We can
now present our first main result.

Theorem 2.1 There exists λ∗ > 0 such that for all λ ≥ λ∗, problem (1.1) has a least
energy sign-changing solution ub ∈ Mλ

b with precisely two nodal domains such that
I λ
b (ub) = infu∈Mλ

b
I λ
b (u).

Another goal of this paper is to establish the so-called energy doubling property
(cf. [45]), i.e., the energy of any sign-changing solution of problem (1.1) is strictly
larger than twice the ground state energy. For the semilinear equation problem (2.6),
the conclusion is trivial. Indeed, if we denote the Nehari manifold associated to prob-
lem (2.6) by

N = {
u ∈ Ws,p

0 (�)\{0} | 〈J ′(u), u〉 = 0
}

and define

c = inf
u∈N

J (u) (2.10)
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then it is easy to verify that u± ∈ N for any sign-changing solution u ∈ Ws,p
0 (�) to

problem (2.6). We can deduce that

J (w) = J (w+) + J (w−) ≥ 2c. (2.11)

We may point out that the minimizer of (2.10) is indeed a ground state solution of
problem (2.6) and c > 0 is the least energy of all weak solutions of problem (2.6).
Therefore, by (2.11), it follows that the energy of any sign-changing solution of prob-
lem (2.6) is larger than twice the least energy. When b > 0, a similar result was
obtained by Shuai [38] in a bounded domain �. We are also interested in that whether
property (2.11) is still true for problem (1.1). To answer this question, we have the
following result:

Theorem 2.2 There exists λ∗∗ > 0 such that for all λ ≥ λ∗∗, the c∗ :=
infu∈N λ

b
I λ
b (u) > 0 is achieved and I λ

b (u) > 2c∗, where N λ
b = {

u ∈ Ws,p
0 (�)\{0} |

〈(I λ
b )′(u), u〉 = 0

}
and u is the least energy sign-changing solution obtained in The-

orem 2.1. In particular, c∗ > 0 is achieved either by a positive or a negative function.

It is obvious that the energy of the sign-changing solution ub obtained in Theo-
rem 2.1 depends on b. In the following, we give a convergence property of ub as
b → 0, which reflects some relationship between b > 0 and b = 0 for problem (1.1).

Theorem 2.3 For any sequence {bn} with bn → 0 as n → ∞, there exists a subse-
quence, still denoted by {bn}, such that {un} converges to u0 strongly in Ws,p

0 (�) as
n → ∞, where u0 is a least energy sign-changing solution to the following problem

{
a(−�)spu = λ|u|q−2u ln |u|2 + |u|p∗

s −2u in �,

u = 0 in R
N\�.

(2.12)

The plan of this paper is as follows: Sect. 2 covers the proof of the achievement of
least energy for the constraint problem (1.1), Sect. 3 is devoted to the proofs of our
main theorems.

Throughout this paper, we use standard notations. For simplicity, we use “→”
and “⇀” to denote the strong and weak convergence in the related function space
respectively. Various positive constants are denoted by C and Ci . We use “:=” to
denote definitions and Br (x) := {y ∈ R

N | |x − y| < r}. We denote a subsequence
of a sequence {un}n as {un}n to simplify the notation unless specified.

3 Some technical lemmas

Now, fixed u ∈ Ws,p
0 (�)with u± 	= 0, we define functionψu : [0,∞)×[0,∞) → R

and mapping Tu : [0,∞) × [0,∞) → R
2 by

ψu(α, β) = I λ
b (αu+ + βu−) (3.1)



Least-energy nodal solutions of critical Kirchhoff… Page 9 of 31    45 

and

Tu(α, β) = (〈(I λ
b )′(αu+ + βu−), αu+〉, 〈(I λ

b )′(αu+ + βu−), βu−〉) . (3.2)

Lemma 3.1 For any u ∈ Ws,p
0 (�) with u± 	= 0, then there is the unique maximum

point pair (αu, βu) of the function ψu such that αuu+ + βuu− ∈ Mλ
b.

Proof Our proof will be divided into three steps.
Step 1 For any u ∈ Ws,p

0 (�) with u± 	= 0, in the following, we will prove the
existence of αu and βu .

From assumptions, we have that

lim
t→0

|t |q−1 ln |t |2
|t |p−1 = 0 and lim

t→∞
|t |q−1 ln |t |2

|t |r−1 = 0 (3.3)

for all r ∈ (q, p∗
s ). Then for any ε > 0, there exists Cε > 0 such that

|t |q−1 ln |t |2 ≤ ε|t |p−1 + Cε|t |r−1. (3.4)

Since 4 ≤ 2p < q < p∗
s , it follows from (3.4) and the Sobolev embedding theorem

that

〈(I λ
b )′(αu+ + βu−), αu+〉 = aα p‖u+‖p + bα2p‖u+‖2p + bα pβ p‖u+‖p‖u−‖p

− λ

∫
�

|αu+|q ln |αu+|2dx − α p∗
s

∫
�

|u+|p∗
s dx

≥ aα p‖u+‖p + bα2p‖u+‖2p + bα pβ p‖u+‖p‖u−‖p

− λα pε

∫
�

|u+|pdx − λCεα
r
∫

�

|u+|r dx − α p∗
s

∫
�

|u|p∗
s dx

≥ aα p‖u+‖p + bα2p‖u+‖2p − λα pεC1‖u+‖p

− λCεα
rC2‖u+‖r − C3α

p∗
s ‖u+‖p∗

s

= (a − λεC1) α p‖u+‖p + bα2p‖u+‖2p − λCεα
rC2‖u+‖r

− C3α
p∗
s ‖u+‖p∗

s .

Choose ε > 0 such that (a−λεC1) > 0. Since p∗
s , r > 2p, we have that 〈(I λ

b )′(αu++
βu−), αu+〉 > 0 for α small enough and all β ≥ 0.

Similarly, we obtain that 〈(I λ
b )′(αu+ + βu−), βu−〉 > 0 for β small enough and

all α ≥ 0.
Therefore, there exists δ1 > 0 such that

〈(I λ
b )′(δ1u+ + βu−), δ1u

+〉 > 0, 〈(I λ
b )′(αu+ + δ1u

−), δ1u
−〉 > 0 (3.5)

for all α, β ≥ 0.
On the other hand, we can choose α = δ∗

2 > δ1, if β ∈ [δ1, δ∗
2 ] and δ∗

2 is large
enough, it follows that
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〈(I λ
b )′(δ∗

2u
+ + βu−), δ∗

2u
+〉 ≤ a(δ∗

2 )
p‖u+‖p + b(δ∗

2 )
2p‖u+‖2p + b(δ∗

2 )
2p‖u+‖p‖u−‖p

− (δ∗
2 )

p∗
s

∫
�

|u+|p∗
s dx ≤ 0.

Similarly, we have that

〈(I λ
b )′(αu+ + δ∗

2u
−), δ∗

2u
−〉 ≤ (δ∗

2)
p‖u−‖p + b(δ∗

2)
2p‖u+‖2p + b(δ∗

2)
2p‖u+‖p‖u−‖p

− (δ∗
2)

p∗
s

∫
�

|u−|p∗
s dx ≤ 0.

Let δ2 > δ∗
2 be large enough, we obtain that

〈(I λ
b )′(δ∗

2u
+ + βu−), δ∗

2u
+〉 < 0 and 〈(I λ

b )′(αu+ + δ∗
2u

−), δ∗
2u

−〉 < 0 (3.6)

for all α, β ∈ [δ1, δ2].
Combining (3.5) and (3.6) with Miranda’s theorem [33], there exists (αu, βu) ∈

(0,+∞) × (0,+∞) such that Tu(α, β) = (0, 0), i.e., αu+ + βu− ∈ Mλ
b .

Step 2 In this step, we prove the uniqueness of the pair (αu, βu).
• Case u ∈ Mλ

b .
If u ∈ Mλ

b , we have that

‖u+‖p + b‖u+‖2p + b‖u+‖p‖u−‖p = λ

∫
�

|u+|q ln |u+|2dx +
∫

�

|u+|p∗
s dx

(3.7)

and

‖u−‖2 + b‖u−‖2p + b‖u+‖p‖u−‖p = λ

∫
�

|u−|q ln |u−|2dx +
∫

�

|u−|p∗
s dx .

(3.8)

We show that (αu, βu) = (1, 1) is the unique pair of numbers such thatαuu++βuu− ∈
Mλ

b .
Let (α0, β0) be a pair of numbers such that α0u+ +β0u− ∈ Mλ

b with 0 < α0 ≤ β0.
Hence, one has that

α
p
0 ‖u+‖p + bα2p

0 ‖u+‖2p + bα p
0 β

p
0 ‖u+‖p‖u−‖p = λ

∫
�

|α0u
+|q ln |α0u

+|2dx

+ α
p∗
s

0

∫
�

|u+|p∗
s dx (3.9)
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and

β
p
0 ‖u−‖p + bβ2p

0 ‖u−‖2p + bα p
0 β

p
0 ‖u+‖p‖u−‖p = λ

∫
�

|β0u
−|q ln |β0u

−|2dx

+ β
p∗
s

0

∫
�

|u−|p∗
s dx . (3.10)

According to 0 < α0 ≤ β0 and (3.10), we have that

‖u−‖p

β
p
0

+ b‖u−‖2p + b‖u+‖p‖u−‖p ≥ λ

∫
�

|β0u−|q ln |β0u−|2
β
2p
0

dx + β
p∗
s −2p

0

∫
�

|u−|p∗
s dx .

(3.11)

If β0 > 1, by (3.8) and (3.11), one has that

0 >

(
1

β
p
0

− 1

)
‖u−‖p ≥ λ

∫
�

[
|β0u−|q ln |β0u−|2

β
2p
0

− |u−|q ln |u−|2
]
dx

+ (β
p∗
s −2p

0 − 1)
∫

�

|u−|p∗
s dx

≥ (β
p∗
s −2p

0 − 1)
∫

�

|u−|p∗
s dx > 0.

This is a contradiction. Therefore, we conclude that 0 < α0 ≤ β0 ≤ 1.
Similarly, by (3.9) and 0 < α0 ≤ β0, we have that

(
1

α
p
0

− 1

)
‖u+‖p ≤ λ

∫
�

[
|α0u+|q ln |α0u+|2

α
2p
0

− |u+|q ln |u+|2
]
dx

+ (β
p∗
s −2p

0 − 1)
∫

�

|u+|p∗
s dx .

This fact implies that α0 ≥ 1. Consequently, α0 = β0 = 1.
• Case u /∈ Mλ

b .
Suppose that there exist (α1, β1), (α2, β2) such that

ω1 = α1u
+ + β1u

− ∈ Mλ
b and ω2 = α2u

+ + β2u
− ∈ Mλ

b .

Hence

ω2 =
(

α2

α1

)
α1u

+ +
(

β2

β1

)
β1u

− =
(

α2

α1

)
ω+
1 +

(
β2

β1

)
ω−
1 ∈ Mλ

b .

By ω1 ∈ Mλ
b , one has that

α2

α1
= β2

β1
= 1.
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Hence, α1 = α2, β1 = β2.
Step 3 In this step, we will prove that (αu, βu) is the unique maximum point of ψu

on [0,∞) × [0,∞).
First, it is easy to see that

2τ q − qτ q ln |τ |2 ≤ 2 for all τ ∈ (0,∞). (3.12)

Let �+ = {x ∈ � : u(x) > 0} and �− = {x ∈ � : u(x) < 0}, u ∈ Ws,p
0 (�) with

u± 	= 0, we have that

∫
�

|αu+ + βu−|q ln |αu+ + βu−|2dx =
∫

�+
|αu+ + βu−|q ln |αu+ + βu−|2dx

+
∫

�−
|αu+ + βu−|q ln |αu+ + βu−|2dx

=
∫

�+
|αu+|q ln |αu+|2dx +

∫
�−

|βu−|q ln |βu−|2dx

=
∫

�

[|αu+|q ln |αu+|2 + |βu−|q ln |βu−|2] dx . (3.13)

Combining (3.12) and (3.13), we have that

ψu(α, β) = I λ
b (αu+ + βu−)

= 1

p
‖αu+ + βu−‖p + b

2p
‖αu+ + βu−‖2p + 2λ

q2

∫
�

|αu+ + βu−|qdx

− λ

q

∫
�

|αu+ + βu−|q ln |αu+ + βu−|2dx − 1

p∗
s

∫
�

|αu+ + βu−|p∗
s dx

= α p

p
‖u+‖p + β p

p
‖u−‖p + bα2p

2p
‖u+‖2p + bβ2p

2p
‖u−‖2p + bα pβ p

p
‖u+‖p‖u−‖p

+ λ

q2

∫
�

(
2|αu+|q − q|αu+|q ln |αu+|2) dx

+ λ

q2

∫
�

(
2|βu−|q − q|βu−|q ln |βu−|2) dx

− α p∗
s

p∗
s

∫
�

|u+|p∗
s dx − β p∗

s

p∗
s

∫
�

|u−|p∗
s dx

≤ α p

p
‖u+‖p + β p

p
‖u−‖p + bα2p

2p
‖u+‖2p + bβ2p

2p
‖u−‖2p + bα pβ p

p
‖u+‖p‖u−‖p

+ 4

q2
λ|�| − α p∗

s

p∗
s

∫
�

|u+|p∗
s dx − β p∗

s

p∗
s

∫
�

|u−|p∗
s dx

which implies that lim|(α,β)|→∞ ψu(α, β) = −∞ since p∗
s > 2p. Hence, (αu, βu)

is the unique critical point of ψu in [0,∞) × [0,∞). So it is sufficient to check
that a maximum point cannot be achieved on the boundary of [0,∞) × [0,∞). By
contradiction, we suppose that (0, β0) is a maximum point of ψu with β0 ≥ 0. Then,
we have that
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ψu(α, β0) = α p

p
‖u+‖p + bα2p

2p
‖u+‖2p + 2αqλ

q2

∫
�

|u+|qdx − αqλ

q

∫
�

|u+|q ln |αu+|2dx

− α p∗
s

p∗
s

∫
�

|u+|p∗
s dx + β

p
0

p
‖u−‖p + bβ2p

0

2p
‖u−‖2p + 2βqλ

q2

∫
�

|u−|qdx

− βqλ

q

∫
�

|u−|q ln |βu−|2dx − β p∗
s

p∗
s

∫
�

|u−|p∗
s dx

+ bα pβ
p
0

p
‖u+‖p‖u−‖p .

Therefore, it is obvious that

(ψu)
′
α(α, β0) = α p−1‖u+‖p + bα2p−1‖u+‖2p + bα p−1β

p
0 ‖u+‖p‖u−‖p

+ 2αq−1λ

q

∫
�

|u+|qdx − αq−1
∫

�

|u+|q ln |αu+|2dx − α p∗
s −1

∫
�

|u+|p∗
s dx

> 0,

if α is small enough. That is, ψu is an increasing function with respect to α if α is
small enough. This yields the contradiction. Similarly, ψu can not achieve its global
maximum on (α, 0) with α ≥ 0. ��
Lemma 3.2 For any u ∈ Ws,p

0 (�) with u± 	= 0 such that 〈(I λ
b )′(u), u±〉 ≤ 0. Then,

the unique maximum point of ψu on [0,∞) × [0,∞) satisfies 0 < αu, βu ≤ 1.

Proof Without loss of generality, let αu ≥ βu > 0.
On the one hand, by αuu+ + βuu− ∈ Mλ

b , we have

aα
p
u ‖u+‖p + bα2p

u ‖u+‖2p + bα2p
u ‖u+‖p‖u−‖p = λα

q
u

∫
�

|u+|q ln |αuu
+|2dx

− α
p∗
s

u

∫
�

|u+|p∗
s dx . (3.14)

On the other hand, by 〈(I λ
b )′(u), u+〉 ≤ 0, we have

a‖u+‖p + b‖u+‖2p + b‖u+‖p‖u−‖p ≤ λ

∫
�

|u+|q ln |u+|2dx +
∫

�

|u+|p∗
s dx .

(3.15)

So, according to (3.14) and (3.15), we have that

(
1

α
p
u

− 1

)
a‖u+‖p ≥ λ

∫
�

[
α
q−2p
u |u+|q ln |αuu

+|2 − |u+|q ln |u+|2
]
dx

+ (α
p∗
s −2p

u − 1)
∫

�

|u+|p∗
s dx . (3.16)
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If αu ≥ 1, one has

∫
�

[
α
q−2p
u |u+|q ln |αuu

+|2 − |u+|q ln |u+|2
]
dx ≥ 0.

This fact together with (3.16), we have

0 >

(
1

α
p
u

− 1

)
a‖u+‖p ≥ (α

p∗
s −2p

u − 1)
∫

�

|u+|p∗
s dx > 0.

This is a contradiction. Thus, we conclude that αu ≤ 1. Thus, we have that 0 <

αu, βu ≤ 1. ��
Lemma 3.3 Let cλ

b = infu∈Mλ
b
I λ
b (u), then we have that limλ→∞ cλ

b = 0.

Proof For any u ∈ Mλ
b , we have

a‖u±‖p + b‖u±‖2p + b‖u+‖p‖u−‖p = λ

∫
�

|u±|q ln |u±|2dx +
∫

�

|u±|p∗
s dx .

Then, by (3.4) and the Sobolev theorem, we have that

a‖u±‖p ≤ λ

∫
�

|u±|q ln |u±|2dx +
∫

�

|u±|p∗
s dx

≤ λεC1‖u±‖p + λCεC2‖u±‖r + C3‖u±‖p∗
s .

Thus, we get

(1 − λεC1)a‖u±‖p ≤ λCεC2‖u±‖r + C3‖u±‖p∗
s .

Choosing ε small enough such that 1−λεC1 > 0, since r , p∗
s > p, there exists ρ > 0

such that

‖u±‖ ≥ ρ for all u ∈ Mλ
b . (3.17)

On the other hand, for any u ∈ Mλ
b , it is obvious that 〈(I λ

b )′(u), u〉 = 0. Then, we
have

I λ
b (u) = I λ

b (u) − 1

q
〈(I λ

b )′(u), u〉

=
(
1

p
− 1

q

)
a‖u‖p +

(
1

2p
− 1

q

)
b‖u‖2p +

(
1

q
− 1

p∗
s

)∫
�

|u|p∗
s dx

+ 2λ

q2

∫
�

|u|qdx ≥
(
1

p
− 1

q

)
a‖u‖p.
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From above discussions, we have that I λ
b (u) > 0 for all u ∈ Mλ

b . Therefore, I
λ
b is

bounded below on Mλ
b , that is c

λ
b = infu∈Mλ

b
I λ
b (u) is well defined.

Let u ∈ Ws,p
0 (�) with u± 	= 0 be fixed. By Lemma 3.1, for each λ > 0, there exist

αλ, βλ > 0 such that αλu+ + βλu− ∈ Mλ
b . By using Lemma 3.1 again, we have that

0 ≤ cλ
b = inf

u∈Mλ
b

I λ
b (u) ≤ I λ

b (αλu
+ + βλu

−)

≤ 1

p
a‖αλu

+ + βλu
−‖p + b

2p
‖αλu

+ + βλu
−‖2p

≤ aα
p
λ ‖u+‖p + aβ

p
λ ‖u−‖p + pbα2p

λ ‖u+‖2p + pbβ2p
λ ‖u−‖2p.

To our end, we just prove that αλ → 0 and βλ → 0 as λ → ∞.
Let

Tu = {(αλ, βλ) ∈ [0,∞) × [0,∞) : Tu(αλ, βλ) = (0, 0), λ > 0} ,

where Tu is defined as (3.2). By (3.3), we have that

α
p∗
s

λ

∫
�

|u+|p∗
s dx + β

p∗
s

λ

∫
�

|u−|p∗
s dx

≤ α
p∗
s

λ

∫
�

|u+|p∗
s dx + β

p∗
s

λ

∫
�

|u−|p∗
s dx + λα

q
λ

∫
�

|u+|q ln |u+|2dx

+ λβ
q
λ

∫
�

|u+|q ln |u+|2dx
= ‖αλu

+ + βλu
−‖p + b‖αλu

+ + βλu
−‖2p

≤ pα p
λ ‖u+‖p + pβ p

λ ‖u−‖p + 2pbα2p
λ ‖u+‖2p + 2pbβ2p

λ ‖u−‖2p.

Hence, Tu is bounded since 2p < p∗
s . Let {λn} ⊂ (0,∞) be such that λn → ∞ as

n → ∞. Then, there exist α0 and β0 such that (αλn , βλn ) → (α0, β0) as n → ∞.
Now, we claim α0 = β0 = 0. Suppose, by contradiction, that α0 > 0 or β0 > 0.

By αλn u
+ + βλn u

− ∈ Mλn
b , for any n ∈ N, we have

‖αλn u
+ + βλn u

−‖p + b‖αλn u
+ + βλn u

−‖2p

= λn

∫
�

|αλn u
+ + βλn u

−|q ln |αλn u
+ + βλn u

−|2dx +
∫

�

|αλn u
+ + βλn u

−|p∗
s dx .

(3.18)

Thanks to αλn u
+ → α0u+ and βλn u

− → β0u+ in Ws,p
0 (�), (3.4) and the Lebesgue

dominated convergence theorem, we have that

∫
�

|αλn u
+ + βλn u

−|q ln |αλn u
+ + βλn u

−|2dx

→
∫

�

|α0u
+ + β0u

−|q ln |α0u
+ + β0u

−|2dx > 0
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as n → ∞. It follows from λn → ∞ as n → ∞ and {αλn u
+ + βλn u

−} is bounded in
Ws,p

0 (�) that we have a contradiction with equality (3.18). Hence, α0 = β0 = 0.
Hence, we conclude that limλ→∞ cλ

b = 0. ��
Lemma 3.4 There exists λ∗ > 0 such that for all λ ≥ λ∗, the infimum cλ

b is achieved.

Proof By the definition of cλ
b , there exists a sequence {un} ⊂ Mλ

b such that

lim
n→∞ I λ

b (un) = cλ
b .

Obviously, {un} is bounded in Ws,p
0 (�). Then, up to a subsequence, still denoted by

{un}, there exists u ∈ Ws,p
0 (�) such that un⇀u. Since the embedding Ws,p

0 (�) ↪→
Lt (�) is compact, for all t ∈ (p, p∗

s ), we have

un → u in Lt (�), un → u a.e. x ∈ �.

Hence

u±
n ⇀u± in Ws,p

0 (�),

u±
n → u± in Lt (�),

u±
n → u± a.e. x ∈ �.

By Lemma 3.1, we have that

I λ
b (αu+

n + βu−
n ) ≤ I λ

b (un)

for all α, β ≥ 0.
On the one hand, the Vitali convergence theorem yields that

lim
n→∞

∫
�

|un|q ln |un|2dx →
∫

�

|u|q ln |u|2dx . (3.19)

On the other hand, since un → u in Lq(�), we have

lim
n→∞

∫
�

|un|qdx →
∫

�

|u|qdx . (3.20)

Then, by (3.19), (3.20), Brézis–Lieb lemma and the weak semicontinuity of norm, we
have

lim inf
n→∞ I λ

b (αu+
n + βu−

n )

≥ aα p

p
lim
n→∞(‖u+

n − u+‖p + ‖u+‖p) + aβ p

p
lim
n→∞(‖u−

n − u−‖p + ‖u−‖p)

+ bα2p

2p

[
lim
n→∞(‖u+

n − u+‖p + ‖u+‖p)
]2 + bβ2p

2p

[
lim
n→∞(‖u−

n − u−‖p + ‖u−‖p)
]2
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− α p∗
s

p∗
s

lim
n→∞

[∫
�

|u+
n − u+|p∗

s dx +
∫

�

|u+|p∗
s dx

]

− β p∗
s

p∗
s

lim
n→∞

[∫
�

|u−
n − u−|p∗

s dx +
∫

�

|u−|p∗
s dx

]

+ 2λ

q2

∫
�

|u|qdx − λ

q

∫
�

|u|q ln |u|2dx + bα2β2

2
lim inf
n→∞ (‖u+

n ‖2‖u−
n ‖2)

≥ I λ
b (αu+ + βu−) + aα p

p
lim
n→∞ ‖u+

n − u+‖p + aβ p

p
lim
n→∞ ‖u−

n − u−‖p

+ bα2p

p
lim
n→∞ ‖u+

n − u+‖p‖u+‖p + bβ2p

p
lim
n→∞ ‖u−

n − u−‖p‖u−‖p

+ bα2p

2p
( lim
n→∞ ‖u+

n − u+‖p)2 + bt2p

2p
( lim
n→∞ ‖u−

n − u−‖p)2

− α p∗
s

p∗
s

∫
�

|u+
n − u+|p∗

s dx − β p∗
s

p∗
s

∫
�

|u−
n − u−|p∗

s dx

≥ I λ
b (αu+ + βu−) + aα p

p
A1 + bα2p

p
A1‖u+‖p + bα2p

2p
Ap
1 − aα p∗

s

p∗
s

B1

+ aβ p

p
A2 + bβ2p

p
A2‖u−‖p + bβ2p

2p
Ap
2 − β p∗

s

p∗
s
B2,

where

A1 = lim
n→∞ ‖u+

n − u+‖p, A2 = lim
n→∞ ‖u−

n − u−‖p,

B1 = lim
n→∞ |u+

n − u+|p∗
s

p∗
s
, B2 = lim

n→∞ |u−
n − u−|p∗

s
p∗
s
.

That is, one has that

I λ
b (αu+ + βu−) + aα p

p
A1 + bα2p

p
A1‖u+‖p + bα2p

2p
Ap
1 − α p∗

s

p∗
s
B1

+ aβ p

p
A2 + bβ2p

p
A2‖u−‖p + bβ2p

2p
Ap
2 − β p∗

s

p∗
s
B2 ≤ cλ

b (3.21)

for all α ≥ 0 and all β ≥ 0.
Now, we claim that u± 	= 0.
In fact, since the situation u− 	= 0 is analogous, we just prove u+ 	= 0. By contra-

diction, we suppose u+ = 0. Hence, let β = 0 in (3.17) and we have that

aα p

p
A1 + bα2p

2p
A2
1 − α p∗

s

p∗
s
B1 ≤ cλ

b (3.22)

for all α ≥ 0.
Case 1: B1 = 0.
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If A1 = 0, that is, u+
n → u+ in Ws,p

0 (�). In view of Lemma (3.22), we obtain
‖u+‖ > 0, which contradicts our supposition. If A1 > 0, by (3.22), we have that

aα p

p
A1 + bα2p

2p
A2
1 ≤ cλ

b

for all α ≥ 0, which is absurd by Lemma 3.3. Anyway, we have a contradiction.
Case 2: B1 > 0.
One one hand, by Lemma 3.3, there exists λ∗ > 0 such that

cλ
b <

s

N
(aS)N/ps for all λ ≥ λ∗, (3.23)

where S > 0 is given by (2.2).
On the other hand, since B1 > 0, we obtain A1 > 0. Hence, in view of (3.22), we

have that

s

N
(aS)N/ps ≤ max

α≥0

{
aα p

p
A1 − α p∗

s

p∗
s
B1

}
≤ max

α≥0

{
aα p

p
A1 + bα2p

2p
A2
1 − α p∗

s

p∗
s
B1

}
≤ cλ

b ,

which is a contradiction. That is, we deduce that u± 	= 0.
Second, we prove B1 = B2 = 0.
Since the situation B2 = 0 is analogous, we only prove B1 = 0. By contradiction,

we suppose that B1 > 0.
Case 1: B2 > 0.
According to B1, B2 > 0 and Sobolev embedding, we obtain that A1, A2 > 0. Let

φ(α) = aα p

p
A1 + bα2p

2p
A2
1 − α p∗

s

p∗
s
B1 for all α ≥ 0.

It is easy to see that φ(α) > 0 for α > 0 small enough and φ(α) < 0 for α < 0 large
enough. Hence, by continuous of φ(α), there exists α̂ > 0 such that

aα̂ p

p
A1 + bα̂2p

2p
A2
1 − α̂ p∗

s

p∗
s
B1 = max

α≥0

{
aα p

p
A1 + bα2p

2p
A2
1 − α p∗

s

p∗
s
B1

}
.

Similarly, there exists β̂ > 0 such that

aβ̂ p

p
A2 + bβ̂2p

2p
A2
2 − β̂ p∗

s

p∗
s
B2 = max

α≥0

{
aα p

p
B1 + bα2p

2p
B2
1 − α p∗

s

p∗
s
B1

}
.

Since [0, α̂] × [0, β̂] is compact and φ is continuous, there exists (αu, βu) ∈ [0, α̂] ×
[0, β̂] such that

φ(αu, βu) = max
(α,β)∈[0,α̂]×[0,β̂]

φ(α, β).
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Now, we prove that (αu, βu) ∈ (0, α̂) × (0, β̂).
Note that, if β is small enough, we have that

φ(α, 0) = I λ
b (αu+) < I λ

b (αu+) + I λ
b (βu−) ≤ I λ

b (αu+ + βu−) = φ(α, β)

for all α ∈ [0, α̂].
Hence, there exists β0 ∈ [0, β̂] such that

φ(α, 0) ≤ φ(α, β0) for all α ∈ [0, α̂].

That is, any point of (α, 0) with 0 ≤ α ≤ α̂ is not the maximizer of φ. Hence,
(αu, βu) /∈ [0, α̂] × {0}. Similarly, we obtain (αu, βu) /∈ {0} × [0, α̂].

On the other hand, it is easy to see that

aα p

p
A1 + bα2p

p
A1‖u+‖p + bα2p

2p
A2
1 − α p∗

s

p∗
s
B1 > 0 (3.24)

and

aβ p

p
A2 + bβ2p

p
A2‖u−‖p + bβ2p

2p
A2
2 − β p∗

s

p∗
s
B2 > 0 (3.25)

for α ∈ (0, α̂], β ∈ (0, β̂].
Then, we have that

s

N
(aS)N/ps ≤ aα̂ p

p
A1 + bα̂2p

2p
A2
1 − α̂ p∗

s

p∗
s
B1 + bα̂2p

p
A1‖u+‖p

+ aβ p

p
A2 + bβ2p

p
A2‖u−‖p + bβ2p

2p
A2
2 − β p∗

s

p∗
s
B2

and

s

N
(aS)N/ps ≤ aβ̃ p

p
A2 + bβ̃2p

2p
Ap
2 − β̃ p∗

s

p∗
s
B2 + bβ̃2p

p
A2‖u−‖p

+ aα p

p
A1 + bα2p

p
A1‖u+‖p + bα2p

2p
A2
1 − α p∗

s

p∗
s
B1

for all α ∈ [0, α̂] and all β ∈ [0, β̂].
Therefore, according to (3.21), we conclude that

ψ(α, β̂) ≤ 0, ψ(α̂, β) ≤ 0

for all α ∈ [0, α̂] and all β ∈ [0, β̂].
Hence,(αu, βu) /∈ {α̂} × [0, β̂] and (αu, βu) /∈ [0, α̂] × {β̂}.
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Finally, we get that (αu, βu) ∈ (0, α̂) × (0, β̂). Hence, it follows that (αu, βu) is a
critical point of ψ .

Hence, αuu+ + βuu− ∈ Mλ
b . From (3.17), (3.20), and (3.21), we have that

cλ
b ≥ I λ

b (αuu
+ + βuu

−) + aα
p
u

p
A1 + bα2p

u

p
A1‖u+‖p + bα2p

u

2p
A2
1 − α p∗

s

p∗
s
B1

+ aβ
p
u

p
A2 + bβ2p

u

p
A2‖u−‖p + bβ2p

u

2p
Ap
2 − β p∗

s

p∗
s
B2

> I λ
b (αuu

+ + βuu
−) ≥ cλ

b ,

which is a contradiction.
Case 2: B2 = 0.
In this case, we can maximize in [0, α̂]× [0,∞). Indeed, it is possible to show that

there exist β0 ∈ [0,∞) such that

I λ
b (αuu

+ + βuu
−) ≤ 0 for all (α, β) ∈ [0, α̂] × [β0,∞).

Hence, there is (αu, βu) ∈ [0, α̂] × [0,∞) such that

φ(αu, βu) = max
(α,β)∈[0,α̂]×[0,∞)

φ(α, β).

In the following, we prove that (αu, βu) ∈ (0, α̂) × (0,∞).
It is noted that φ(α, 0) < φ(α, β) for α ∈ [0, α̂] and β small enough, so we have

(αu, βu) /∈ [0, α̂] × {0}.
Meanwhile, φ(0, β) < φ(α, β) for β ∈ [0,∞) and α small enough, then we have

(αu, βu) /∈ {0} × [0,∞).
On the other hand, it is obvious that

s

N
(aS)N/ps ≤ aα̂ p

p
A1 + bα̂2p

2p
A2
1 − α p∗

s

p∗
s
B1 + bα̂2p

p
A2‖u+‖p

+ aβ p

p
A2 + bβ2p

p
A2‖u−‖p + bβ2p

2p
A2
2

for all β ∈ [0,∞).
Hence, we have thatφ(α̂, β) ≤ 0 for allβ ∈ [0,∞). Thus, (αu, βu) /∈ {α̂}×[0,∞).

Hence, (αu, βu) ∈ (0, α̂) × (0,∞). That is, (αu, βu) is an inner maximizer of φ in
[0, α̂) × [0,∞). Hence, αuu+ + βuu− ∈ Mλ

b .
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Hence, in view of (3.24), we have that

cλ
b ≥ I λ

b (αuu
+ + βuu

−) + aα
p
u

p
A1 + bα2p

u

p
A1‖u+‖p + bα2p

u

2p
A2
1 − α p∗

s

p∗
s
B1

+ aβ
p
u

p
A2 + bβ2p

u

p
A2‖u−‖p + bβ2p

u

2p
A2
2

> I λ
b (αuu

+ + βuu
−) ≥ cλ

b ,

which is a contradiction.
Therefore, from the above arguments, we have that B1 = B2 = 0.
Finally, we prove that cλ

b is achieved.
Since u± 	= 0, by Lemma 3.1, there exist αu, βu > 0 such that

ū := αuu
+ + βuu

− ∈ Mλ
b .

Furthermore, it is easy to see that

〈(I λ
b )′(u), u±〉 ≤ 0.

By Lemma 3.2, we obtain 0 < αu, βu ≤ 1.
Since un ∈ Mλ

b , according to Lemma 3.3, we get

I λ
b (αuu

+
n + βuu

−
n ) ≤ I λ

b (u+
n + u−

n ) = I λ
b (un).

Thanks to B1 = B2 = 0 and the norm in Ws,p
0 (�) is lower semicontinuous, and

we have that

cλ
b ≤ I λ

b (ū) − 1

q
〈(I λ

b )′(ū), ū〉

≤
(
1

p
− 1

q

)
a‖ū‖p +

(
1

2p
− 1

q

)
b‖ū‖2p + 2λ

q2

∫
�

|ū|qdx +
(
1

q
− 1

p∗
s

)∫
�

|ū|p∗
s dx

=
(
1

p
− 1

q

)
a(‖αuu

+‖p + ‖βuu
−‖p) +

(
1

2p
− 1

q

)
b(‖αuu

+‖p + ‖βuu
−‖p)2

+ 2λ

q2

[∫
�

|αuu
+|qdx +

∫
�

|βuu
−|qdx

]
+

(
1

q
− 1

p∗
s

) [∫
�

|αuu
+|p∗

s dx

+
∫

�

|βuu
−|p∗

s dx

]

≤
(
1

p
− 1

q

)
a‖u‖p +

(
1

2p
− 1

q

)
b‖u‖2p + 2λ

q2

∫
�

|u|qdx +
(
1

q
− 1

p∗
s

)∫
�

|u|p∗
s dx

≤ lim inf
n→∞

[
I λ
b (un) − 1

q
〈(I λ

b )′(un), un〉
]

≤ cλ
b .

Therefore, αu = βu = 1, and cλ
b is achieved by ub := u+ + u− ∈ Mλ

b . ��
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4 Proof of Theorems

In this section, we prove our main results. First, we prove Theorem 2.1. In fact, thanks
to Lemma 3.4, we just prove that the minimizer ub for cλ

b is indeed a sign-changing
solution of problem (1.1).

Proof of Theorem 2.1 Since ub ∈ Mλ
b , we have 〈(I λ

b )′(ub), u+
b 〉 = 〈(I λ

b )′(ub), u−
b 〉 =

0. By Lemma 3.4, for (α, β) ∈ (R+ × R+)\(1, 1), we have

I λ
b (αu+

b + βu−
b ) < I λ

b (u+
b + u−

b ) = cλ
b . (4.1)

Arguing by contradiction, we assume that (I λ
b )′(ub) 	= 0, then there exist δ > 0

and ι > 0 such that

‖(I λ
b )′(v)‖ ≥ ι for all ‖v − ub‖ ≥ 3δ.

Choose τ ∈ (0,min{1/2, δ√
2‖ub‖ }). Let

D := (1 − τ, 1 + τ) × (1 − τ, 1 + τ)

and

g(α, β) = αu+
b + βu−

b for all (α, β) ∈ D.

In view of (4.1), it is easy to see that

c̄λ := max
∂�

I λ
b ◦ g < cb,λ. (4.2)

Let ε := min{(cλ
b − c̄λ)/3, ιδ/8} and Sδ := B(ub, δ), according to Lemma 2.3 in [46],

there exists a deformation η ∈ C([0, 1] × D, D) such that

(a) η(1, v) = v if v /∈ (I λ
b )−1([cλ

b − 2ε, cλ
b + 2ε] ∩ S2δ),

(b) η(1, (I λ
b )c

λ
b+ε ∩ Sδ) ⊂ (I λ

b )cb,λ−ε,
(c) I λ

b (η(1, v)) ≤ I λ
b )(v) for all v ∈ Ws,p

0 (�).

First, from (b) and Lemma 3.2, it is easy to see that

max
(α,β)∈D̄

I λ
b (η(1, g(α, β))) < cλ

b . (4.3)

Next, we prove that η(1, g(D))∩Mλ
b 	= ∅ , which contradicts the definition of cλ

b .
Let γ (α, β) := η(1, g(α, β)) and

�0(α, β) := (〈(I λ
b )′(g(α, β)), u+

b 〉, 〈(I λ
b )′(g(α, β)), u−

b 〉)
= (〈(I λ

b )′(αu+
b + βu−

b ), u+
b 〉, 〈(I λ

b )′(αu+
b + βu−

b ), u−
b 〉)

:= (ϕ1
u(α, β), ϕ2

u(α, β))
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and

�1(α, β) :=
(
1

α
〈(I λ

b )′(γ (α, β)), (γ (α, β))+〉, 1
β

〈(I λ
b )′(γ (α, β)), (γ (α, β))−〉

)
.

Since ub ∈ Mλ
b , by the direct calculation, we have

ϕ1
u(α, β)

∂α
|(1,1) = a(p − 1)‖u+

b ‖p + b(2p − 1)‖u+
b ‖2p + b(p − 1)‖u+

b ‖p‖u−
b ‖p

− λ(q − 1)
∫

�

|u+
b |q ln |u+

b |2dx − 2
∫

�

|u+
b |qdx − (p∗

s − 1)
∫

�

|u+
b |p∗

s dx

= bp‖u+
b ‖2p − λ(q − p)

∫
�

|u+
b |q ln |u+

b |2dx − 2
∫

�

|u+
b |qdx

− (p∗
s − p)

∫
�

|u+
b |p∗

s dx

and

ϕ1
u(α, β)

∂β
|(1,1)= pb‖u+

b ‖p‖u−
b ‖p.

Similarly, we have

ϕ2
u(α, β)

∂β
|(1,1) = bp‖u−

b ‖2p − λ(q − p)
∫

�

|u−
b |q ln |u−

b |2dx − 2
∫

�

|u−
b |qdx

− (p∗
s − p)

∫
�

|u−
b |p∗

s dx

and

ϕ2
u(α, β)

∂α
|(1,1)= pb‖u+

b ‖p‖u−
b ‖p.

Let

M =
[

ϕ1
u (α,β)

∂α
|(1,1) ϕ2

u (α,β)

∂α
|(1,1)

ϕ1
u (α,β)

∂β
|(1,1) ϕ2

u (α,β)

∂β
|(1,1)

]
.

Then, we have that

det M = ϕ1
u(α, β)

∂α
|(1,1) ×ϕ2

u(α, β)

∂β
|(1,1) −ϕ1

u(α, β)

∂β
|(1,1) ×ϕ2

u(α, β)

∂α
|(1,1) 	= 0.

Since �0(α, β) is a C1 function and (1, 1) is the unique isolated zero point of �0, by
using the degree theory, we deduce that deg(�0, D, 0) = 1.
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Hence, combining (4.3) with (a), we obtain

g(α, β) = γ (α, β) on ∂D.

Consequently, we obtain deg(�1, D, 0) = 1. Therefore, �1(α0, β0) = 0 for some
(α0, β0) ∈ D so that

η(1, g(α0, β0)) = γ (α0, β0) ∈ Mλ
b,

which is contradicted to (4.3).
From the above discussions, we deduce that ub is a sign-changing solution for

problem (1.1).
Finally, we prove that u has exactly two nodal domains. To this end, we assume by

contradiction that

ub = u1 + u2 + u3,

where

ui 	= 0, u1 ≥ 0, u2 ≤ 0, �1 ∩ �2 = ∅, u1|�\�1∪�2 = u2|�\�1∪�2 = u3|�1∩�2 = 0,

�1 := {x ∈ � : u1(x) > 0} and �2 := {x ∈ � : u2(x) < 0} for i 	= j, i, j = 1, 2, 3

are two connected open subsets of �, and

〈(I λ
b )′(u), ui 〉 = 0 for i = 1, 2, 3.

Setting v := u1 + u2 , we see that v+ = u1 and v− = u2, i.e., v± 	= 0. Then, there
exist a unique pair (αv, βv) of positive numbers such that

αvu1 + βvu2 ∈ Mλ
b .

Hence

I λ
b (αvu1 + βvu2) ≥ cλ

b .

Moreover, using the fact that 〈(I λ
b )′(u), ui 〉 = 0, we obtain 〈(I λ

b )′(v), v±〉 =
−b‖v±‖p‖u3‖p < 0.

From Lemma 3.1 (ii), we have that

(αv, βv) ∈ (0, 1] × (0, 1].
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On the other hand, we have that

0 = 1

2p
〈(I λ

b )′(u), u3〉 = 1

2p
a‖u3‖p + b

2p
‖u1‖p‖u3‖p + b

2p
‖u2‖p‖u3‖p + b

2p
‖u3‖2p

− 1

2p

∫
�

|u3|p∗
s dx − λ

2p

∫
�

|u+
3 |q ln |u+

3 |2dx

< I λ
b (u3) + b

2p
‖u1‖2‖u3‖p + b

2p
‖u2‖2‖u3‖p.

Hence, by (3.15), we can obtain that

cλ
b ≤ I λ

b (αvu1 + βvu2) = I λ
b (αvu1 + βvu2) − 1

2p
〈(I λ

b )′(αvu1 + βvu2), (αvu1 + βvu2)〉

= a

2p
(‖αvu1‖p + ‖βvu2‖p) + λ

q2

[∫
�

|αvu1|qdx +
∫

�

|βvu2|qdx
]

+
(

1

2p
− 1

q

)
λ

[∫
�

[|αvu1|q ln |αvu1|2dx +
∫

�

|βvu2|q ln |βvu2|2dx
]

+
(

1

2p
− 1

p∗
s

) ∫
�

α
p∗
s

v |u1|p∗
s dx +

(
1

2p
− 1

p∗
s

) ∫
�

β
p∗
s

v |u2|p∗
s dx

≤ 1

2p
(‖u1‖p + ‖u2‖p) + λ

q2

[∫
�

|u1|qdx +
∫

�

|u2|qdx
]

+
(

1

2p
− 1

q

)
λ

[∫
�

|u1|q ln |u1|2dx +
∫

�

|u2|q ln |u2|2dx
]

+
(

1

2p
− 1

p∗
s

) ∫
�

|u1|p∗
s dx +

(
1

2p
− 1

p∗
s

) ∫
�

|u2|p∗
s dx

= I λ
b (u1 + u2) − 1

2p
〈(I λ

b )′(u1 + u2), (u1 + u2)〉

= I λ
b (u1 + u2) + 1

2p
〈(I λ

b )′(u), u3〉 + b

2p
‖u1‖p‖u3‖p + b

2p
‖u2‖p‖u3‖p

< I λ
b (u1) + I λ

b (u2) + I λ
b (u3) + b

2p
(‖u2‖p + ‖u3‖p)‖u1‖p

+ b

2p
(‖u1‖p + ‖u3‖p)‖u2‖p + b

2p
(‖u1‖p + ‖u2‖p)‖u3‖p

= I λ
b (u) = cλ

b ,

which is a contradiction, that is, u3 = 0 and ub has exactly two nodal domains. ��
By Theorem 2.1, we obtain a least energy sign-changing solution ub of prob-

lem (1.1). Next,we prove that the energy of ub is strictly larger than two times the
ground state energy.

Proof of Theorem 2.2 Similar to Proof of Lemma 3.3, there exists λ∗
1 > 0 such that for

all λ ≥ λ∗
1, and for each b > 0, there exists vb ∈ N λ

b such that I λ
b (vb) = c∗ > 0. By

standard arguments (seeCorollary 2.13 inRef. [22]), the critical points of the functional
I λ
b on N λ

b are critical points of I λ
b in Ws,p

0 (�), and we obtain (I λ
b )′(vb) = 0. That is,

vb is a ground state solution of (1.1).
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According to Theorem 2.1, we know that the problem (1.1) has a least energy
sign-changing solution ub, which changes sign only once when λ ≥ λ∗.

Let

λ∗∗ = max{λ∗, λ∗
1}.

Suppose that ub = u+
b + u−

b . As Proof of Lemma 3.1, there exist αu+
b

> 0 and
βu−

b
> 0 such that

αu+
b
u+
b ∈ N λ

b , βu−
b
u−
b ∈ N λ

b .

Furthermore, Lemma 3.2 implies that αu+
b
, βu−

b
∈ (0, 1).

Therefore, in view of Lemma 3.1, we have that

2c∗ ≤ I λ
b (αu+

b
u+
b ) + I λ

b (βu−
b
u−
b ) ≤ I λ

b (αu+
b
u+
b + βu−

b
u−
b ) < I λ

b (u+
b + u−

b ) = cλ
b .

Hence, it follows that c∗ > 0 cannot be achieved by a sign-changing function. ��
Finally, we close this section with the proof of Theorem 2.3. In the following, we

regard b > 0 as a parameter in problem (1.1).

Proof of Theorem 2.3 We shall proceed through several steps on analyzing the conver-
gence property of ub as b → 0, where ub is the least energy sign-changing solution
obtained in Theorem 2.1.

Step 1 For any sequence {bn} as bn ↘ 0, {ubn } is bounded in Ws,p
0 (�).

Choose a nonzero function ω ∈ C∞
0 (�) with ω± = 0. Similar to discussion

as in Lemma 3.2, for any λ ∈ [0, 1], there exists a pair positive numbers (λ1, λ2)

independent of λ, such that

〈(I λ
b )′(λ1ω+ + λ2ω

−), λ1ω
+〉 < 0, 〈(I λ

b )′(λ1ω+ + λ2ω
−), λ2ω

−〉 < 0.

Then by virtue of Lemma 3.1, we get that, for any b ∈ [0, 1], there exists a unique
pair (αω(b), βω(b)) ∈ (0, 1] × (0, 1] such that

ω := αω(b)λ1ω
+ + βω(b))λ2ω

− ∈ Mλ
b . (4.4)

Thus, for any λ ∈ [0, 1], we have

I λ
b (ub) = I λ

b (ω) = I λ
b (ω) − 1

2p
〈(I λ

b )′(ω), ω〉

= a

2p
‖ω‖p +

(
1

2p
− 1

p∗
s

)∫
�

|ω|p∗
s dx

+ λ

q2

∫
�

|ω|qdx +
(

1

2p
− 1

q

)
λ

∫
�

|ω|q ln |ω|2dx
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≤ a

2p
‖ω‖p +

(
1

2p
− 1

p∗
s

) ∫
�

|ω|p∗
s dx

+ λ

q2

∫
�

|ω|qdx +
(

1

2p
− 1

q

)
λ

∫
�

(
C1|ω|p + C2|ω|r ) dx

≤ a

2p
‖λ1ω+‖p + 1

2p
‖λ2ω−‖p +

(
1

2p
− 1

p∗
s

) ∫
�

|λ1ω+|p∗
s dx

+
(

1

2p
− 1

p∗
s

) ∫
�

|λ2ω−|p∗
s dx

+ λ

q2

∫
�

|λ1ω+|qdx + λ

q2

∫
�

|λ2ω−|qdx

+
(

1

2p
− 1

q

)
λ

∫
�

(
C1λ

2
1|ω+|2 + C2λ

r
2|ω+|r

)
dx

+
(

1

2p
− 1

q

)
λ

∫
�

(
C1λ

2
1|ω−|2 + C2λ

r
2|ω−|r

)
dx := C∗,

where C∗ > 0 is a constant independent of λ. So, let n → ∞, it follows that

C∗ + 1 ≥ I λ
bn (ubn ) = I λ

bn (ubn ) − 1

2p
〈(I λ

bn )
′(ubn ), ubn 〉 ≥ 1

2p
‖ubn‖2,

which implies that {ubn } is bounded in Ws,p
0 (�).

Step 2 Problem (2.12) possesses one sign-changing solution u0.
Since {ubn } is bounded in Ws,p

0 (�), according to Step 1, going if necessary to a
subsequence, there exists u0 ∈ Ws,p

0 (�) such that

ubn⇀u0 in Ws,p
0 (�),

ubn → u0 in Lt (�) for t ∈ [p, p∗
s ), (4.5)

ubn → u0 a.e. x ∈ �.

Since {ubn } is a weak solution of (1.1) with b = bn , we have

(
a + bn[u]ps,p

)
L(u, v) = λ

∫
�

|u|q−2uv ln |u|2dx +
∫

�

|u|p∗
s −2uv dx (4.6)

for all v ∈ C∞
0 (�), L(u, v) is defined by (2.5).

From (4.5), (4.6) and Step 1, we find that

(
a + bn[u0]ps,p

)
L(u0, v) = λ

∫
�

|u|q−2u0v ln |u0|2dx +
∫

�

|u0|p∗
s −2u0v dx (4.7)

for all ν ∈ C∞
0 (�), which in turn implies that u0 is a weak solution of problem (2.12).

By a similar argument as in the proof of Lemma 3.3, we conclude that u±
0 	= 0.

Therefore, we complete the proof of the Step 2.
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Step 3 Problem (2.12) possesses a least energy sign-changing solution v0, and there
exists a unique pair (αbn , βbn ) ∈ [0,∞) × [0,∞) such that αbnv

+
0 + βbnv

−
0 ∈ Mλ

bn
.

Moreover, (αbn , βbn ) → (1, 1) as n → ∞.
By a similar argument to the proof of Theorem 2.1, we have that problem (2.12)

possesses a least energy sign-changing solution v0, where I λ
0 (v0) = c0 nod and

(I λ
0 )′(v0) = 0. Then, by Lemma 3.1, we can easily obtain the existence and uniqueness

of the pair (αbn , βbn ) such that αbnv
+
0 + βbnv

−
0 ∈ Mλ

bn
. Moreover, we have αbn > 0

and βbn > 0. Then the claim will follow once we can prove that (αbn , βbn ) → (1, 1)
as n → ∞. In fact, since αbnv

+
0 + βbnv

−
0 ∈ Mλ

bn
, we have that

α
p
bn
a‖v+

0 ‖p + bnα
2p
bn

‖v+
0 ‖2p + bnα

p
bn

β
p
bn

‖v+
0 ‖p‖v−

0 ‖p

= λ

∫
�

|αbnv
+
0 |q ln |αbnv

+
0 |2dx +

∫
�

|αbnv
+
0 |p∗

s dx (4.8)

and

β
p
bn
a‖v−

0 ‖p + bnβ
2p
bn

‖v−
0 ‖2p + bnα

p
bn

β
p
bn

‖v+
0 ‖p‖v−

0 ‖p

= λ

∫
�

|βbnv
+
0 |q ln |βbnv

+
0 |2dx +

∫
�

|βbnv
−
0 |p∗

s dx . (4.9)

From the convergence of bn as n → ∞, we deduce that the sequences {αbn } and {βbn }
are bounded. Up to a subsequence, suppose that αbn → α0 and βbn → β0. Then it
follows from (4.8) and (4.9) that

α
p
0 a‖v+

0 ‖p = λ

∫
�

|α0v
+
0 |q ln |α0v

+
0 |2dx +

∫
�

|α0v
+
0 |2∗∗

dx (4.10)

and

β
p
0 a‖v−

0 ‖p = λ

∫
�

|β0v
−
0 |q ln |β0v

−
0 |2dx +

∫
�

|β0v
−
0 |2∗∗

dx . (4.11)

Thanks to v0 is a sign-changing solution of problem (2.12), we get

a‖v±
0 ‖2 = λ

∫
�

|v±
0 |q ln |v±

0 |2dx +
∫

�

|v±
0 |p∗

s dx . (4.12)

Hence, in view of (4.10)–(4.12), we can easily obtain that (α0, β0) = (1, 1), and the
Step 3 follows.

Now, we can now give the proof of Theorem 2.3. We assert that u0 obtained in
Step 2 is a least energy solution of problem (2.12). In fact, by virtue of Step 3 and
Lemma 3.1, we find that

I λ
0 (v0) ≤ I λ

0 (u0) = lim
n→∞ I λ

bn (ubn ) ≤ lim
n→∞ I λ

bn (αbnv
+
0 + βbnv

−
0 )

= lim
n→∞ I λ

0 (v+
0 + v−

0 ) = I λ
0 (v0).
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Hence, the proof of Theorem 2.3 is completed. ��
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35. MolicaBisci,G., Rădulescu,V.D., Servadei, R.:VariationalMethods forNonlocal Fractional Problems,

Encyclopedia of Mathematics and Its Applications, vol. 162. Cambridge University Press, Cambridge
(2016)

36. Pucci, P., Xiang, M., Zhang, B.: Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type
equations involving the fractional p-Laplacian in R

N . Calc. Var. Part. Differ. Equ. 54, 2785–2806
(2015)

37. Pucci, P., Xiang,M., Zhang, B.: Existence andmultiplicity of entire solutions for fractional p-Kirchhoff
equations. Adv. Nonlinear Anal. 5, 27–55 (2016)

38. Shuai, W.: Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains. J.
Differ. Equ. 259, 1256–1274 (2015)

39. Sun, J., Li, L., Cencelj, M., Gabrovšek, B.: Infinitely many sign-changing solutions for Kirchhoff type
problems in R

3. Nonlinear Anal. 186, 33–54 (2018)
40. Tang, X.H., Cheng, B.: Ground state sign-changing solutions for Kirchhoff type problems in bounded

domains. J. Differ. Equ. 261, 2384–2402 (2016)
41. Tang, X.H., Chen, S.: Ground state solutions of Nehari–Pohozaev type for Kirchhoff-type problems

with general potentials. Calc. Var. Part. Differ. Equ. 56, 1–25 (2017)
42. Truong, L.X.: The Nehari manifold for fractional p-Laplacian equation with logarithmic nonlinearity

on whole space. Comput. Math. Appl. 78, 3931–3940 (2019)
43. Wang, D.B.: Least energy sign-changing solutions of Kirchhoff-type equation with critical growth. J.

Math. Phys. 61, 011501 (2020)
44. Wang, Z.P., Zhou, H.S.: Sign-changing solutions for the nonlinear Schrödinger Poisson system inRN .

Calc. Var. Part. Differ. Equ. 52, 927–943 (2015)



Least-energy nodal solutions of critical Kirchhoff… Page 31 of 31    45 

45. Weth, T.: Energy bounds for entire nodal solutions of autonomous superlinear equations. Calc. Var.
Part. Differ. Equ. 27, 421–437 (2006)

46. Willem,M.:Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications,
vol. 24. Birkhäuser Boston Inc, Boston (1996)

47. Xiang,M., Hu, D., Yang, D.: Least energy solutions for fractional Kirchhoff problems with logarithmic
nonlinearity. Nonlinear Anal. (2020). https://doi.org/10.1016/j.na.2020.111899
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