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Abstract:We consider a nonlinear optimal control problem governed by a nonlinear evolution inclusion and
depending on a parameter λ. First we examine the dynamics of the problem and establish the nonemptiness
of the solution set and produce continuous selections of the solution multifunction ξ Ü→ S(ξ ) (ξ being the
initial condition). These results are proved in a very general framework and are of independent interest as
results about evolution inclusions. Thenwe use them to study the sensitivity properties of the optimal control
problem. We show that we have Hadamard well-posedness (continuity of the value function), and we estab-
lish the continuity properties of the optimal multifunction. Finally, we present an application on a nonlinear
parabolic distributed parameter system.
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1 Introduction
One of the important problems in optimal control theory is the study of the variations of the set of optimal
state-control pairs and of the value of the problem when we perturb the dynamics, the cost functional and
the initial condition of the problem. Such a sensitivity analysis (also known in the literature as “variational
analysis”) is important because it gives information about the tolerances which are permitted in the specifi-
cation of the mathematical models, it suggests ways to solve parametric problems and it can also be useful
in the computational analysis of the problem. For infinite dimensional systems (distributed parameter sys-
tems), such investigations were conducted for linear [8, 13, 24, 31], semilinear [30, 38] and nonlinear sys-
tems [23, 32, 33].We alsomention the books of Buttazzo [7], Dontchev and Zolezzi [17], Ito and Kunisch [25],
and Sokolowski and Zolezio [39] (the latter for shape optimization problems). In this paper we conduct such
an analysis for a very general class of systems driven by nonmonotone evolution inclusions.

So, let T = [0, b] be the time interval and (X, H, X∗) an evolution triple of spaces (see Section 2). We
assume that X í→ H compactly. The space of controls is modelled by a separable reflexive Banach space Y,
and E is a compact metric space that corresponds to the parameter space. As we have already mentioned, we
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consider systemsmonitored by evolution inclusions. These inclusions represent a way tomodel systemswith
deterministic uncertainties, see the books of Aubin and Frankowska [2], Fattorini [18] and Roubicek [37].

The problem under consideration is the following:

{{{{{{{
{{{{{{{
{

J(x, u, λ) =
b

∫
0

L(t, x(t), λ) dt +
b

∫
0

H(t, u(t), λ) dt + ψ̂(ξ, x(b), λ) → inf = m(ξ, λ),

−x�(t) ∈ Aλ(t, x(t)) + F(t, x(t), λ) + G(t, u(t), λ) for almost all t ∈ T, x(0) = ξ,
u(t) ∈ U(t, λ) for almost all t ∈ T, λ ∈ E.

(1.1)

In this problem,

Aλ : T × X → 2X∗ for every λ > 0, F : T × H × E → 2H \ {0}, G : T × Y × E → 2H \ {0},

and the precise conditions on themwill be given in Section 4. For every initial state ξ ∈ H and every parameter
λ ∈ E, we denote the set of admissible state-control pairs (that is, pairs (x, u)which satisfy the dynamics and
the constraints of problem (1.1)) by Q(ξ, λ). We investigate the dependence of Q(ξ, λ) on the two variables
(ξ, λ) ∈ H × E. Also, Σ(ξ, λ) denotes the set of optimal state-control pairs (that is, (x∗, u∗) ∈ Σ(ξ, λ) such that
J(x∗, u∗, ξ, λ) = m(ξ, λ)). So, Σ(ξ, λ) ⊆ Q(ξ, λ). We establish the nonemptiness of the set Σ(ξ, λ) and examine
the continuity properties of the value function (ξ, λ) Ü→ m(ξ, λ) and of the multifunction (ξ, λ) Ü→ Σ(ξ, λ).

The nonemptiness and other continuity and structural properties of the set Q(ξ, λ) are consequences
of general results about evolution inclusions, which we prove in Section 3 and which are of independent
interest. The class of evolution inclusions considered in Section 3 is more general than the classes studied
by Chen, Wang and Zu [11], Denkowski, Migorski and Papageorgiou [14], Liu [28], and Papageorgiou and
Kyritsi [34].

In the next section, for the convenience of the reader, we review the main mathematical tools which we
will need in this paper.

2 Mathematical background
Suppose that V and Z are Banach spaces and assume that V is embedded continuously and densely into Z
(denoted by V í→ Z). Then it is easy to check that:
∙ Z∗ is embedded continuously into V∗,
∙ if V is reflexive, then Z∗ í→ V∗.
Having this observation in mind, we can introduce the notion of evolution triple of spaces, which is central
in the class of evolution equations considered here.

Definition 2.1. A triple (X, H, X∗) of spaces is said to be an “evolution triple” (or “Gelfand triple” or “spaces
in normal position”) if the following hold:
(a) X is a separable reflexive Banach space and X∗ is its topological dual.
(b) H is a separable Hilbert space identified with its dual H∗ = H (pivot space).
(c) X í→ H.

According to the remark made in the beginning of this section, we also have H∗ = H í→ X∗. In this paper we
also assume that the embedding of X into H is compact. Hence, by Schauder’s theorem (see, for example,
[20, Theorem 3.1.22]), so is the embedding of H∗ = H into X∗. In what follows, by ‖ ⋅ ‖ (resp. | ⋅ |, ‖ ⋅ ‖∗) we
denote the norm of the space X (resp. H, X∗). By ⟨ ⋅ , ⋅ ⟩we denote the duality brackets for the pair (X∗, X) and
by ( ⋅ , ⋅ ) the inner product of the Hilbert space H. We know that

⟨ ⋅ , ⋅ ⟩|H×X = ( ⋅ , ⋅ ).

Also, let β > 0 be such that
| ⋅ | ≤ β‖ ⋅ ‖. (2.1)
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We introduce the following space which has a central role in the study of the evolution inclusions. So, let
1 < p < ∞ and set

Wp(0, b) = {x ∈ Lp(T, X) : x� ∈ Lp� (T, X∗)} (
1
p
+

1
p�

= 1).

In this definition the derivative of x is understood in the sense of vectorial distributions (weak derivative). In
fact, if we view x as an X∗-valued function, then x( ⋅ ) is absolutely continuous, hence strongly differentiable
almost everywhere. Therefore,

Wp(0, b) ⊆ AC1,p
�
(T, X∗) = W1,p� ((0, b), X∗).

The spaceWp(0, b), equipped with the norm

‖x‖Wp = ‖x‖Lp(T,X) + ‖x�‖Lp� (T,X∗) for all x ∈ Wp(0, b),

becomes a separable reflexive Banach space. We know that

Wp(0, b) í→ C(T, H), (2.2)
Wp(0, b) í→ Lp(T, H) compactly. (2.3)

The following integration by parts formula is very helpful.

Proposition 2.2. If x, y ∈ Wp(0, b), then t Ü→ (x(t), y(t)) is absolutely continuous and

d
dt

(x(t), y(t)) = ⟨x�(t), y(t)⟩ + ⟨x(t), y�(t)⟩ for almost all t ∈ T.

We know that for all 1 ≤ p < ∞,
Lp(T, X)∗ = Lp� (T, X∗)

with p� = +∞ if p = 1 (see [20, Theorem 2.2.9]).
Now, let (Ω, Σ) be a measurable space and V a separable Banach space. We introduce the following hy-

perspaces:

Pf(c)(V) = {C ⊆ V : C is nonempty, closed, (convex)},
P(w)k(c)(V) = {C ⊆ V : C is nonempty, (weakly-)compact, (convex)}.

Given a multifunction F : Ω → 2V \ {0}, the “graph” of F is the set

Gr F = {(ω, v) ∈ Ω × V : v ∈ F(ω)}.

We say that F( ⋅ ) is “graph measurable” if Gr F ∈ Σ × B(V) with B(V) being the Borel σ-field of V. If μ( ⋅ ) is a
σ-finite measure on Σ and F : Ω → 2V \ {0} is graph measurable, then the Yankov–von Neumann–Aumann
selection theorem (see [22, Theorem 2.14, p. 158]) implies that F( ⋅ ) admits a measurable selection, that is,
there exists a Σ-measurable function f : Ω → V such that f(ω) ∈ F(ω) μ-almost everywhere. In fact, there is
a whole sequence {fn}n≥1 of such measurable selections such that F(ω) ⊆ {fn(ω)} μ-almost everywhere (see
[22, Proposition 2.17, p. 159]). Moreover, the above results are valid if V is only a Souslin space. Recall that
a Souslin space need not be metrizable (see [21, p. 232]).

A multifunction F : Ω → Pf (V) is said to be “measurable” if for all y ∈ V, the function

ω Ü→ d(y, F(ω)) = inf
v∈F(ω)

‖y − v‖V

is Σ-measurable. A multifunction F : Ω → Pf (V) which is measurable is also graph measurable. The con-
verse is true if (Ω, Σ) admits a complete σ-finite measure μ. If (Ω, Σ, μ) is a σ-finite measure space and
F : Ω → 2V \ {0} is a multifunction, then for 1 ≤ p ≤ ∞ we introduce the set

SPF = {f ∈ Lp(Ω, Y) : f(ω) ∈ F(ω) μ-a.e.}.
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Evidently, SPF ̸= 0 if and only if ω Ü→ infv∈F(ω)‖v‖V belongs to Lp(Ω). Moreover, the set SPF is “decompos-
able”, that is, if (A, f1, f2) ∈ Σ × SPF × S

P
F , then

χA f1 + χΩ\A f2 ∈ SPF .

Here, for C ∈ Σ, by χC we denote the characteristic function of the set C ∈ Σ.
For every D ⊆ Σ, D ̸= 0, we define

|D| = sup
v∈D

‖v‖V and σ(v∗, D) = sup
v∈D

⟨v∗, v⟩V for all v∗ ∈ V∗.

Here, ⟨ ⋅ , ⋅ ⟩V denotes the duality brackets of the pair (V∗, V). The function σ( ⋅ , D) : V∗ → ℝ̄ = ℝ ∪ {+∞} is
known as the “support function” of D.

Let Z,W be Hausdorff topological spaces. We say that a multifunction G : Z → 2W \ {0} is “upper semi-
continuous” (USC for short), respectively, “lower semicontinuous” (LSC for short), if for all U ⊆ W open, the
set

G+(U) = {z ∈ Z : G(z) ⊆ U}, respectively, G−(U) = {z ∈ Z : G(z) ∩ U ̸= 0}

is open in Z. If G( ⋅ ) is both USC and LSC, then we say that G( ⋅ ) is continuous. On a Hausdorff topological
space (W, τ) (τ being the Hausdorff topology), we can define a new topology τseq whose closed sets are the
sequentially τ-closed sets. Then topological properties with respect to this topology have the prefix “sequen-
tial”. Note that τ ⊆ τseq and the two are equal if τ is first countable (see [7, p. 9] and [21, p. 808]). We say that
G : Z → 2W \ {0} is “closed” if the graph GrG ⊆ Z ×W is closed.

For any Banach space V, on Pf (V)we can define a generalized metric, known as the “Hausdorff metric”,
by setting

h(E,M) = max[ sup
e∈E

d(e,M), sup
m∈M

d(m, E)].

Recall that (Pf (V), h) is a complete metric space (see [22, p. 6]). If Z is a Hausdorff topological space, a
multifunction G : Z → Pf (V) is said to be “h-continuous”, if it is continuous from Z into (Pf (V), h).

Also, if E,M ⊆ V are nonempty, bounded, closed and convex subsets, then (Hörmander’s formula)

h(E,M) = sup
v∗∈V∗ ,‖v∗‖V∗≤1|σ(v∗, E) − σ(v∗,M)|.

Let (W, τ) be a Hausdorff topological space with topology τ and let {En}n≥1 ⊆ 2W \ {0}. We define

Kseq(τ) − lim inf
n→∞

En = {y ∈ W : y = τ − lim
n→∞

yn , yn ∈ En for all n ∈ ℕ},

Kseq(τ) − lim sup
n→∞

En = {y ∈ W : y = τ − lim
n→∞

ynk , ynk ∈ Enk , n1 < n2 < ⋅ ⋅ ⋅ < nk < ⋅ ⋅ ⋅ }.

Sometimes we drop the Kseq-symbol and simply write τ − lim supn→∞ En and τ − lim infn→∞ En.
Returning to the setting of an evolution triple, we consider a sequence of multivalued maps

an , a : Lp(T, X) → 2Lp
� (T,X∗) \ {0} (n ∈ ℕ)

such that for every h∗ ∈ Lp� (T, X∗) the inclusions

y� + an(y) ∋ h∗ (n ∈ ℕ) and y� + a(y) ∋ h

have unique solutions en(h∗), e(h∗) ∈ Wp(0, b).
We say that d

dt + an “PG-converges” to d
dt + a (denoted by d

dt + an
PGÚÚÚ→ d

dt + a as n → ∞) if for every
h∗ ∈ Lp� (T, X∗), we have

en(h∗) wÚÚ→ e(h∗) inWp(0, b).

In what follows, by Xw (respectively, Hw , X∗
w) we denote the space X (respectively, H, X∗) furnished with

the weak topology. Also, by | ⋅ |1 we denote the Lebesgue measure on ℝ and by (( ⋅ , ⋅ )) we denote the duality
brackets for the pair (Lp� (T, X∗), Lp(T, X)). So, we have

((h∗, f )) =
b

∫
0

⟨h∗(t), f(t)⟩ dt for all h∗ ∈ Lp� (T, X∗) and all f ∈ Lp(T, X).
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Next, let us recall some useful facts from the theory of nonlinear operators of monotone type. So, let V be
a reflexive Banach space, L : D(L) ⊆ V → V∗ a linear maximal monotone operator and a : V → 2V∗ . We say
that a( ⋅ ) is “L-pseudomonotone” if the following conditions hold:
(a) For every v ∈ V, a(v) ∈ Pwkc(V∗).
(b) a( ⋅ ) is bounded (that is, maps bounded sets to bounded sets).
(c) If {vn}n≥1 ⊆ D(L), vn wÚÚ→ v ∈ D(L) in V, L(vn) wÚÚ→ L(v) in V∗, v∗n ∈ a(vn) for all n ∈ ℕ, v∗n

wÚÚ→ v∗ in X∗ and
lim supn→∞⟨v∗n , vn − v⟩V ≤ 0, then v∗ ∈ a(v) and ⟨v∗n , vn⟩V → ⟨v∗, v⟩V .

Such maps have nice surjectivity properties.
The next result is due to Papageorgiou, Papalini andRenzacci [35], and it extends an earlier single-valued

result of Lions [27, Theorem 1.2, p. 319].

Proposition 2.3. Assume that V is a reflexive Banach space which is strictly convex, L : D(L) ⊆ V → V∗ is a
linear maximal monotone operator and A : V → 2V∗ is L-pseudomonotone and strongly coercive, that is,

infv∗∈A(v)⟨v∗, v⟩V
‖v‖V

→ +∞ as ‖v‖V → +∞.

Then R(L + V) = V∗ (that is, L + V is surjective).

In the next section we obtain some results about a general class of evolution inclusions, which will help us
study problem (1.1) (see Section 4).

3 Nonlinear evolution inclusions
Let T = [0, b] and let (X, H, X∗) be an evolution triple with X í→ H compactly (see Definition 2.1). In this
section we deal with the following evolution inclusion:

−x�(t) ∈ A(t, x(t)) + E(t, x(t)) for almost all t ∈ T, x(0) = ξ. (3.1)

The hypotheses on the data of (3.1) are as follows.
(HA1) A : T × X → 2X∗ is a map such that the following hold:

(i) t Ü→ A(t, x) is graph measurable for all x ∈ X.
(ii) Gr A(t, ⋅ ) is sequentially closed in Xw × X∗

w and x Ü→ A(t, x) is pseudomonotone for almost all
t ∈ T.

(iii) For almost all t ∈ T, all x ∈ X and all h∗ ∈ A(t, x), we have

‖h‖∗ ≤ a1(t) + c1‖x‖p−1

with 2 ≤ p, a1 ∈ Lp� (T) and c1 > 0.
(iv) For almost all t ∈ T, all x ∈ X and all h∗ ∈ A(t, x), we have

⟨h∗, x⟩ ≥ c2‖x‖p − a2(t)

with c2 > 0, a2 ∈ L1(T).

Remark 3.1. If A( ⋅ , ⋅ ) is single-valued, then in hypothesis (HA1) (ii) we can drop the condition on the graph
of Gr A(t, ⋅ ) and only assume that x Ü→ A(t, x) is pseudomonotone for almost all t ∈ T. The same applies if
A(t, ⋅ ) is maximal monotone for almost all t ∈ T. An example of where the condition on the graph of A(t, ⋅ )
is satisfied is the following (for simplicity we drop the t-dependence):

A(x) = −div ∂φ(Dx) − div ξ(Dx),

where φ : Lp(Ω,ℝN) → ℝ is continuous and convex, and ξ : Lp(Ω,ℝN) → ℝ is continuous and satisfies
|ξ(y)| ≤ ĉ(1 + |y|τ−1) for all y ∈ ℝN , ĉ > 0 and 1 ≤ τ < p. Then recalling that W1,p(Ω) í→ W1,τ(Ω) compactly
(see Zeidler [41, p. 1026]), we easily see that Gr A is sequentially closed inW1,p(Ω)w ×W1,p(Ω)∗w.
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(HF1) F : T × H → Pfc (H) is a multifunction such that the following hold:
(i) t Ü→ F(t, x) is graph measurable for all x ∈ H.
(ii) Gr F(t, ⋅ ) is sequentially closed in H × Hw for almost all t ∈ T.
(iii) For almost all t ∈ T, all x ∈ H and all h ∈ F(t, x), we have

|h| ≤ a3(t) + c3|x|

with a3 ∈ L2(T), c3 > 0 and if p = 2, then β2c3 < c2 (see (2.1)).
By a solution of problem (3.1) we understand a function x ∈ Wp(0, b) such that

−x�(t) = h∗(t) + f(t) for almost all t ∈ T,

where h∗ ∈ Lp� (T, X∗) and f ∈ L2(T, H) are such that

h∗(t) ∈ A(t, x(t)) and f(t) ∈ F(t, x(t)) for almost all t ∈ T.

By S(ξ )we denote the set of solutions of problem (3.1). In the sequel we investigate the structure of S(ξ ).
Consider the multivalued map a : Lp(T, X) → 2Lp

� (T,X∗) defined by
a(x) = {h∗ ∈ Lp� (T, X∗) : h∗(t) ∈ A(t, x(t)) for almost all t ∈ T} for all x ∈ Lp(T, X). (3.2)

Note that a( ⋅ ) has values in Pwkc(Lp
� (T, X∗)) (see hypotheses (HA1) (i) and (iii), and use the Yankov–von

Neumann–Aumann selection theorem, see [22, Theorem 2.14, p. 158]).

Lemma 3.2. If hypotheses (HA1) hold, xn wÚÚ→ x in Wp(0, b), xn(t) wÚÚ→ x(t) in X for almost all t ∈ T, h∗n
wÚÚ→ h∗

in Lp� (T, X∗) and h∗n ∈ a(xn) for all n ∈ ℕ, then h∗ ∈ a(x).

Proof. Let v ∈ X and consider the function x Ü→ σ(v, A(t, x)) (see Section 2). We will show that it is sequen-
tially upper semicontinuous. To this end, we need to show that given λ ∈ ℝ, the superlevel set

Eλ = {x ∈ X : λ ≤ σ(v, A(t, x))}

is sequentially closed in Xw. So, we consider a sequence {xn}n≥1 ⊆ Eλ and assume that

xn wÚÚ→ x in X.

Let h∗n ∈ A(t, xn) (n ∈ ℕ) be such that

⟨h∗n , v⟩ = σ(v, A(t, xn)) for all n ∈ ℕ (3.3)

(recallA(t, xn) ∈ Pwkc(X∗)). Evidently, {h∗n}n≥1 ⊆ X∗ is bounded (seehypothesis (HA1) (iii)) and so, bypassing
to a subsequence if necessary, we may assume that h∗n

wÚÚ→ h∗ in X∗. Therefore, by hypothesis (HA1) (ii),

h∗ ∈ A(t, x) (3.4)

Then, from (3.3) and (3.4), we have
λ ≤ ⟨h∗, v⟩ ≤ σ(v, A(t, x)),

and thus x ∈ Eλ. This proves the upper semicontinuity of the map x Ü→ σ(v, A(t, x)).
Now let v ∈ Lp(T, X). Then we have (see [22, Theorem 3.24, p. 183])

((h∗n , v)) ≤ σ(v, a(xn)) =
b

∫
0

σ(v(t), A(t, xn(t))) dt for all n ∈ ℕ,

and by Fatou’s lemma,

((h∗, v)) ≤ lim sup
n→∞

σ(v, a(xn)) ≤
b

∫
0

lim sup
n→∞

σ(v(t), A(t, xn(t))) dt.
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By the first part of the proof and since, by hypothesis, xn(t) wÚÚ→ x(t) in X,

((h∗, v)) ≤
b

∫
0

σ(v(t), A(t, x(t))) dt = σ(v, a(x)).

Thus, h∗ ∈ a(x).

Lemma 3.3. If hypotheses (HA1) hold, then the multivalued map a : Lp(T, X) → 2Lp
� (T,X∗), defined by (3.2), is

L-pseudomonotone.

Proof. Suppose xn wÚÚ→ x inWp(0, b), h∗n ∈ a(xn) for all n ∈ ℕ, h∗n
wÚÚ→ h∗ in Lp� (T, X∗) and

lim sup
n→∞

((h∗n , xn − x)) ≤ 0. (3.5)

From (2.2), we infer that
xn(t) wÚÚ→ x(t) in H for all t ∈ T as n → ∞. (3.6)

We set ϑn(t) = ⟨h∗n(t), xn(t) − x(t)⟩. Let N be the Lebesgue-null set in T = [0, b] outside of which hypothe-
ses (HA1) (ii), (iii) and (iv) hold. Using hypotheses (HA1) (iii) and (iv), we have

ϑn(t) ≥ c2‖xn(t)‖2 − a2(t) − (a1(t) + c1‖xn(t)‖p−1)‖x(t)‖ for all t ∈ T \ N. (3.7)

We introduce the Lebesgue measurable set D ⊆ T defined by

D = {t ∈ T : lim inf
n→∞

ϑn(t) < 0}.

Suppose that |D|1 > 0. If t ∈ D ∩ (T \ N), then from (3.7) we see that {xn(t)}n≥1 ⊆ X is bounded. Then, from
(3.6), it follows that

xn(t) wÚÚ→ x(t) in X for all t ∈ D ∩ (T \ N). (3.8)

We fix t ∈ D ∩ (T \ N) and choose a subsequence {nk} of {n} (in general this subsequence depends on t) such
that

lim
k→∞

ϑnk (t) = lim inf
n→∞

ϑn(t).

By hypothesis (HA1) (ii), A(t, ⋅ ) is pseudomonotone, and since t ∈ D, we infer that

lim
k→∞

⟨h∗nk (t), xnk (t) − x(t)⟩ = 0,

a contradiction. So, |D|1 = 0 and we have

0 ≤ lim inf
n→∞

ϑn(t) for almost all t ∈ T. (3.9)

Invoking the extended Fatou’s lemma (see [15, Theorem 2.2.33]), we have

0 ≤
b

∫
0

lim inf
n→∞

ϑn(t) dt (see (3.9))

≤ lim inf
n→∞

b

∫
0

ϑn(t) dt

≤ lim sup
n→∞

b

∫
0

ϑn(t) dt

= lim sup
n→∞

b

∫
0

⟨h∗n(t), xn(t) − x(t)⟩dt

= lim sup
n→∞

((h∗n , xn − x)) ≤ 0 (see (3.5)).
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Therefore,
b

∫
0

ϑn(t) dt → 0. (3.10)

We write
|ϑn(t)| = ϑ+n(t) + ϑ−n(t) = ϑn(t) + 2ϑ−n(t). (3.11)

Note that, from (3.9),
ϑ−n(t) → 0 for almost all t ∈ T. (3.12)

Moreover, from (3.7) we have

ϑn(t) ≥ ηn(t) for almost all t ∈ T and all n ∈ ℕ

with {ηn}n≥1 ⊆ L1(T) uniformly integrable. Then

ϑ−n(t) ≤ η−n(t) for almost all t ∈ T and all n ∈ ℕ

with {η−n}n≥1 ⊆ L1(T) uniformly integrable. Using (3.12) and invoking Vitali’s theorem we infer that ϑ−n → 0
in L1(T). Hence, from (3.10) and (3.11),

ϑn → 0 in L1(T). (3.13)

Then, from (3.13) and the fact that h∗n
wÚÚ→ h∗ in Lp� (T, X∗)), we have

|((h∗n , xn)) − ((h∗, x))| ≤ |((h∗n , xn − x))| + |((h∗n − h∗, x))| → 0,

which implies ((h∗n , xn)) → ((h∗, x)). In addition, from (3.8) and Lemma 3.2, we have that h∗ ∈ a(x). This
proves the L-pseudomonotonicity of a( ⋅ ).

Remark 3.4. From the above proof it is clear why in the case of a single-valued map A(t, x), in hypothesis
(HA1) (ii) we can drop the condition on the graph of A(t, ⋅ ) and only assume that x Ü→ A(t, x) is pseudomono-
tone for almost all t ∈ T. Indeed, in this case, from (3.13) we have (at least for a subsequence) that

ϑn(t) → 0 for almost all t ∈ T,

which, since A(t, ⋅ ) is pseudomonotone, implies

A(t, xn(t)) wÚÚ→ A(t, x(t)) for almost all t ∈ T in X∗.

In the multivalued case, there is no canonical way to identify the pointwise limit of the sequence
{h∗n(t)}n≥1 ⊆ X∗. If for almost all t ∈ T, A(t, ⋅ ) is maximal monotone, then again, we do not need the graph
hypothesis on A(t, ⋅ ). In this case a( ⋅ ) is also maximal monotone and then the lemma is a consequence of
(3.5) and [4, Lemma 1.3]. It is worth mentioning that a similar strengthening of the topology in the range
space was used by Defranceschi [12], while studying G-convergence of multivalued operators.

Without loss of generality, invoking the Troyanski renorming theorem (see [21, Remark 2.115]), we may as-
sume that both X and X∗ are locally uniformly convex, hence Lp(T, X) and Lp� (T, X∗) are strictly convex.

We are now ready for the first result concerning the solution set S(ξ ).

Theorem 3.5. If hypotheses (HA1), (HF1) hold and ξ ∈ H, then the solution set S(ξ ) is nonempty, weakly com-
pact in Wp(0, b) and compact in C(T, H).

Proof. First suppose that ξ ∈ X. We define

A1(t, x) = A(t, x + ξ ) and F1(t, x) = F(t, x + ξ ).

Evidently, A1(t, x) and F1(t, x) have the same measurability, continuity and growth properties as the
multivalued maps A(t, x) and F(t, x). So, we may equivalently consider the following Cauchy problem:

−x�(t) ∈ A1(t, x(t)) + F1(t, x(t)) for almost all t ∈ T, x(0) = 0. (3.14)
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Note that if x ∈ Wp(0, b) is a solution of (3.14), then x̂ = x − ξ is a solution of (3.1) (when ξ ∈ X, that is,
the initial condition is regular). Consider the linear densely defined operator L : D(L) ⊆ Lp(T, X) → Lp� (T, X∗)
defined by

L(x) = x� for all x ∈ W0
p(0, b) = {y ∈ Wp(0, b) : y(0) = 0}

(the evaluation y(0) = 0 makes sense by virtue of (2.2)).
Consider the multivalued maps a1, G1 : Lp(T, X) → 2Lp

� (T,X∗) \ {0} defined by
a1(x) = {h∗ ∈ Lp� (T, X∗) : h∗(t) ∈ A1(t, x(t)) for almost all t ∈ T},

G1(x) = {f ∈ Lp� (T, X∗) : f(t) ∈ F1(t, x(t)) for almost all t ∈ T}.

We set K(x) = a1(x) + G1(x) for all x ∈ Lp(T, X). Then

K : Lp(T, X) → 2Lp
� (T,X∗) \ {0}.

Claim 1. K is L-pseudomonotone.

Clearly, K has values in Pwkc(Lp
� (T, X∗)) and it is bounded (see hypotheses (HA1) (iii), (HF1) (iii)).

Next, we consider a sequence {xn}n≥1 ⊆ D(L) such that

{
{
{

xn wÚÚ→ x ∈ D(L) in Lp(T, X), L(xn) → L(x) in Lp� (T, X∗),

k∗n ∈ K(xn), k∗n
wÚÚ→ k∗ in Lp� (T, X∗) and lim sup

n→∞
((k∗n , xn − x)) ≤ 0.

(3.15)

Then we have
k∗n = h∗n + fn with h∗n ∈ a1(xn), fn ∈ G1(xn) for all n ∈ ℕ.

Hypotheses (HA1) (iii) and (HF1) (iii) imply that

{h∗n}n≥1 ⊆ Lp� (T, X∗) and {fn}n≥1 ⊆ Lp� (T, H) are bounded.
So, we may assume (at least for a subsequence) that

h∗n
wÚÚ→ h∗ in Lp� (T, X∗) and fn wÚÚ→ f in Lp� (T, H).

By (3.15) we have xn wÚÚ→ x inWp(0, b), and due to (2.3),

xn → x in Lp(T, H). (3.16)

Hence,

((fn , xn − x)) =
b

∫
0

(fn(t), xn(t) − x(t)) dt → 0,

and in view of (3.15),
lim sup
n→∞

((h∗n , xn − x)) ≤ 0.

Therefore, from Lemma 3.3,
h∗ ∈ a1(x) and ((h∗n , xn)) → ((h∗, x)).

Recall that
fn(t) ∈ F(t, xn(t)) for almost all t ∈ T and all n ∈ ℕ. (3.17)

By (3.15), (3.16), (3.17) and [34, Proposition 6.6.33], we have

f(t) ∈ convw − lim sup
n→∞

F(t, xn(t)) ⊆ F(t, x(t)) for almost all t ∈ T

(see hypothesis (HF1) (ii)), and thus f ∈ G1(x).
Since ((fn , xn − x)) = ∫b0 (fn(t), xn(t) − x(t))dt → 0,we conclude that K is L-pseudomonotone. This proves

Claim 1.
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Claim 2. K is coercive.

Let x ∈ Lp(T, X) and k∗ ∈ K(x). Then

k∗ = h∗ + f with h∗ ∈ a1(x), f ∈ G1(x).

We have (see hypothesis (HA1) (iv))

((k∗, x)) = ((h∗, x)) +
b

∫
0

(f(t), x(t)) dt ≥ c2‖x‖pLp(T,X) − ‖a2‖1 −
b

∫
0

|f(t)||x(t)| dt. (3.18)

Note that from hypothesis (HF1) (iii) and using Young’s inequality with ϵ > 0, we have

b

∫
0

|f(t)||x(t)| dt ≤
b

∫
0

(a3(t)|x(t)| + c3|x(t)|2) dt ≤
b

∫
0

(c(ϵ)a3(t)2 + (c3 + ϵ)|x(t)|2) dt (3.19)

Returning to (3.18) and using (3.19), we see that

((k∗, x)) ≥ c2‖x‖pLp(T,X) − c4‖x‖
2
Lp(T,X) − c5 for c4, c5 > 0 (3.20)

(recall that 2 ≤ p and in case p = 2, choose ϵ > 0 small so that c4 < c2, see hypothesis (HF1) (iii)). From (3.20)
it follows that K is coercive. This proves Claim 2.

Now Claims 1 and 2 permit the use of Proposition 2.3 to find x ∈ Wp(0, b) solving problem (3.1) when
ξ ∈ X.

Next, we remove the restriction ξ ∈ X. So, suppose ξ ∈ H. We can find {ξn}n≥1 ⊆ X such that ξn → ξ in H
(recall that X is dense in H). From the first part of the proof, we know that we can find xn ∈ S(ξn) ⊆ Wp(0, b)
for all n ∈ ℕ. We have

{
−x�n(t) ∈ A(t, xn(t)) + F(t, xn(t)) for almost all t ∈ T,
xn(0) = ξn , n ∈ ℕ.

It follows that
− x�n = h∗n + fn with h∗n(t) ∈ A(t, xn(t)), fn(t) ∈ F(t, xn(t)) (3.21)

for almost all t ∈ T and all n ∈ ℕ.
We have

((x�n , xn)) + ((h∗n , xn)) ≤
b

∫
0

|fn(t)||xn(t)| dt,

and thus 1
2 |xn(b)|

2 + c2‖xn‖
p
Lp(T,X) ≤ c6 + c7‖xn‖

2
Lp(T,X) for c6, c7 > 0 (3.22)

(see hypotheses (HA1) (iv), (HF1) (iii) and if p = 2 ,then, as before, we have c7 < c2).
From (3.21), (3.22) and hypotheses (HA1) (iii), (HF1) (iii), it follows that {xn}n≥1 ⊆ Wp(0, b) is bounded.

So, we may assume that as n → ∞ (see (2.3)),

xn wÚÚ→ x inWp(0, b) and xn → x in Lp(T, H). (3.23)

By (3.21), for all n ∈ ℕ, we have

((x�n , xn − x)) + ((h∗n , xn − x)) = −((fn , xn − x)) = −
b

∫
0

(fn(t), xn(t) − x(t)) dt. (3.24)

By Proposition 2.2 we know that

((x�n − x�, xn − x)) =
1
2 |xn(b) − x(b)|

2 −
1
2 |ξn − ξ |

2.
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Hence,
((x�n , x − xn)) ≤

1
2 |ξn − ξ |

2 + ((x�, x − xn)).

By (3.23) and since ξn → ξ in H,
lim sup
n→∞

((x�n , x − xn)) ≤ 0. (3.25)

Hypothesis (HF1) (iii) implies that {fn}n≥1 ⊆ L2(T, H) is bounded. Hence, from (3.23),

b

∫
0

(fn(t), x(t) − xn(t)) dt → 0,

and so, by (3.25),
lim sup
n→∞

[((x�n , x − xn)) + ((fn , x − xn))] ≤ 0.

Therefore, from (3.24),
lim sup
n→∞

((h∗n , xn − x)) ≤ 0. (3.26)

By hypothesis (HA1) (iii) we see that {h∗n}n≥1 ⊆ Lp� (T, X∗) is bounded. So, we may assume that

h∗n
wÚÚ→ h∗ in Lp� (T, X∗) as n → ∞. (3.27)

From (3.23), (3.26) and (3.27), we see that we can use Lemma 3.3 and infer that

h∗(t) ∈ A(t, x(t)) for almost all t ∈ T. (3.28)

As we have already mentioned {fn}n≥1 ⊆ L2(T, H) is bounded and so we may assume that

fn wÚÚ→ f in L2(T, H). (3.29)

Using [34, Proposition 6.6.33], we have (see hypothesis (HF1) (ii))

f(t) ∈ convw − lim sup
n→∞

F(t, xn(t)) ⊆ F(t, x(t)) for almost all t ∈ T. (3.30)

In (3.21), we pass to the limit as n → ∞ and use (3.23), (3.27) and (3.29) to obtain

−x� = h∗ + f with h∗ ∈ a(x) (see (3.28)), f ∈ G(x) (see (3.30)), x(0) = ξ.

Hence, x ∈ S(ξ ). So, we have proved that when ξ ∈ H, the solution set S(ξ ) is a nonempty subset ofWp(0, b).
Next, we will prove the compactness of S(ξ ) inWp(0, b)w and in C(T, H). Let x ∈ S(ξ ). For every t ∈ T we

have
t

∫
0

⟨x�(s), x(s)⟩ ds +
t

∫
0

⟨h∗(s), x(s)⟩ ds ≤
t

∫
0

|f(s)||x(s)| ds with h∗ ∈ a(x),

which implies
1
2 |x(t)|

2 ≤
1
2 c

2
8 + c9

t

∫
0

|x(s)|2 ds for c8, c9 > 0,

and hence, by Gronwall’s inequality,

|x(t)| ≤ M for some M > 0, all t ∈ T and all x ∈ S(ξ ). (3.31)

Then let rM : H → H be the M-radial retraction defined by

rM(x) =
{
{
{

x if |x| ≤ M,
M x

|x|
if |x| > M.
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Because of the a priori bound (3.31), we can replace F(t, x) by

F̂(t, x) = F(t, rM(x)).

Note that for all x ∈ H, t Ü→ F̂(t, x) is graphmeasurable (hence alsomeasurable, see Section 2) and for almost
all t ∈ T, x Ü→ F̂(t, x) has a graph which is sequentially closed in H × Hw. Moreover, we see that

|F̂(t, x)| ≤ a4(t) for almost all t ∈ T and all x ∈ H with a4 ∈ L2(T).

We introduce the set

C = {f ∈ L2(T, H) : |f(t)| ≤ a4(t) for almost all t ∈ T}.

We consider the following Cauchy problem:

{
−x�(t) ∈ A(t, x(t)) + f(t) for almost all t ∈ T = [0, b],
x(0) = ξ ∈ H, f ∈ C.

(3.32)

Let H : C → 2C(T,H) be the map (in general, multivalued) that assigns to each f ∈ C the set of solutions of
problem (3.32). It is a consequence of Proposition 2.3 and Lemma 3.3 that H( ⋅ ) has nonempty values.

Claim 3. H(C) ⊆ C(T, H) is compact.

Let {xn}n≥1 ⊆ H(C). Then

− x�n = h∗n + fn with h∗n ∈ a(xn), fn ∈ C for all n ∈ ℕ. (3.33)

Hence, for all t ∈ T, we have

1
2 |xn(t)|

2 ≤
1
2 c

2
10 +

t

∫
0

a4(s)|xn(s)| ds for some c10 > 0 and all n ∈ ℕ,

which implies (see [6, Lemme A.5])

|xn(t)| ≤ M1 for M1 > 0, all t ∈ T and all n ∈ ℕ. (3.34)

Also, using hypothesis (HA1) (iv), we have (see (3.34))

c2‖xn‖
p
Lp(T,X) ≤ c11 +

b

∫
0

a4(t)|xn(t)| dt ≤ c12 for all n ∈ ℕ. (3.35)

From (3.33) and (3.35) it follows that {xn}n≥1 ⊆ Wp(0, b) is bounded. So, we may assume that

xn wÚÚ→ x inWp(0, b), h∗n
wÚÚ→ h∗ in Lp� (T, X∗), fn wÚÚ→ f in L2(T, H). (3.36)

Passing to the limit as n → ∞ in (3.33) and using (3.36), we obtain −x� = h∗ + f. Also, from (3.33) we
have

((h∗n , xn − x)) + ((x�n , xn − x)) = −
b

∫
0

(fn(t), xn(t) − x(t)) dt. (3.37)

Note that, by (3.36) and (2.3),
b

∫
0

(fn(t), xn(t) − x(t)) dt → 0. (3.38)

Also using Proposition 2.2, we have (recall that xn(0) = x(0) = ξ for all n ∈ ℕ)

((x�n − x�, xn − x)) =
1
2 |xn(b) − x(b)|

2 ≥ 0 for all n ∈ ℕ,
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and so
((x�, xn − x)) ≤ ((x�n , xn − x)) for all n ∈ ℕ. (3.39)

From (3.36), it follows that
((x�, xn − x)) → 0. (3.40)

Returning to (3.37), passing to the limit as n → ∞ and using (3.38), (3.39) and (3.40), we obtain

lim sup
n→∞

((h∗n , xn − x)) ≤ 0,

and thus h∗ ∈ a(x) (see Lemma 3.3 and (3.36)). Therefore, H(C) is w-compact inWp(0, b). From the proof of
Lemma 3.3 (see (3.13)), we know that

b

∫
0

|⟨h∗n(t), xn(t) − x(t)⟩| dt → 0 as n → ∞. (3.41)

In a similar fashion, we also have

b

∫
0

|⟨h∗(t), xn(t) − x(t)⟩| dt → 0 as n → ∞. (3.42)

Also, by (2.3), (3.34), (3.36) and Vitali’s theorem, we have

b

∫
0

|(fn(t) − f(t), xn(t) − x(t))| dt → 0 as n → ∞. (3.43)

For every t ∈ T and every n ∈ ℕ, using Proposition 2.2, we have

1
2 |xn(t) − x(t)|

2 ≤
b

∫
0

|⟨h∗n(t) − h∗(t), xn(t) − x(t)⟩| dt
b

∫
0

|(fn(t) − f(t), xn(t) − x(t))| dt,

and so, from (3.41), (3.42) and (3.43), ‖xn − x‖C(T,H) → 0. Thus, H(C) ⊆ C(T, H) is compact.
However, from the previous parts of the proof it is clear that S(ξ ) ⊆ H(C) is weakly closed inWp(0, b) and

closed in C(T, H). Therefore,we conclude that S(ξ ) isweakly compact inWp(0, b) and compact in C(T, H).

Next, we want to produce a continuous selection of the multifunction ξ Ü→ S(ξ ) (we refer to [36] for more
details about continuous selections ofmultivaluedmappings). Note that S( ⋅ ) is in general not convex-valued,
and so theMichael selection theorem (see [22, Theorem 4.6, p. 92]) cannot be used. To produce a continuous
selectionof the solutionmultifunction ξ Ü→ S(ξ ),weneed to strengthen the conditions on themultimapA(t, ⋅ )
in order to guarantee that certain Cauchy problems admit a unique solution.

The new hypotheses on the map A(t, x) are as follows.
(HA2) A : T × X → 2X∗ \ {0} is a multivalued map such that the following hold:

(i) t Ü→ A(t, x) is graph measurable for every x ∈ X.
(ii) x Ü→ A(t, x) is maximal monotone for almost all t ∈ T.
(iii) For almost all t ∈ T, all x ∈ X and all h∗ ∈ A(t, x), we have

‖h∗‖∗ ≤ a1(t) + c1‖x‖p−1

with a1 ∈ Lp� (T), c1 > 0, 2 ≤ p.
(iv) For almost all t ∈ T, all x ∈ X and h∗ ∈ A(t, x), we have

⟨h∗, x⟩ ≥ c2‖x‖p − a2(t)

with c2 > 0, a2 ∈ L1(T)+.
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Remark 3.6. As we have already mentioned in an earlier remark, since now A(t, ⋅ ) is maximal monotone
for almost all t ∈ T, we do not need the condition on the graph of A(t, ⋅ ) (see hypothesis (HA1) (ii) and [4,
Lemma 1.3]).

Also, we strengthen the condition on the multifunction F(t, ⋅ ).
(HF2) F : T × H → Pfc (H) is a multifunction such that the following hold:

(i) t Ü→ F(t, x) is graph measurable for every x ∈ H.
(ii) For almost all t ∈ T and all x, y ∈ H, we have

h(F(t, x), F(t, y)) ≤ k(t)|x − y| with k ∈ L1(T)+.

(iii) For almost all t ∈ T, all x ∈ H and all h ∈ F(t, x), we have

|h| ≤ a3(t) + c3|x|

with a3 ∈ L2(T)+, c3 > 0, and if p = 2, then β2c3 < c2 (see (2.1)).

Remark 3.7. Hypothesis (HF2) (ii) is stronger than condition (HF1) (ii). Indeed, suppose that (HF2) (ii) holds
and we have

xn → x, hn wÚÚ→ h in H and hn ∈ F(t, xn) for all n ∈ ℕ. (3.44)

By the definition of the Hausdorff metric (see Section 2), we have

d(hn , F(t, x)) ≤ d(hn , F(t, xn)) + h(F(t, xn), F(t, x)) = h(F(t, xn), F(t, x)),

and therefore (see (3.44) and hypothesis (HF2) (ii))

d(hn , F(t, x)) → 0 as n → ∞.

The function y Ü→ d(y, F(t, x)) is continuous and convex, hence weakly lower semicontinuous. Therefore, by
(3.44) we have

d(h, F(t, x)) ≤ lim inf
n→∞

d(hn , F(t, x)) = 0,

which implies h ∈ F(t, x). This proves that condition (HF1) (ii) holds.

So,we canuse Theorem3.5 and establish that given any ξ ∈ H, the solution set S(ξ ) is nonempty,weakly com-
pact in Wp(0, b) and compact in C(T, H). The next result extends an earlier result of Cellina and Ornelas [9]
for differential inclusions inℝN with A ≡ 0.

Proposition 3.8. If hypotheses (HA2),(HF2)hold, then there exists a continuousmap ϑ : H → C(T, H) such that

ϑ(ξ ) ∈ S(ξ ) for all ξ ∈ H.

Proof. Consider the following auxiliary Cauchy problem:

−x�(t) ∈ A(t, x(t)) for almost all t ∈ T = [0, b], x(0) = ξ.

This problem has a unique solution x0(ξ ) ∈ Wp(0, b) (see Proposition 2.3 and use the monotonicity of A(t, ⋅ )
and Proposition 2.2 to check the uniqueness of this solution).

If ξ1, ξ2 ∈ H, then

−x�0(ξ1) = h
∗
1 and − x�0(ξ2) = h

∗
2 with h∗k ∈ a(x0(ξk)) for k = 1, 2.

So, using Proposition 2.2, we have

1
2 |x0(ξ1)(t) − x0(ξ2)(t)|

2 +
t

∫
0

⟨h∗1(s) − h
∗
2(s), x0(ξ1)(s) − x0(ξ2)(s)⟩ ds =

1
2 |ξ1 − ξ2|

2 for all t ∈ T,
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and hence (recall that A(t, ⋅ ) is monotone)

‖x0(ξ1) − x0(ξ2)‖C(T,H) ≤ |ξ1 − ξ2|. (3.45)

We consider the multifunction Γ0 : H → Pwkc(L1(T, H)) defined by

Γ0(ξ ) = S1F( ⋅ ,x0(ξ)( ⋅ )) for all ξ ∈ H.

We have

h(Γ0(ξ ), Γ0(ξ2)) = sup[|σ(g, Γ0(ξ1)) − σ(g, Γ0(ξ2))| : g ∈ L∞(T, H) = L1(T, H)∗, ‖g‖L∞(T,H) ≤ 1]

≤
b

∫
0

sup
|v|≤1

[!!!!σ(v, F(t, x0(ξ1)(t))) − σ(v, F(t, x0(ξ2)(z)))
!!!!] dt (see [34, Theorem 6.4.16])

=
b

∫
0

h(F(t, x0(ξ1)(t)), F(t, x0(ξ2)(t))) dt

≤
b

∫
0

k(t)|x0(ξ1)(t) − x0(ξ2)(t)| dt

≤
b

∫
0

k(t)|ξ1 − ξ2| dt (see (3.45))

= ‖k‖1|ξ1 − ξ2|.

Therefore, ξ Ü→ Γ0(ξ ) is h-Lipschitz.
Also, Γ0( ⋅ ) has decomposable values. So, we can apply the selection theoremof Bressan and Colombo [5]

(see also [22, Theorem 8.7, p. 245]) and find a continuous map γ0 : H → L1(T, H) such that γ0(ξ ) ∈ Γ0(ξ ) for
all ξ ∈ H. Evidently, γ0(ξ ) ∈ L2(T, H) for all ξ ∈ H.

We consider the following auxiliary Cauchy problem:

−x�(t) ∈ A(t, x(t)) + γ0(ξ )(t) for almost all t ∈ T, x(0) = ξ.

This problem has a unique solution x1(ξ ) ∈ Wp(0, b). By induction we will produce two sequences

{xn(ξ )}n≥1 ⊆ Wp(0, b) and {γn(ξ )}n≥1 ⊆ L2(T, H),

which satisfy the following:
(a) xn(ξ ) ∈ Wp(0, b) is the unique solution of the Cauchy problem

− x�(t) ∈ A(t, x(t)) + γn−1(ξ )(t) for almost all t ∈ T, x(0) = ξ. (3.46)

(b) ξ Ü→ γn(ξ ) is continuous from H into C(T, H).
(c) γn(ξ )(t) ∈ F(t, xn(ξ )(t)) for almost all t ∈ T and all ξ ∈ H.
(d) |γn(ξ )(t) − γn−1(ξ )(t)| ≤ k(t)βn(ξ )(t) for almost all t ∈ T and all ξ ∈ H, where

βn(ξ )(t) = 2
t

∫
0

η(ξ )(s) (τ(t) − τ(s))
n−1

(n − 1)! ds + 2b(
n
∑
k=1

ϵ
2k+1

)
τ(t)n−1

(n − 1)!

with ϵ > 0, η(ξ )(t) = a2(t) + c2|x0(ξ )(t)| and τ(t) = ∫t0 k(s) ds.
Note that the maps ξ Ü→ η(ξ ) and ξ Ü→ βn(ξ ) are continuous from H into L1(T). So, suppose we have pro-

duced {xk(ξ )}nk=1 and {γk(ξ )}nk=1 (induction hypothesis). Let xn+1(ξ ) ∈ Wp(0, b) be the unique solution of the
Cauchy problem

− x�(t) ∈ A(t, x(t)) + γn(ξ )(t) for almost all t ∈ T, x(0) = ξ. (3.47)
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By (3.46) and (3.47) we have

− x�n(ξ ) = h∗n + γn−1(ξ ) and − x�n+1(ξ ) = h
∗
n+1 + γn(ξ ) in Lp� (T, X∗) (3.48)

with
h∗n ∈ a(xn(ξ )), h∗n+1 ∈ a(xn+1(ξ )). (3.49)

Using (3.48) we can write

⟨x�n+1(ξ )(t) − x
�
n(ξ )(t), xn+1(ξ )(t) − xn(ξ )(t)⟩

= ⟨h∗n(ξ )(t) − h∗n+1(ξ )(t), xn+1(ξ )(t) − xn(ξ )(t)⟩ + (γn−1(ξ )(t) − γn(ξ )(t), xn+1(ξ )(t) − xn(ξ )(t))
≤ (γn−1(ξ )(t) − γn(ξ )(t), xn+1(ξ )(t) − xn(ξ )(t)) for almost all t ∈ T

(see hypothesis (HA2) (ii) and (3.49)). Therefore, from Proposition 2.2,

1
2
d
dt

|xn+1(ξ )(t) − xn(ξ )(t)|2 ≤ |γn−1(ξ )(t) − γn(ξ )(t)||xn+1(ξ )(t) − xn(ξ )(t)| for almost all t ∈ T,

and thus

1
2 |xn+1(ξ )(t) − xn(ξ )(t)|

2 ≤
t

∫
0

|γn−1(ξ )(s) − γn(ξ )(s)| |xn+1(ξ )(s) − xn(ξ )(s)| ds for all t ∈ T. (3.50)

By (3.50) and [6, Lemma A.5], we infer that

|xn+1(ξ )(t) − xn(ξ )(t)| ≤
t

∫
0

|γn−1(ξ )(s) − γn(ξ )(s)| ds

≤
t

∫
0

k(s)βn(ξ )(s) ds (by the induction hypothesis, see (d))

= 2
t

∫
0

k(s)
s

∫
0

η(ξ )(r) (τ(s) − τ(r))
n−1

(n − 1)! dr ds + 2b(
n
∑
k=0

ϵ
2k+1

)
t

∫
0

k(s) τ(s)
n−1

(n − 1)! ds

= 2
t

∫
0

η(ξ )(s)
t

∫
s

k(r) (τ(r) − τ(s))
n−1

(n − 1)! dr ds + 2b(
n
∑
k=0

ϵ
2k+1

)
t

∫
0

d
ds
τ(s)n

n! ds

= 2
t

∫
0

η(ξ )(s)
t

∫
s

d
dr

(τ(r) − τ(s))n

n! dr ds + 2b(
n
∑
k=0

ϵ
2k+1

)
τ(t)n

n!

= 2
t

∫
0

η(ξ )(s) (τ(t) − τ(s))
n

n! ds + 2b(
n
∑
k=0

ϵ
2k+1

)
τ(t)n

n!

< βn+1(ξ )(t) for almost all t ∈ T (3.51)

(see (d)). Using the induction hypothesis (see (c)) and hypothesis (HF2) (ii), we have

d(γn(ξ )(t), F(t, xn+1(ξ )(t))) ≤ h(F(t, xn(ξ )(t)), F(t, xn+1(ξ )(t)))
≤ k(t)|xn(ξ )(t) − xn+1(ξ )(t)|
< k(t)βn+1(ξ )(t) for almost all t ∈ T (3.52)

(see (3.51)).
Consider the multifunction Γn+1 : H → 2L1(T,H) defined by

Γn+1(ξ ) = {f ∈ S1F( ⋅ ,xn+1(ξ)( ⋅ )) : |γn(ξ )(t) − f(t)| < k(t)βn+1(ξ )(t) for almost all t ∈ T}.
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By (3.52) and [22, Lemma 8.3, p 239], we have that ξ Ü→ Γn+1(ξ ) has nonempty decomposable values and it
is LSC. Thus, ξ Ü→ Γn+1(ξ ) is LSC with decomposable values.

We can apply the selection theorem of Bressan and Colombo [5, Theorem 3] to find a continuous map
γn+1 : H → L1(T, H) such that γn+1(ξ ) ∈ Γn+1(ξ ) for all ξ ∈ H. This completes the induction process and we
have produced two sequences {xn(ξ )}n≥1, {γn(ξ )}n≥1 which satisfy properties (a)–(d) stated earlier.

From (3.51) we have
b

∫
0

|γn(ξ )(t) − γn−1(ξ )(t)| dt <
b

∫
0

βn+1(ξ )(t) dt

<
b

∫
0

η(ξ )(t) (τ(b) − τ(t))
n

n! dt + 2bϵ τ(b)
n

n!

≤
τ(b)n

n! [‖η(ξ )‖1 + 2bϵ]. (3.53)

Recall that ξ Ü→ η(ξ ) is continuous from H into L1(H) and maps bounded sets to bounded sets. So, from
(3.53) it follows that {γn(ξ )}n≥1 ⊆ L1(T) is Cauchy, uniformly on bounded sets of H. Moreover, from (3.51)
and (3.53), we have

‖xn+1(ξ ) − xn(ξ )‖C(T,H) ≤ ‖γn(ξ ) − γn−1(ξ )‖L1(T,H) ≤
τ(b)n

n! [‖η(ξ )‖1 + 2bϵ].

Thus, {xn(ξ )}n≥1 ⊆ C(T, H) is Cauchy, uniformly on bounded sets. Therefore, we have

xn(ξ ) → x(ξ ) in C(T, H) and γn(ξ ) → γ(ξ ) in L1(T, H). (3.54)

Evidently, ξ Ü→ x(ξ ) is continuous from H into C(T, H), while because of hypothesis (HF2) (iii), we have
γn(ξ ) → γ(ξ ) in L2(T, H). Let x̂(ξ ) ∈ Wp(0, b) be the unique solution of

−y�(t) ∈ A(t, y(t)) + γ(ξ )(t) for almost all t ∈ T, y(0) = 0.

As before, exploiting the monotonicity of A(t, ⋅ ) (see hypothesis (HA2) (ii)), we have

1
2 |xn+1(ξ )(t) − x̂(ξ )(t)|

2 ≤
t

∫
0

|γn(ξ )(s) − γ(ξ )(s)| |xn+1(ξ )(s) − x̂(ξ )(s)| ds for all t ∈ T,

which implies (see [6, Lemma A.5])

‖xn+1(ξ ) − x̂(ξ )‖C(T,H) ≤ ‖γn(ξ ) − γ(ξ )‖L1(T,H).

Therefore, from (3.54), x(ξ ) = x̂(ξ ).
So, x(ξ ) ∈ S(ξ ) and the map ϑ : H → C(T, H) defined by ϑ(ξ ) = x(ξ ) is a continuous selection of the solu-

tion multifunction ξ Ü→ S(ξ ).

An easy but useful consequence of Proposition 3.8 and its proof is a parametric version of the Filippov–
Gronwall inequality (see [1, Theorem 1, pp. 120–121] and [19]) for differential inclusions. So, we consider
the following parametric version of problem (3.1):

−x�(t) ∈ A(t, x(t)) + F(t, x(t), λ) for almost all t ∈ T, x(0) = ξ(λ).

The parameter spaceD is a completemetric space. Thehypotheses on the parametric vector field F(t, x, λ)
and the initial condition ξ(λ) are as follows.
(HF2)� F : T × H × D → Pfc (H) is a multifunction such that the following hold:

(i) t Ü→ F(t, x, λ) is graph measurable for all (x, λ) ∈ H × D.
(ii) For almost all t ∈ T, all x, y ∈ H and all λ ∈ D, we have

h(F(t, x, λ), F(t, y, λ)) ≤ k(t)|x − y|

with k ∈ L1(T)+.
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(iii) For almost all t ∈ T, all x ∈ H, all λ ∈ D and all h ∈ F(t, x), we have

|h| ≤ a3(t) + c3|x|

with a3 ∈ L2(T)+, c3 > 0, and if p = 2, then β2c3 < c2 (see (2.1)).
(iv) For almost all t ∈ T and all x ∈ H, the multifunction λ Ü→ F(t, x, λ) is LSC.

(H0) The mapping λ Ü→ ξ(λ) is continuous from D into H.
Assume that λ Ü→ (u(λ), h(λ)) is a continuous map from D into C(T, H) × L2(T, H). We can find a continuous
map p : D → L2(T) such that

d(h(λ)(t), F(t, u(λ)(t), λ)) ≤ p(λ)(t) for almost all t ∈ T,

see hypothesis (HF2)� (iii).
In what follows, by e(h, λ) ∈ Wp(0, b) we denote the unique solution of the Cauchy problem

−u�(t) ∈ A(t, u(t)) + h(t) for almost all t ∈ T, u(0) = ξ(λ)

with h ∈ L2(T, H).
We have the following approximation result.

Proposition 3.9. Assume that hypotheses (HA2), (HF2)�, (H0) hold, λ Ü→ (u(λ), h(λ)) is a continuousmap from
D into C(T, H) × L2(T, H) with u(λ) = e(h(λ), λ), ϵ > 0 and p : D → L2(T)+ is a continuous map such that

d(h(λ)(t), F(t, u(λ)(t), λ)) ≤ p(λ)(t) for almost all t ∈ T.

Then there exists a continuous map λ Ü→ (x(λ), f(λ)) from D into C(T, H) × L2(T, H) such that

x(λ) = e(f(λ), λ) with f(λ) ∈ S2F( ⋅ ,x(λ)( ⋅ ),λ)

and

|x(λ)(t) − u(λ)(t)| ≤ bϵeτ(t) +
t

∫
0

p(λ)(s)eτ(t)−τ(s) ds for all t ∈ T

with τ(t) = ∫t0 k(s) ds.

Proof. Consider the multifunction Rϵ : D → 2L1(T,H) defined by

Rϵ(λ) = {v ∈ S1F( ⋅ ,u(λ)( ⋅ ),λ) : |v(t) − h(λ)(t)| < p(λ)(t) + ϵ for almost all t ∈ T}.

This multifunction has nonempty, decomposable values and it is LSC (see [22, Lemma 8.3, p 239]). Hence,
λ Ü→ Rϵ(λ) has the same properties. So, we can find a continuous map γ0 : D → L1(T, H) such that

γ0(λ) ∈ Rϵ(λ) for all λ ∈ D.

Let x1(λ) ∈ Wp(0, b) be the unique solution of the following Cauchy problem:

−x�(t) ∈ A(t, x(t)) + γ0(λ)(t) for almost all t ∈ T, x(0) = ξ(λ).

Then as in the proof of Proposition 3.8, we can generate by induction two sequences

{xn(λ)}n≥1 ⊆ Wp(0, b) and {γn(λ)}n≥1 ⊆ L2(T, H),

which satisfy properties (a)–(d) listed in the proof of Proposition 3.8. As before (see the proof of Proposi-
tion 3.8), we have

|xn+1(λ)(t) − xn(λ)(t)| ≤ ‖γn(λ) − γn−1(λ)‖L1(T,H) for all (λ, t) ∈ D × T.

From this inequality and property (d) of the sequences (see the proof of Proposition 3.8), we infer that

{xn(λ)}n≥1 ⊆ C(T, H) and {γn(λ)}n≥1 ⊆ L1(T, H)
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are both Cauchy uniformly in λ ∈ K ⊆ D compact (recall that λ Ü→ p(λ) is continuous, hence locally bounded).
So, we have

xn(λ) → x̂(λ) in C(T, H) and γn(λ) → γ̂(λ) in L1(T, H),

and both maps D ∋ λ Ü→ x̂(λ) ∈ C(T, H) and D ∋ λ Ü→ γ̂(λ) ∈ L1(T, H) are continuous. Moreover, we have
γ̂(λ) ∈ S2F( ⋅ ,x̂(λ)( ⋅ ),λ) (see the proof of Theorem 3.5) and that λ Ü→ γ̂(λ) is continuous from D into L2(T, H). If
x(λ) = e(γ̂(λ), λ), then

|xn(λ)(t) − x(λ)(t)| ≤
b

∫
0

|γn−1(λ)(s) − γ̂(λ)(s)| ds → 0 for all t ∈ T,

which implies
x̂(λ) = x(λ) = e(γ̂(λ), λ) for all λ ∈ D.

From the triangle inequality, we have

|u(λ)(t) − xn(λ)(t)| ≤ |u(λ)(t) − x1(λ)(t)| +
n−1
∑
k=1

|xk(λ)(t) − xk+1(λ)(t)| for all t ∈ T.

Using property (d) (see the proof of Proposition 3.8), we have

|xk(λ)(t) − xk+1(λ)(t)| ≤
1
k!

t

∫
0

p(λ)(s)(τ(t) − τ(s))k ds + bϵ
k! τ(t)

k for all t ∈ T.

So, finally we can write that

|u(λ)(t) − x(λ)(t)| ≤ bϵeτ(b) +
t

∫
0

p(λ)(s)eτ(t)−τ(s) ds for all t ∈ T and all λ ∈ D.

We want to strengthen Proposition 3.8, and require that the selection ϑ( ⋅ ) passes through a preassigned
solution. We mention that an analogous result for differential inclusions in ℝN with A ≡ 0, was proved by
Cellina and Staicu [10].

We start with a simple technical lemma.

Lemma 3.10. If {uk}Nk=0 ⊆ L1(T, H) and {Tk(ξ )}Nk=0 is a partition of T = [0, b]with endpoints which depend con-
tinuously on ξ ∈ H, then there exists d̂ ∈ L1(T)+ for which the following holds: “Given ϵ > 0, we can find δ > 0
such that for |ξ − ξ �| ≤ δ,

!!!!!!!!!

N
∑
k=0

χTk(ξ)(t)uk(t) −
N
∑
k=0

χTk(ξ �)(t)uk(t)!!!!!!!!! ≤ d̂(t)χC(t)
with C ⊆ T measurable and |C|1 ≤ ϵ”.

Proof. We have
!!!!!!!!!

N
∑
k=0

χTk(ξ)(t)uk(t) −
N
∑
k=0

χTk(ξ �)(t)(t)uk(t)!!!!!!!!! ≤
N
∑
k=0

|χTk(ξ)(t) − χTk(ξ �)||uk(t)|
= ∑

k
χTk(ξ)∆Tk(ξ �)(t)|uk(t)|. (3.55)

We set d̂(t) = ∑N
k=0|uk(t)| ∈ L1(T)+. From the hypothesis concerning the partition {Tk(ξ )}Nk=0 of T, we see that

given ϵ > 0, we can find δ > 0 such that for |ξ − ξ �| ≤ δ,

χTk(ξ)∆Tk(ξ �)(t) ≤ χC(t) for almost all t ∈ T and all k ∈ {0, . . . , N} (3.56)

with C ⊆ T measurable, |C|1 ≤ ϵ. Then, from (3.55) and (3.56),
!!!!!!!!!

N
∑
k=0

χTk(ξ)(t)uk(t) −
N
∑
k=0

χTk(ξ �)(t)uk(t)!!!!!!!!! ≤ χC(t)
N
∑
k=0

|uk(t)| = d̂(t)χC(t) for almost all t ∈ T.

The proof is now complete.
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With this lemma,we canproduce a continuous selectionof the solutionmultifunction ξ Ü→ S(ξ ),whichpasses
through a preassigned point.

Proposition 3.11. If hypotheses (HA2), (HF2) hold, K ⊆ H is compact, ξ0 ∈ K and v ∈ S(ξ0), then there exists
a continuous map ψ : K → C(T, H) such that

ψ(ξ ) ∈ S(ξ ) for all ξ ∈ K and ψ(ξ0) = v.

Proof. Since v ∈ S(ξ0), we have

− v�(t) ∈ A(t, v(t)) + f(t) for almost all t ∈ T, v(0) = ξ0 (3.57)

with f ∈ S2F( ⋅ ,v( ⋅ )). Given g ∈ L2(T, H), we consider the unique solution of the Cauchy problem

− y�(t) ∈ A(t, y(t)) + g(t) for almost all t ∈ T, y(0) = ξ ∈ H. (3.58)

In what follows, by e(g, ξ ) ∈ Wp(0, b) we denote the unique solution of problem (3.58) and we set
μ0(ξ ) = e(f, ξ ). An easy application of the Yankov–von Neumann–Aumann selection theorem (see [22, The-
orem 2.14, p. 158]) gives γ0(ξ ) ∈ L2(T, H) such that

γ0(ξ )(t) ∈ F(t, μ0(ξ )(t)) for almost all t ∈ T

and

|f(t) − γ0(ξ )(t)| = d(f(t), F(t, μ0(ξ )(t)))
≤ k(t)|v(t) − μ0(ξ )(t)| (see hypothesis (HF2) (ii))
= k(t)|e(f, ξ0)(t) − e(f, ξ )(t)|
≤ k(t)|ξ0 − ξ | for almost all t ∈ T,

see (3.45).
Let ϑ > 0. We define

δ(ξ ) =
{{
{{
{

min{2−3ϑ, |ξ − ξ0|2 } if ξ ̸= ξ0,

2−3ϑ if ξ = ξ0.

The family {Bδ(ξ)(ξ )}ξ∈K is an open cover of the compact set K. So, we can find {ξk}Nk=0 ⊆ K such that
{Bδ(ξk)(ξk)}Nk=0 is a finite subcover of K. Let {ηk}Nk=0 be a locally Lipschitz partition of unity subordinated
to the finite subcover. We define

T0(ξ ) = [0, η0(ξ )b] and Tk(ξ ) = [(
k−1
∑
i=0
ηi(ξ ))b,(

k
∑
i=0
ηi(ξ ))(b)] for all k ∈ {1, . . . , N}.

The endpoints in these intervals are continuous functions of ξ . We consider the following Cauchy problem:

− y�(t) ∈ A(t, y(t)) +
N
∑
k=0

χTk(ξ)(t)γ0(ξk)(t) for almost all t ∈ T, y(0) = ξ ∈ K. (3.59)

Problem (3.59) has a unique solution μ1(ξ ) ∈ Wp(0, b). Let

λ0(ξ )( ⋅ ) =
N
∑
k=0

χTk(ξ)( ⋅ )γ0(ξk)( ⋅ ) ∈ L2(T, H).

Using Lemma3.10, we can find d̂ ∈ L1(T)+ such that, for any given ϵ > 0, we can find δ > 0 for whichwe have

ξ, ξ � ∈ K, |ξ − ξ �|1 ≤ δ ⇒ |λ0(ξ )(t) − λ0(ξ �)(t)| ≤ d̂(t)χC(t) for almost all t ∈ T (3.60)
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with C ⊆ T measurable, |C|1 ≤ ϵ. We have μ1(ξ �) = e(λ0(ξ �), ξ �). As before, exploiting the monotonicity of
A(t, ⋅ ) (see hypothesis (HA2) (ii)) and using [6, Lemma A.5], we have

|μ1(ξ )(t) − μ1(ξ �)(t)| ≤ |ξ − ξ �| +
t

∫
0

|λ0(ξ )(s) − λ0(ξ �)(s)| ds for all t ∈ T. (3.61)

Let ϵ > 0 be given. By the absolute continuity of the Lebesgue integral, we can find δ1 > 0 such that

∫
C

d̂(s) ds ≤ ϵ
2 for all C ⊆ T measurable with |C|1 ≤ δ1. (3.62)

Also, using (3.60), we can find δ ∈ (0, ϵ/2) such that

ξ, ξ � ∈ K, |ξ − ξ �|1 ≤ δ ⇒ |λ0(ξ )(t) − λ0(ξ �)(t)| ≤ d̂(t)χC1 (t) for almost all t ∈ T (3.63)

with C1 ⊆ T measurable, |C1|1 ≤ δ1. So, returning to (3.61) and using (3.62) and (3.63), we see that

ξ, ξ � ∈ K, |ξ − ξ �| ≤ δ ⇒ |μ1(ξ )(t) − μ1(ξ �)(t)| ≤
ϵ
2 +

t

∫
0

d̂(s)χC1 (s) ds ≤
ϵ
2 +

ϵ
2 = ϵ for all t ∈ T.

Therefore, ξ Ü→ μ1(ξ ) is continuous from H into C(T, H). Again, with an application of the Yankov–von
Neumann–Aumann selection theorem, we obtain γ1(ξ ) ∈ L2(T, H) such that

γ1(ξ )(t) ∈ F(t, μ1(ξ )(t)) for almost all t ∈ T

and
|γ0(ξ )(t) − γ1(ξ )(t)| = d(γ0(ξ )(t), F(t, μ1(ξ )(t))) for almost all t ∈ T and all ξ ∈ K.

As in the proof of Proposition 3.8, we produce inductively two sequences

{μn(ξ )}n≥0 ⊆ Wp(0, b) and {γn(ξ )}n≥0 ⊆ L2(T, H), ξ ∈ K,

which satisfy the following properties:
(a) μn(ξ ) = e(λn−1(ξ ), ξ ) with λn−1(ξ ) = ∑N

k=0 χTk(ξ)γn−1(ξk)(t), γ−1(ξ ) = f ,
(b) ξ Ü→ μn(ξ ) is continuous from K into C(T, H),
(c) |μn(ξ )(t) − μn−1(ξ )(t)| ≤ ϑ

2n+2n! (∫t0 k(s) ds)n for all ξ ∈ K,
(d) γn(ξ )(t) ∈ F(t, μn(ξ )(t)) for almost all t ∈ T and

|γn−1(ξ )(t) − γn(ξ )(t)| = d(γn−1(ξ )(t), F(t, μn(ξ )(t))) for almost all t ∈ T.

So, by the induction hypothesis, suppose that we have produced

{μk(ξ )}nk=0 ⊆ Wp(0, b) and {γk(ξ )}nk=0 ⊆ L2(T, H),

which satisfy properties (a)–(d) stated above. We set

μn+1(ξ ) = e(λn(ξ ), ξ ) with λn(ξ )(t) =
n
∑
k=0

χTk(ξ)(t)γn(ξk)(t).

As above (see in the first part of the proof the argument concerning themap ξ Ü→ μ1(ξ )), we can show that
ξ Ü→ μn+1(ξ ) is continuous from K into C(T, H). Also, by the monotonicity of A(t, ⋅ ) (see hypothesis (HA2) (ii)
and [6, Lemma A.5]), we have (see hypothesis (HF2) (ii) and property (d) of the induction hypothesis)

|μn+1(ξ )(t) − μn(ξ )(t)| ≤
n
∑
k=0

t

∫
0

χTk(ξ)(s)k(s)|μn(ξ )(s) − μn−1(ξ )(s)| ds

≤
n
∑
k=0

t

∫
0

χTk(ξ)(s)k(s)
ϑ

2n+2n!
(

s

∫
0

k(s) dr)
n

ds
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=
t

∫
0

ϑ
2n+2(n + 2)!

d
ds(

s

∫
0

k(r) dr)
n+1

ds

=
ϑ

2n+2(n + 1)!
(

t

∫
0

k(s) ds)
n+1
.

Note that for the second inequality we used property (c) of the induction hypothesis. Moreover, a standard
measurable selection argument produces a measurable map γn+1(ξ ) : T → H, ξ ∈ K, such that

γn+1(ξ )(t) ∈ F(t, μn+1(ξ )(t)) and |γn(ξ )(t) − γn+1(ξ )(t)| = d(γn(ξ )(t), F(t, μn+1(ξ )(t)))

for almost all t ∈ T. This completes the induction process.
Note that from property (c),

‖γn+1(ξ ) − μn(ξ )‖C(T,H) ≤
ϑ

2n+3
e‖k‖1 .

Therefore, we can say that

μn(ξ ) → ψ(ξ ) in C(T, H) as n → ∞, uniformly in ξ ∈ K. (3.64)

It follows that ξ Ü→ ψ(ξ ) is continuous from K into C(T, H).
Note that T0(ξ0) = T = [0, b]and so μ0(ξ0) = e(f, ξ0) = v (see (3.57)).Hence,ψ(ξ0) = v. It remains to show

thatψ is a selection of the solutionmultifunction ξ Ü→ S(ξ ). By property (d) andhypothesis (HF2) (ii), we have

|γn(ξ )(t) − γn+1(ξ )(t)| ≤ k(t)|μn(ξ )(t) − μn+1(ξ )(t)| for almost all t ∈ T,

and thus
γn+1(ξ ) → γ̂(ξ ) in L2(T, H). (3.65)

Let

μ̂(ξ ) = e(
N
∑
k=0

t

∫
0

χTk(ξ)(s)γ̂(ξk)(s) ds, ξ).

Since, from (3.65),

N
∑
k=0

χTk(ξ)γn(ξk) →
N
∑
k=0

χTk(ξ) γ̂(ξk) in L2(T, H),

we have μn(ξ ) → μ̂(ξ ) in C(T, H). Therefore, from (3.64),

ψ(ξ ) = μ̂(ξ ) ∈ S(ξ ) for all ξ ∈ K.

4 Optimal control problems
In this section we deal with the sensitivity analysis of the optimal control problem (1.1).

Let Q(ξ, λ) ⊆ Wp(0, b) × L2(T, Y) be the admissible “state-control” pairs. First we investigate the depen-
dence of this set on the initial condition ξ ∈ H and the parameter λ ∈ E. Recall that the control space Y is
a separable reflexive Banach space and the parameter space E is a compact metric space. To have a useful
result on the dependence of Q(ξ, λ) on (ξ, λ) ∈ H × E, we introduce the following conditions on the data of
the evolution inclusion in problem (1.1) (the dynamical constraint of the problem).
(HA3) A : T × X × E → 2X∗ \ {0} is a multifunction such that

(i) t Ü→ Aλ(t, x) is graph measurable for every (x, λ) ∈ X × E.
(ii) x Ü→ Aλ(t, x) is maximal monotone for almost all t ∈ T, all λ ∈ E.
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(iii) For almost all t ∈ T, all x ∈ X, all λ ∈ E and all h∗ ∈ Aλ(t, x), we have

‖h∗‖∗ ≤ aλ(t) + cλ‖x‖p−1

with {aλ}λ∈E ⊆ Lp� (T) bounded, {cλ}λ∈E ⊆ (0, +∞) bounded and 2 ≤ p < ∞.
(iv) For almost all t ∈ T, all x ∈ X, all λ ∈ E and all h∗ ∈ Aλ(t, x), we have

⟨h∗, x⟩ ≥ ĉ‖x‖p − â(t)

with ĉ > 0, â ∈ L1(T)+.
(v) If λn → λ in E, then d

dt + aλn
PGÚÚÚ→ d

dt + aλ as n → ∞.
Hypotheses (HA3) (i)–(iv) are the same as hypotheses (HA2) (i)–(iv) for every map Aλ, λ ∈ E. The new

condition is hypothesis (HA3) (v), which requires elaboration. In the examples that follow, we present char-
acteristic situations where this hypothesis is satisfied.

Example 4.1. (a) First, we present a situation which will be used in Section 5. So, let Ω ⊆ ℝN be a bounded
domainwith Lipschitz boundary ∂Ω. Let X = W1,p

0 (Ω) (2 ≤ p < ∞),H = L2(Ω) and X∗ = W−1,p� (Ω). Evidently,
(X, H, X∗) is an evolution triple (see Definition 2.1) with compact embeddings. We consider a map a(t, z, ξ )
satisfying the following conditions:
(Ha) a : T × Ω × ℝN → ℝN is a map such that the following hold:

(i) |a(t, z, 0)| ≤ c0 for almost all (t, z) ∈ T × Ω.
(ii) (t, z) Ü→ a(t, z, ξ ) is measurable for every ξ ∈ ℝN .
(iii) For almost all (t, z) ∈ T × Ω and all ξ1, ξ2 ∈ ℝN , we have

|a(t, z, ξ1) − a(t, z, ξ2)| ≤ ĉ(1 + |ξ1| + |ξ2|)p−1−α|ξ1 − ξ2|α

with ĉ1 > 0, α ∈ (0, 1].
(iv) For almost all (t, z) ∈ T × Ω and all ξ1, ξ2 ∈ ℝN , ξ1 ̸= ξ2, we have

(a(t, z, ξ1) − a(t, z, ξ2), ξ1 − ξ2)ℝN ≥ ĉ2|ξ1 − ξ2|p

with ĉ2 > 0.
We consider the operator A : T × X → X∗ defined by

⟨A(t, x), h⟩ = ∫
Ω

(a(t, z, Dx), Dh)ℝN dz for all (t, x, h) ∈ T × X × X.

Using the nonlinear Green’s identity (see [20, p. 210]), we have

A(t, x) = −div(B(t, x)),

with B(t, x)( ⋅ ) = a(t, ⋅ , Dx( ⋅ )) ∈ Lp� (Ω,ℝN) for all (t, x) ∈ T × X.
Now consider a sequence {an(t, z, ξ )}n≥1 of such maps satisfying

|an(t, z, ξ ) − an(s, z, ξ )| ≤ ϑ(t − s)(1 + |ξ |p−1)

for almost all z ∈ Ω, all t, s ∈ T, all ξ ∈ ℝN and all n ∈ ℕ, with ϑ : ℝ+ → ℝ+ being an increasing function
which is continuous at r = 0 and ϑ(0) = 0. We assume that for almost all t ∈ T, an(t, ⋅ , ⋅ ) GÚÚ→ a(t, ⋅ , ⋅ ) in the
sense of Defranceschi [12]. By [40] we have

d
dt

+ an PGÚÚÚ→
d
dt

+ a.

(b) We can allow multivalued maps, provided that we drop the t-dependence. So, we consider multival-
ued maps a(z, ξ ) which satisfy the following conditions:
(Ha)� a : Ω × ℝN → 2ℝN \ {0} is a measurable map such that the following hold:

(i) a( ⋅ , ⋅ ) is measurable.
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(ii) ξ Ü→ a(z, ξ ) is maximal monotone for almost all z ∈ Ω.
(iii) For almost all z ∈ Ω, all ξ ∈ ℝN and all y ∈ a(z, ξ ), we have

|y|p� ≤ m1(z) + c̃1(y, ξ ) with m1 ∈ L1(Ω), c̃1(y, ξ ) > 0,
|ξ |p ≤ m2(z) + c̃2(y, ξ ) with m2 ∈ L1(Ω), c̃2(y, ξ ) > 0 (2 ≤ p < ∞).

We again consider the evolution triple

X = W1,p
0 (Ω), H = L2(Ω), X∗ = W−1,p� (Ω) (2 ≤ p < ∞),

and consider the multivalued map A : X → 2X∗ \ {0} defined by
A(x) = {−div g : g ∈ Sp

�
a( ⋅ ,Dx( ⋅ ))}.

We consider a sequence {an(z, ξ )}n≥1 of such maps and assume that an GÚÚ→ a in the sense of Defranceschi
[12]. Then by [16] we have

d
dt

+ an PGÚÚÚ→
d
dt

+ a.

(c) A third situation leading to hypothesis (HA3) (v) is the following one. We consider maps Aλ(t, x) sat-
isfying the following conditions:
(HA3)� A : T × X × E → X∗ is a map such that the following hold:

(i) For all t, t + τ ∈ T, all x ∈ X and all λ ∈ E, we have

‖Aλ(t + τ, x) − Aλ(t, x)‖ ≤ O(τ)(1 + ‖x‖p−1).

(ii) x Ü→ Aλ(t, x) is semicontinous for all (t, λ) ∈ T × E.
(iii) For all t ∈ T, all x, u ∈ X and all λ ∈ E, we have

⟨Aλ(t, x) − Aλ(t, u), x − u⟩ ≥ c̃‖x − u‖p

with c̃ > 0.
(iv) If λn → λ in E, then Aλn (t, ⋅ )

GÚÚ→ Aλ(t, ⋅ ) for all t ∈ T. (This means that A−1
λn (t, x

∗) wÚÚ→ A−1
λ (t, x)

for all x∗ ∈ X∗, see [14, Definition 3.8.20].)
Under these conditions, by [26], we have

d
dt

+ aλn
PGÚÚÚ→

d
dt

+ aλ .

Next, we introduce the conditions on the multifunctions F and G involved in the dynamics of (1.1).
(HF3) F : T × H × E → Pfc (H) is a multifunction such that the following hold:

(i) t Ü→ F(t, x, λ) is graph measurable for all (x, λ) ∈ H × E.
(ii) for almost all t ∈ T, all x, y ∈ H and all λ ∈ E, we have

h(F(t, x, λ), F(t, y, λ)) ≤ k(t)|x − y|

with k ∈ L1(T)+.
(iii) For almost all t ∈ T, all x ∈ H and all λ ∈ E, we have

|F(t, x, λ)| ≤ aλ(t) + cλ|x|

with {aλ}λ∈E ⊆ L2(T) and {cλ}λ∈E ⊆ (0, +∞) bounded.
(iv) For almost all t ∈ T, all x ∈ H and all λ, λ� ∈ E, we have

h(F(t, x, λ), F(t, x, λ�)) ≤ β(d(λ, λ�))w(t, |x|)

with β(r) → 0+ as r → 0+ and w(t, ⋅ ) bounded on bounded sets.
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(HG) G : T × Y × E → Pfc (H) is a multifunction such that the following hold:
(i) t Ü→ G(t, u, λ) is graph measurable for all (u, λ) ∈ Y × E.
(ii) For almost all t ∈ T, all λ ∈ E, u Ü→ G(t, u, λ) is concave (that is, GrG(t, ⋅ , λ) ⊆ Y × H is concave,

see [22, Definition 1.1 and Remark 1.2, p. 585]) and (u, λ) Ü→ G(t, u, λ) is h-continuous.
(iii) For almost all t ∈ T, all u ∈ U(t, λ) and all λ ∈ E, we have

|G(t, u, λ)| ≤ âλ(t)

with {âλ}λ∈E ⊆ L2(T) bounded.

Remark 4.2. A typical situation resulting to a concave multifunction u Ü→ G(t, u, λ) is when

G(t, u, λ) = Bλ(t)u + C(t, λ) for all (t, u, λ) ∈ T × Y × E

with Bλ(t) ∈ L(Y, H) and C(t, λ) ∈ Pfc (H) for all (t, λ) ∈ T × E.
Another situation, leading to the concavity of G(t, ⋅ , λ), is when H is an ordered Hilbert space and

gλ , g̃λ : T × Y → H are two Carathéodory maps such that for almost all t ∈ T

gλ(t, ⋅ ) is order convex and g̃λ(t, ⋅ ) is order concave.

We set G(t, u, λ) = {h ∈ H : gλ(t, u) ≤ h ≤ g̃λ(t, u)}. Then G(t, ⋅ , λ) is concave.

Finally, we impose conditions on the control constraint U(t, λ).
(HU) U : T × E → Pfc (Y) is a multifunction such that the following hold:

(i) t Ü→ U(t, λ) is graph measurable for all λ ∈ E.
(ii) λ Ü→ U(t, λ) is h-continuous for almost all t ∈ T.
(iii) |U(t, λ)| ≤ ãλ(t) for almost all t ∈ T and all λ ∈ E with {ãλ}λ∈E ⊆ L2(T) bounded.

Proposition 4.3. If hypotheses (HA3), (HF3), (HG), (HU) hold and (ξn , λn) → (ξ, λ) in H × E, then

Kseq(s × w) − lim sup
n→∞

Q(ξn , λn) ⊆ Q(ξ, λ) in Lp(T, H) × L2(T, Y),

K(s × s) − lim inf
n→∞

Q(ξn , λn) ⊇ Q(ξ, λ) in C(T, H) × L2(T, Y).

Proof. Let (x, u) ∈ Kseq(s × w) − lim supn→∞ Q(ξn , λn). By definition (see Section 2), we can find a subse-
quence {m} of {n} and (xm , um) ∈ Q(ξm , λm), m ∈ ℕ such that

xm → x in Lp(T, H) and um wÚÚ→ u in L2(T, Y) as m → ∞. (4.1)

For every m ∈ ℕ, we have

− x�m(t) ∈ Aλm (t, xm(t)) + fm(t) + gm(t) for almost all t ∈ T, xm(0) = ξm , (4.2)

with fm , gm ∈ L2(T, H) such that

fm(t) ∈ F(t, xm(t), λm) and gm(t) ∈ G(t, um(t), λm) for almost all t ∈ T. (4.3)

We deduce by hypotheses (HF3) (iii), (HG) (iii) and Theorem 3.5 and its proof that {xm}m∈ℕ ⊆ Wp(0, b) is
bounded and {xm}m∈ℕ ⊆ C(T, H) is relatively compact. So, from (4.1) we obtain

xm wÚÚ→ x inWp(0, b) and xm → x in C(T, H) as m → ∞. (4.4)

By (4.3) and hypotheses (HF3) (iii), (HG) (iii), it is clear that {fm}m∈ℕ, {gm}m∈ℕ ⊆ L2(T, H) are bounded.
Hence, we may assume (at least for a subsequence), that

fm wÚÚ→ f and gm wÚÚ→ g in L2(T, H) as m → ∞. (4.5)

Proposition 6.6.33 of [34], implies that

f(t) ∈ convw − lim sup
m→∞

F(t, xm(t), λm) for all t ∈ T \ N, |N|1 = 0. (4.6)
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Fix t ∈ T \ N and let y ∈ w − lim supm→∞ F(t, xm(t), λm). By definition, we know that there exists a sub-
sequence {k} of {m}, and yk ∈ F(t, xk(t), λk) for all k ∈ ℕ such that yk wÚÚ→ y in H as k → ∞. The function
v Ü→ d(v, F(t, x(t), λ)) is continuous and convex, hence weakly lower semicontinuous. Therefore,

d(y, F(t, x(t), λ)) ≤ lim inf
k→∞

d(yk , F(t, x(t), λ)). (4.7)

On the other hand, we have

d(yk , F(t, x(t), λ)) ≤ h(F(t, xk(t), λk), F(t, x(t), λ)). (4.8)

Using hypotheses (HF3) (ii) and (iv), we have

h(F(t, xk(t), λk), F(t, x(t), λ)) ≤ h(F(t, xk(t), λk), F(t, x(t), λk)) + h(F(t, x(t), λk), F(t, x(t), λ))
≤ k(t)|xk(t) − x(t)| + β(d(λk , λ))w(t, |x(t)|),

and so, from (4.4),
h(F(t, xk(t), λk), F(t, x(t), λ)) → 0 as k → ∞.

Then, from (4.7) and (4.8), we obtain d(y, F(t, x(t), λ)) = 0, hence y ∈ F(t, x(t), λ). Therefore,

w − lim sup
m→∞

F(t, xm(t), λm) ⊆ F(t, x(t), λ) for all t ∈ T \ N, |N|1 = 0,

which implies (see (4.6) and recall that F is convex-valued)

f(t) ∈ F(t, x(t), λ) for all t ∈ T \ N, |N|1 = 0.

Next, for each m ∈ ℕ, we have
gm ∈ S2G( ⋅ ,um( ⋅ ),λm).

Let h ∈ L2(T, H) and let ( ⋅ , ⋅ )L2(T,H) denote the inner product of L2(T, H) (recall that L2(T, H)∗ = L2(T, H)).
Then (see [34, Theorem 6.4.16])

(h, gm)L2(T,H) ≤ σ(h, S2G( ⋅ ,um( ⋅ ),λm)) =
b

∫
0

σ(h(t), G(t, um(t), λm)) dt. (4.9)

The concavity of G(t, ⋅ , λ) (see hypothesis (HG) (ii)), implies that the function u Ü→ σ(h(t), G(t, u, λ)) is con-
cave. Since E is a complete metric space, it can be isometrically embedded, by the Arens–Eells theorem (see
[21, Theorem 4.143]), as a closed subset of a separable Banach space (recall that E is compact). So, by [3],
we have (see hypothesis (HG) (ii))

lim sup
m→∞

b

∫
0

σ(h(t), F(t, um(t), λm)) dt ≤
b

∫
0

σ(h(t), F(t, u(t), λ)) dt,

and thus
lim sup
m→∞

σ(h, S2G( ⋅ ,um( ⋅ ),λm)) ≤ σ(h, S
2
G( ⋅ ,u( ⋅ ),λ)).

Therefore, from (4.5) and (4.9),
(h, g)L2(T,H) ≤ σ(h, S2G( ⋅ ,u( ⋅ ),λ)).

Since h ∈ L2(T, H) is arbitrary, it follows that g ∈ S2G( ⋅ ,u( ⋅ ),λ), hence

g(t) ∈ G(t, u(t), λ) for almost all t ∈ T.

Let ym ∈ Wp(0, b) be the unique solution of the Cauchy problem

− y�m(t) ∈ Aλm (t, ym(t)) + f(t) + g(t) for almost all t ∈ T, ym(0) = ξ. (4.10)
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Hypothesis (HA3) (v) implies that
ym wÚÚ→ y inWp(0, b) (4.11)

with y ∈ Wp(0, b) being the unique solution of the Cauchy problem

− y�(t) ∈ Aλ(t, y(t)) + f(t) + g(t) for almost all t ∈ T, y(0) = ξ, (4.12)

see Section 2. From (4.2), (4.10) and the monotonicity of Aλm (t, ⋅ ) (see hypothesis (HA3) (ii)), we have

⟨x�m(t) − y�m(t), xm(t) − ym(t)⟩ ≤ (f(t) + g(t) − fm(t) − gm(t), xm(t) − ym(t)) for almost all t ∈ T.

Therefore, by Proposition 2.2,

1
2 |xm(t) − ym(t)|

2 ≤
1
2 |ξm − ξ |2 +

t

∫
0

(f(s) + g(s) − fm(s) − gm(s), xm(s) − ym(s)) ds for all t ∈ T,

which yields ‖xm − ym‖C(T,H) → 0 as m → ∞, and hence, by (4.4) and (4.11), x = y.
Recalling that

f(t) ∈ F(t, x(t), λ) and g(t) ∈ G(t, u(t), λ) for almost all t ∈ T,

it follows from (4.12) that (x, u) ∈ Q(ξ, λ), which implies

Kseq(s × w) − lim sup
n→∞

Q(ξn , λn) ⊆ Q(ξ, λ) in Lp(T, H) × L2(T, Y).

Next, we will prove the second convergence of the proposition. So, let (x, u) ∈ Q(ξ, λ). By definition we
have

−x�(t) ∈ Aλ(t, x(t)) + F(t, x(t), λ) + g(t) for almost all t ∈ T, x(0) = ξ

with g ∈ L2(T, H) satisfying
g(t) ∈ G(t, u(t), λ) for almost all t ∈ T.

For every v ∈ L2(T, Y), we have (see [34, Theorem 6.4.16])

d(v, S2U( ⋅ ,λn)) =
b

∫
0

d(v(t), U(t, λn)) dt

Hypothesis (HU) (ii) and the dominated convergence theorem imply that

b

∫
0

d(v(t), U(t, λn)) dt →
b

∫
0

d(v(t), U(t, λ)) dt,

and so
d(v, S2U( ⋅ ,λn)) → d(v, S2U( ⋅ ,λ)).

Hence, [34, Proposition 6.6.22] implies that we can find un ∈ S2U( ⋅ ,λn) (n ∈ ℕ) such that

un → u in L2(T, Y) as n → ∞.

Then hypothesis (HG) (ii) guarantees that we can find

gn ∈ L2(T, H), gn(t) ∈ G(t, un(t), λn) for almost all t ∈ T and all n ∈ ℕ

such that
gn → g in L2(T, H) as n → ∞.

Given ξ � ∈ H, let S(ξ �) ⊆ Wp(0, b) be the set of solutions of the Cauchy problem

−y�(t) ∈ Aλn (t, y(t)) + F(t, y(t), λ) + g(t) for almost all t ∈ T, y(0) = ξ �.
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Let K = {ξn , ξ }n≥1 ⊆ H. This is a compact set in H. Invoking Proposition 3.11 (with ξ0 = ξ ), we produce a
continuous map ψ : K → C(T, H) such that

ŷ = ψ( ̂ξ ) ∈ S( ̂ξ ) for all ̂ξ ∈ H, ψ(ξ ) = x. (4.13)

Let yn = ψ(ξn) (n ∈ ℕ) and use Proposition 3.9 to find xn ∈ Wp(0, b) solution of the Cauchy problem

−x�n(t) ∈ Aλn (t, xn(t)) + F(t, xn(t), λn) + gn(t) for almost all t ∈ T, xn(0) = ϵn ,

for which, we have

|xn(t) − yn(t)| ≤ bϵeτ(t) +
t

∫
0

ηn(s)eτ(t)−τ(s) ds for all t ∈ T (4.14)

with ϵ > 0, τ(t) = ∫t0 k(s) ds, ηn ∈ L1(T), ηn → 0 in L1(T). So, we obtain (see (4.14))

lim sup
n→∞

‖xn − yn‖C(T,H) ≤ bϵeτ(b).

Since ϵ > 0 is arbitrary, it follows that

‖xn − yn‖C(T,H) → 0 as n → ∞. (4.15)

Finally, from (4.13) we have

‖xn − x‖C(T,H) ≤ ‖xn − yn‖C(T,H) + ‖yn − x‖C(T,H) = ‖xn − yn‖C(T,H) + ‖ψ(ξn) − ψ(ξ )‖C(T,H).

Therefore, from (4.15) and the fact that ψ( ⋅ ) is continuous, ‖xn − x‖C(T,H) → 0. Since (xn , un) ∈ Q(ξn , λn)
(n ∈ ℕ) and un → u in L2(T, Y), we conclude that

Q(ξ, λ) ⊆ K(s × s) − lim inf
n→∞

Q(ξn , λn) in C(T, H) × L2(T, Y).

An immediate consequence of the above proposition is the following corollary concerning the multifunction
(ξ, λ) Ü→ Q(ξ, λ) of admissible state-control pairs.

Corollary 4.4. If hypotheses (HA3), (HF3), (HG), (HU) hold, then the multifunction

Q : H × E → 2C(T,H)×L2(T,Y) \ {0}

is LSCand sequentially closed in C(T, H) × L2(T, Y)w (that is,GrQ ⊆ H × E × C(T, H) × L2(T, Y)w is sequentially
closed).

Now we bring the cost functional into the picture. The hypotheses on the integrands L(t, x, λ) and H(t, u, λ)
are as follows.
(HL) L : T × H × E → ℝ is an integrand such that the following hold:

(i) t Ü→ L(t, x, λ) is measurable for every (x, λ) ∈ H × E.
(ii) If λn → λ in E, then for all x ∈ H, we have L( ⋅ , x, λn) wÚÚ→ L( ⋅ , x, λ) in L1(T).
(iii) For almost all t ∈ T, all x, y ∈ H and all λ ∈ E, we have

|L(t, x, λ) − L(t, y, λ)| = (1 + |x| ∨ |y|)ρ(t, |x − y|),

where |x| ∨ |y| = max{|x|, |y|} and ρ(t, r) is a Carathéodory function on T × ℝ+ with values in
(0, +∞) such that

ρ(t, 0) = 0 for almost all t ∈ T
and

sup
0≤r≤ϑ

[ρ(t, r)] ≤ βϑ(t) for almost all t ∈ T

with βϑ ∈ L1(T)+, ϑ > 0.
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(HH) H : T × Y × E → ℝ is an integrand such that the following hold:
(i) t Ü→ H(t, u, λ) is measurable for all (u, λ) ∈ Y × E.
(ii) u Ü→ H(t, u, λ) is convex for almost all t ∈ T and all v ∈ E, and λ Ü→ H(t, u, λ) is continuous for

almost all t ∈ T and all u ∈ Y.
(iii) For almost all t ∈ T and all (u, λ) ∈ Y × E, we have

H(t, u, λ) ≤ a(t)(1 + ‖u‖2Y ) with a ∈ L∞(T).

(Hψ̂) ψ̂ : H × E → ℝ is a continuous function.
Using the direct method of the calculus of variations, we can produce optimal admissible state-control

pairs for problem (1.1).

Proposition 4.5. If hypotheses (HA3), (HF3), (HG), (HU), (HL), (HH)and (Hψ̂)hold, then for every (ξ, λ) ∈H×E
we can find (x∗, u∗) ∈ Q(ξ, λ) such that J(x∗, u∗, ξ, λ) = m(ξ, λ).

Proof. Let {(xn , un)}n≥1 ⊆ Q(ξ, λ) be a minimizing sequence for problem (1.1). So, we have

J(xn , un , ξ, λ) ↓ m(ξ, λ) as n → ∞.

Theorem 3.5 and hypothesis (HU) imply that

{(xn , un)}n≥1 ⊆ Wp(0, b) × L2(T, Y) (respectively, ⊆ C(T, H) × L2(T, Y))

is relatively w × w-compact (respectively, s × w-compact). So, by the Eberlein–Smulian theorem and by pass-
ing to a suitable subsequence if necessary, we can say that

xn wÚÚ→ x∗ inWp(0, b), xn → x∗ in C(T, H), un wÚÚ→ u∗ in L2(T, Y). (4.16)

Then (4.16) and Proposition 4.3 imply that

(x∗, u∗) ∈ Q(ξ, λ). (4.17)

Also, (4.16), hypothesis (HL) (iii) and the dominated convergence theorem, imply that

b

∫
0

L(t, xn(t), λ) dt →
b

∫
0

L(t, x∗(t), λ) dt. (4.18)

In addition, as before (see the proof of Proposition 4.3), using [3, Theorem 2.1], we obtain

b

∫
0

H(t, u∗(t), λ) dt ≤ lim inf
n→∞

b

∫
0

H(t, un(t), λ) dt. (4.19)

Finally, (4.16) and hypothesis H(ψ̂) imply that

ψ̂(ξ, xn(b), λ) → ψ̂(ξ, x∗(b), λ). (4.20)

We deduce from (4.17), (4.18), (4.19) and (4.20) that

J(x∗, u∗, ξ, λ) = m(ξ, λ) with (x∗, u∗) ∈ Q(ξ, λ).

This concludes the proof.

We are now ready for the main sensitivity results concerning problem (1.1). The first one establishes the
Hadamard well-posedness of the problem.

Theorem 4.6. If hypotheses (HA3), (HF3), (HG), (HL), (HH) and (Hψ̂) hold, then the value function m : H×E →
ℝ of problem (1.1) is continuous.
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Proof. Let (ξn , λn) → (ξ, λ) in H × E. Let (x, u) ∈ Q(ξ, λ) such that (see Proposition 4.5)

J(x, u, ξ, λ) = m(ξ, λ).

Invoking Proposition 4.3, we can find (xn , un) ∈ Q(ξn , λn) for all n ∈ ℕ such that

xn → x in C(T, H) and un → u in L2(T, Y). (4.21)

We claim that
!!!!!!!!!

b

∫
0

L(t, xn(t), λn) dt −
b

∫
0

L(t, x(t), λ) dt
!!!!!!!!!
→ 0 as n → ∞. (4.22)

To this end, note that
!!!!!!!!!

b

∫
0

L(t, xn(t), λn) dt −
b

∫
0

L(t, x(t), λ) dt
!!!!!!!!!

≤
!!!!!!!!!

b

∫
0

L(t, xn(t), λn) dt −
b

∫
0

L(t, x(t), λn) dt
!!!!!!!!!
+
!!!!!!!!!

b

∫
0

L(t, x(t), λn) dt −
b

∫
0

L(t, x(t), λ) dt
!!!!!!!!!

(4.23)

for all n ∈ ℕ.
First, we estimate the first summand in the right-hand side of (4.23). Using hypothesis (HL) (iii), we have

!!!!!!!!!

b

∫
0

L(t, xn(t), λn) − L(t, x(t), λn) dt
!!!!!!!!!
≤

b

∫
0

(1 + |xn(t)| ∨ |x(t)|)ρ(t, |xn(t) − x(t)|) dt.

Let M = supn≥1 ‖xn‖C(T,H) < +∞ (see (4.21)). Then, from (4.21) and hypothesis (HL) (iii), we have

!!!!!!!!!

b

∫
0

L(t, xn(t), λn) dt −
b

∫
0

L(t, x(t), λn) dt
!!!!!!!!!
≤ (1 +M)

b

∫
0

ρ(t, |xn(t) − x(t)|) dt → 0 as n → ∞. (4.24)

Next, we estimate the second term on the right-hand side of (4.23). Let ϑ > 2‖x‖C(T,H) and let βϑ ∈ L1(T)+
as postulated by hypothesis (HL) (iii). Given ϵ > 0, we can find δ > 0 such that

“if C ⊆ T is measurable with |C|1 ≤ δ, then ∫
C

βϑ(t) dt ≤
ϵ

2(1 + ϑ)
.” (4.25)

Here, we use the absolute continuity of the Lebesgue integral. Invoking the Scorza–Dragoni theorem (see
[34, Theorem 6.2.9]), we can find T1 ⊆ T closed with |T \ T1| ≤ δ

2 and such that ρ|T1×ℝ+ is continuous. Since
ρ(t, 0) = 0, we can find δ1 > 0 such that

“if r ∈ [0, δ1], then |ρ(t, r)| ≤ ϵ
2b(1 + ϑ)

for all t ∈ T1.” (4.26)

Recall that simple functions are dense in Lp(T, H). Using this fact, the property that Lp(T, H)-convergence
implies pointwise convergence for almost all t ∈ T for at least a subsequence, and invoking Egorov’s theorem,
we can find T2 ⊆ T closed and a simple function s : T → H such that

‖s‖∞ ≤ ‖x‖C(T,H), |T \ T2|1 ≤
δ
2 and |x(t) − s(t)| ≤ δ1 for all t ∈ T2. (4.27)

We set T3 = T1 ∩ T2. This is a closed subset of T with |T \ T3|1 ≤ δ. We have (see hypothesis (HL) (iii) and
(4.27))

!!!!!!!!!

b

∫
0

L(t, x(t), λn) dt −
b

∫
0

L(t, s(t), λn) dt
!!!!!!!!!
≤ (1 + ‖x‖C(T,H))

b

∫
0

ρ(t, |x(t) − s(t)|) dt

≤ (1 + ϑ)[ ∫
T3

ρ(t, |x(t) − s(t)|) dt + ∫
T\T3

ρ(t, |x(t) − s(t)|) dt]

≤
ϵ
2 +

ϵ
2 = ϵ, (4.28)

see (4.25), (4.26) and (4.27).
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Similarly, we show that
!!!!!!!!!

b

∫
0

L(t, s(t), λ) dt −
b

∫
0

L(t, x(t), λ) dt
!!!!!!!!!
≤ ϵ. (4.29)

Let s(t) = ∑N
k=1 vkχCk (t) with vk ∈ H, Ck ⊆ T measurable. Using hypothesis (HL) (ii), we can find n0 ∈ ℕ such

that

!!!!!!!!!

b

∫
0

(L(t, s(t), λn) − L(t, s(t), λ)) dt
!!!!!!!!!
≤

N
∑
k=1

!!!!!!!!!
∫
Ck

(L(t, vk , λn) − L(t, vk , λ)) dt
!!!!!!!!!
≤ ϵ for all n ≥ n0. (4.30)

From (4.28), (4.29) and (4.30) it follows that

b

∫
0

L(t, x(t), λn) dt →
b

∫
0

L(t, x(t), λ) dt as n → ∞.

This convergence and (4.24) imply that (4.22) (our claim) is true.
Next, we consider the integral functional

Φ(u, λ) =
b

∫
0

H(t, u(t), λ) dt for all (u, λ) ∈ L2(T, Y) × E.

For every λ ∈ E, u Ü→ Φ(u, λ) is convex (see hypothesis (HH) (ii)). Also, hypothesis (HH) (iii) implies that in
a neighborhood of every u ∈ L2(T, Y), {Φ( ⋅ , λ)}λ∈E is equibounded above, hence {Φ( ⋅ , λ)}λ∈E is equi-locally
Lipschitz (see [34, Theorem 1.2.3]). Therefore, it follows that (see (4.21))

Φ(un , λn) → Φ(u, λ) as n → ∞. (4.31)

Finally, (4.21) and hypothesis (Hψ̂) imply that

ψ̂(ξn , xn(b), λn) → ψ̂(ξ, x(b), λ). (4.32)

By (4.22), (4.31), (4.32), we have

b

∫
0

L(t, xn(t), λn) dt +
b

∫
0

H(t, un(t), λn) dt + ψ̂(ξn , xn(b), λn) → J(x, u, ξ, λ) = m(ξ, λ),

which implies
lim sup
n→∞

m(ξn , λn) ≤ m(ξ, λ). (4.33)

From Proposition 4.5 we know that for every n ∈ ℕ, we can find (xn , un) ∈ Q(ξn , λn) such that

J(xn , un , ξn , λn) = m(ξn , λn). (4.34)

As in the proof of Theorem3.5,we can show that {xn}n≥1 ⊆ Wp(0, b) is bounded. In addition, hypothesis (HU)
implies that {un}n≥1 ⊆ L2(T, Y) is bounded. So, by passing to a suitable subsequence if necessary, we may
assume that

xn wÚÚ→ x inWp(0, b) and un wÚÚ→ u in L2(T, Y) as n → ∞. (4.35)

By (4.35) and (2.3), we also have
xn → x in Lp(T, H) as n → ∞. (4.36)

Then (4.35), (4.36) and Proposition 4.3 imply that (x, u) ∈ Q(ξ, λ). Moreover, reasoning as in the proof of
Theorem 3.5, we can show that {xn}n≥1 ⊆ C(T, H) is relatively compact, hence (see (4.36))

xn → x in C(T, H). (4.37)
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By (4.37) and the first part of the proof, we have

b

∫
0

L(t, xn(t), λn) dt →
b

∫
0

L(t, x(t), λ) dt.

In addition, (4.35) and hypotheses (HH) (ii), (Hψ̂) imply (see[3])

b

∫
0

H(t, u(t), λ) dt ≤ lim inf
n→∞

b

∫
0

H(t, un(t), λn) dt,

and thus
ψ̂(ξn , xn(b), λn) → ψ̂(ξ, x(b), λ).

Therefore, from (4.34) we see that

b

∫
0

L(t, x(t), λ) dt +
b

∫
0

H(t, u(t), λ) dt + ψ̂(ξ, x(b), λ) ≤ lim inf
n→∞

m(ξn , λn),

and thus
m(ξ, λ) ≤ lim inf

n→∞
m(ξn , λn). (4.38)

We infer from (4.33) and (4.38) that m(ξn , λn) → m(ξ, λ), hence m : H × E → ℝ is continuous.

For every (ξ, λ) ∈ H × E, we introduce the set Σ(ξ, λ) of optimal state-control pairs, that is,

Σ(ξ, λ) = {(x, u) ∈ Q(ξ, λ) : J(x, u, ξ, λ) = m(ξ, λ)}.

By Proposition 4.5, we know that Σ(ξ, λ) ̸= 0 for every (ξ, λ) ∈ H × E. For this multifunction we can prove the
following useful continuity property.

Theorem 4.7. If hypotheses (HA3), (HF3), (HU), (HL), (HH) and (Hψ̂) hold, then the multifunction

Σ : H × E → 2C(T,H)×L2(T,Y) \ {0}

is sequentially USC into C(T, H) × L2(T, Y)w.

Proof. Let C ⊆ C(T, H) × L2(T, Y)w be sequentially closed. We need to show that

Σ−(C) = {(ξ, λ) ∈ H × E : V(ξ, λ) ∩ C ̸= 0}

is closed in H × E (see Section 2). To this end, let {(ξn , λn)}n≥1 ⊆ Σ−(C), and assume that

(ξn , λn) → (ξ, λ) in H × E.

Let (xn , un) ∈ Σ(ξn , λn) ∩ C, n ∈ ℕ.Weknow from theproof of Theorem4.6 that at least for a subsequence,
we have

xn wÚÚ→ x inWp(0, b), xn → x in C(T, H), un wÚÚ→ u in L2(T, Y) as n → ∞. (4.39)

By (4.39) and Proposition 4.3, we have
(x, u) ∈ Q(ξ, λ). (4.40)

Also, we know from the proof of Theorem 4.6 that

J(x, u, ξ, λ) ≤ lim inf
n→∞

J(xn , un , ξn , λn) = lim inf
n→∞

m(ξn , λ) = m(ξ, λ).

Therefore, from (4.40), J(x, u, ξ, λ) = m(ξ, λ), and thus (x, u) ∈ Σ(ξ, λ). Moreover, from (4.39) and since
C ⊆ C(T, H) × L2(T, Y)w is sequentially closed,we deduce that (x, u) ∈ Σ(ξ, λ) ∩ C. Therefore, Σ−(C) ⊆ H × E is
closed and this proves the desired sequential upper semicontinuity of the multifunction (ξ, λ) Ü→ Σ(ξ, λ).
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5 Application to distributed parameter systems
In this section we present an application to a class of multivalued parabolic optimal control problems.

So, let T = [0, b] and let Ω ⊆ ℝN be a bounded domain with a Lipschitz boundary ∂Ω. We examine the
following nonlinear, multivalued parabolic optimal control problem:

{{{{{{{{{{{
{{{{{{{{{{{
{

J(x, u, ξ, λ) =
b

∫
0

∫
Ω

L1(t, z, x(t, z)) dz dt +
b

∫
0

∫
Ω

H1(t, z, u(t, z)) dz dt → inf = m(ξ, λ),

−
∂x
∂t

∈ −div aλ(z, Du) + F1(t, z, x(t, z), λ) + g(t, z, λ)u(t, z) on T × Ω,

x|T×∂Ω = 0, x(0, z) = ξ(z) for almost all z ∈ Ω,
‖u(t, ⋅ )‖L2(Ω) ≤ r(t, λ) for almost all t ∈ T.

(5.1)

Here, aλ : Ω × ℝN → 2ℝN (λ ∈ E) is a family of multifunctions as in Example 4.1 (b). For the other data of
problem (5.1), we introduce the following conditions:
(HF1) F1 : T × Ω × ℝ × E → Pfc (ℝ) is a multifunction such that the following hold:

(i) (t, z) Ü→ F1(t, z, x, λ) is measurable for all (x, λ) ∈ ℝ × E.
(ii) For almost all (t, z) ∈ T × Ω, all x, y ∈ ℝ and all λ ∈ E, we have

h(F1(t, z, x, λ), F1(t, z, y, λ)) ≤ k1(t, z)|x − y|

with k1 ∈ L1(T, L∞(Ω)).
(iii) For almost all (t, z) ∈ T × Ω, all x ∈ ℝ and all λ ∈ E, we have

|F1(t, z, x, λ)| ≤ â1(t, z) + ĉ|x|

with â1 ∈ L2(T × Ω), ĉ1 > 0.
(iv) For almost all (t, z) ∈ T × Ω, all x ∈ ℝ and all λ, λ� ∈ E, we have

h(F1(t, z, x, λ), F1(t, z, x, λ�)) ≤ β(d(λ, λ�))w(z, |x|)

with β(r) → 0 as r → 0+ and w ∈ L∞loc(Ω × ℝ+).

Remark 5.1. Consider the multifunction F(t, z, x, λ) defined by

F(t, z, x, λ) = [f(t, z, x, λ), ̂f (t, z, x, λ)],

where f, ̂f : T × Ω × ℝ × E → ℝ are two functions with the following properties:
∙ (t, z) Ü→ f(t, z, x, λ), ̂f (t, z, x, λ) are both measurable for all (x, λ) ∈ ℝ × E.
∙ For almost all (t, z) ∈ T × Ω, all x, x� ∈ ℝ and all λ, λ� ∈ E, we have

|f(t, z, x, λ) − f(t, z, x�, λ�)| ≤ k(t, z)[|x − x�| + d(λ, λ�)]

| ̂f (t, z, x, λ) − ̂f (t, z, x�, λ�)| ≤ k̂(t, z)[|x − x�| + d(λ, λ�)],

with k, k̂ ∈ L1(T, L∞(Ω)).
Then this multifunction satisfies hypotheses (HF1).

(Hg) g : T × Ω × E → ℝ is a Carathéodory function (that is, (t, z) → g(t, z, λ) ismeasurable for all λ ∈ E and
λ → g(t, z, λ) is continuous for almost all (t, z) ∈ T × Ω) and for almost all (t, z) ∈ T × Ω and all λ ∈ E,
we have |g(t, z, λ)| ≤ M with M > 0.

(Hr) r : T × E → ℝ+ is a Carathéodory function (that is, t Ü→ r(t, λ) is measurable for all λ ∈ E and λ →
r(t, λ) is continuous for almost all t ∈ T) and for almost all t ∈ T and all λ ∈ E, we have

0 ≤ r(t, λ) ≤ a(t) with a ∈ L2(T).
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Now, we introduce the conditions on the two integrands involved in the cost functional problem (5.1).
(HL1) L : T × Ω × ℝ × E → ℝ is an integrand such that the following hold:

(i) (t, z) Ü→ L1(t, z, x, λ) is measurable for all (x, λ) ∈ ℝ × E.
(ii) If λn → λ in E, then for all x ∈ L2(Ω) we have L1( ⋅ , ⋅ , x( ⋅ ), λn) wÚÚ→ L1( ⋅ , ⋅ , x( ⋅ ), λ) in L1(T × Ω).
(iii) For almost all (t, z) ∈ T × Ω, all x, y ∈ ℝ and all λ ∈ E,

|L1(t, z, x, λ) − L1(t, z, y, λ)| ≤ c(1 + |x| ∨ |y|)ρ(t, z, |x − y|),

with ρ(t, z, r) Carathéodory, ρ(t, z, 0) = 0 for almost all (t, z) ∈ T × Ω and for almost all (t, z), all
r ∈ [0, ϑ] we have

0 ≤ ρ(t, z, r) ≤ βϑ(t, z)

with βϑ ∈ L1(T × Ω).
(HH1) H1 : T × Ω × ℝ × E → ℝ is an integrand such that the following hold:

(i) (t, z) Ü→ H1(t, z, x, λ) is measurable for all (x, λ) ∈ ℝ × E.
(ii) For almost all (t, z) ∈ T × Ω, u Ü→ H1(t, z, u, λ) is convex for all λ ∈ E, while λ Ü→ H1(t, z, u, λ) is

continuous for all u ∈ ℝ.
(iii) For almost all (t, z) ∈ T × Ω, all |u| ≤ rλ(t, z) and all λ ∈ E, we have

|H1(t, z, u, λ)| ≤ âλ(t, z)

with {âλ}λ∈E ⊆ L2(T × Ω) bounded.
We consider the following evolution triple:

X = W1,p
0 (Ω), H = L2(Ω), X∗ = W−1,p� (Ω).

Since 2 ≤ p < ∞, the Sobolev embedding theorem implies that in this triple the embeddings are compact.
For every λ ∈ E, let Aλ : X → 2X∗ \ {0} be the multivalued map defined by

Aλ(x) = {−div g : g ∈ Lp� (Ω,ℝN), g(z) ∈ aλ(z, Dx(z)) for almost all z ∈ Ω}.

This map is maximal monotone and if λn → λ in E, then (see Example 4.1 (b))

d
dt

+ aλn
PGÚÚÚ→

d
dt

+ aλ .

So, hypotheses (HA3) hold. In fact, we can have t-dependence at the expense of assuming that aλ is
single-valued. So, we assume that aλ(t, z, ξ ) satisfies the conditions of Example 4.1 (a). Then the map
Aλ : T × X → X∗ is defined by

Aλ(t, x)( ⋅ ) = −div aλ(t, ⋅ , Dx( ⋅ )).

In fact, by the nonlinear Green’s identity (see [20, p. 210]), we have

⟨Aλ(t, x), h⟩ = ∫
Ω

(aλ(t, z, Dx), Dh)ℝN dz for all x, h ∈ W1,p
0 (Ω).

As we have already mentioned in Example 4.1 (a), we know from [40] that if λn → λ in E, then

d
dt

+ aλn
PGÚÚÚ→

d
dt

+ aλ ,

and so hypotheses (HA3) hold.
As a special case of interest,we consider the situationwhere the elliptic differential operator is aweighted

p-Laplacian, that is,
div(aλ(t, z)|Dx|p−2Dx) for all x ∈ W1,p

0 (Ω).

Here, for every λ ∈ E, aλ : T × Ω → ℝ is a measurable function with the following properties:
∙ 0 < ĉ1 ≤ aλ(t, z) ≤ ĉ2 for almost all (t, z) ∈ T × Ω and all λ ∈ E.
∙ If λn → λ in E, then for almost all t ∈ T,

1
aλn (t, ⋅ )p

�−1 wÚÚ→
1

aλ(t, ⋅ )p�−1 in L1(Ω).
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For this case we consider the following parametric (with parameter λ ∈ E) family of convex (in ξ ∈ ℝN)
integrands:

φλ(t, z, ξ ) =
aλ(t, z)
p

|ξ |p .

Then the convex conjugate of φλ(t, z, ⋅ ) is given by

φ∗
λ (t, z, ξ

∗) =
1

p�aλ(t, z)p�−1 |ξ∗|p� .
By hypothesis we have that λn → λ in E, hence

φ∗
λn (t, ⋅ , ξ

∗) → φ∗
λ (t, ⋅ , ξ

∗) in L1(Ω) for almost all t ∈ T and all ξ∗ ∈ ℝN . (5.2)

We introduce the integral functional Φλ defined by

Φλ(t, x) = ∫
Ω

φλ(t, z, Dx) dz for all (t, x) ∈ T ×W1,p
0 (Ω).

By [29], we know that (5.2) implies

Φλ(t, x) = Γseq(w) − Φλn (t, x)

with Γseq(w) denoting the sequential Γ-convergence of Φλn (t, ⋅ ) on W
1,p
0 (Ω)w (see [7]). Then, from [12, The-

orem 3.3], it follows that
aλn (t, ⋅ , ⋅ )

GÚÚ→ aλ(t, ⋅ , ⋅ ) for almost all t ∈ T,

and so from [40], we conclude that
d
dt

+ aλn
PGÚÚÚ→

d
dt

+ aλ .

Also, let Y = H = L2(Ω) and

F(t, x, λ) = S2F1(t,⋅ ,x( ⋅ ),λ), G(t, u, λ) = {g(t, ⋅ , λ)u( ⋅ ) : ‖u‖L2(Ω) ≤ r(t, λ)}

U(t, λ) = {u ∈ L2(Ω) : ‖u‖L2(Ω) ≤ r(t, λ)}.

Then hypotheses (HF1), (Hg), (Hr) imply that conditions (HF3), (HG), (HU) hold. So, the dynamics of (5.1)
are described by an evolution inclusion similar to the one in problem (1.1).

Finally, let

L(t, x, λ) = ∫
Ω

L1(t, z, x(z), λ) dz for all x ∈ L2(Ω),

H(t, u, λ) = ∫
Ω

H1(t, z, u(z), λ) dz for all u ∈ L2(Ω).

Hypotheses (HL1), (HH1) imply that conditions (HL),(HH), respectively, hold. So, we can apply Theorems 4.6
and 4.7 and obtain the following result concerning the variational stability of problem (5.1).

Proposition 5.2. If the maps aλ are as above and hypotheses (HF1), (Hg), (Hr), (HL1), (HH1) hold, then for
every (ξ, λ) ∈ L2(Ω) × E, problem (5.1) admits optimal pairs (that is, Σ(ξ, λ) ̸= 0) and

(ξ, λ) Ü→ m(ξ, λ) is continuous on L2(Ω) × E,
(ξ, λ) Ü→ Σ(ξ, λ) is sequentially USC from L2(Ω) × E into C(T, L2(Ω)) × L2(T × Ω)w .
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