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Abstract: In this paper we establish a new critical point theorem for a class of perturbed differentiable func-
tionals without satisfying the Palais–Smale condition. We prove the existence of at least one critical point to
such functionals, provided that the perturbation is sufficiently small. The main abstract result of this paper
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in fractional Sobolev spaces.

Keywords: Critical Point Theorem, Perturbed Functional, Orlicz–Sobolev Space, Fractional Sobolev Space,
Existence of Solutions

MSC 2010: Primary 35J70; secondary 35P30, 76H05
||
Communicated by: David Ruiz

1 Introduction and Main Results
The present paper is motivated by a seminal work by Ahmad, Lazer and Paul [3], where it is studied the
solvability of a nonlinear elliptic equation with Dirichlet boundary condition under the assumption that the
associated homogeneous problem has nontrivial solutions. More precisely, Ahmad, Lazer and Paul [3] were
concerned with the existence of weak solutions of the problem

{
(Lu)(x) = f(x, u(x)) if x ∈ Ω,

u(x) = 0 if x ∈ ∂Ω,
(1.1)

where Ω is a bounded domain in ℝN and L is a self-adjoint second order operator defined on Ω with real
symmetric coefficients. If the linear homogeneous problem

{
(Lu)(x) = 0 if x ∈ Ω,

u(x) = 0 if x ∈ ∂Ω,
(1.2)

has only the trivial weak solution, then the solvability of problem (1.1) follows from a straightforward appli-
cation of the Leray–Schauder theory. The interesting case, therefore, is when problem (1.1) has nontrivial
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solutions. This abstract setting corresponds to the resonance case. Ahmad, Lazer and Paul [3] established
a sufficient condition (which is sharp for a certain class of nonlinearities f ) for the existence of solutions of
problem (1.1), provided that problem (1.2) admits at least one nontrivial solution. Our purpose is to com-
plement this pioneering result in the framework of perturbed energy functionals associated to nonlinear
differential systems or nonlocal problems with a variational structure.

In the first part of the present paper we develop a new variational method to prove the existence of criti-
cal points of perturbed differentiable functionals defined on a real Banach space. In contrast to other works,
we do not suppose that the functional satisfies the well-known Palais–Smale condition which is a crucial
assumption in applying critical point theory. Our study is motivated by several works showing the existence
of solutions for a class of perturbed nonlinear partial differential equations, see, for example, Bahri [5],
Bahri and Berestycki [6], Bahrouni, Ounaies and Rădulescu [8–10], Bartsch andWillem [13], Gonçalves and
Miyagaki [18], Kajikiya [22], Mihăilescu and Rădulescu [23], Struwe [34] and the references therein. Since
the pioneer work of Ambrosetti and Rabinowitz [4] (see also [28, 29, 35, 36]), different variants of critical
point theorems have been developed. In [4], in order to avoid the boundedness condition of a Palais–Smale
sequence, Ambrosetti and Rabinowitz introduced a new type of assumption called a superquadratic growth
condition, that is,

B󸀠(u)u ≥ αB(u)
for some functional B on a Banach space and for a constant α > 2. This type of condition remained for a long
time a crucial assumption to obtain bounded Palais–Smale sequences for functionals A(u) − B(u) with A
quadratic and exhibiting a mountain pass geometry. We refer to Jeanjean [20] for a thorough analysis of
bounded Palais–Smale sequences and applications to nonlinear problems.

In the symmetric case, which corresponds to even energy functionals, there is a large literature on
the existence of multiple and infinitely many solution (critical points), see, for example, Ambrosetti and
Rabinowitz [4], Bartsch [12], Bartsch andWillem [13], Kajikiya [21], Willem [36], Zou [37] and the references
therein. In the celebrated paper of Ambrosetti and Rabinowitz [4] the existence of infinitely many critical
points for a class of symmetric functionals I is proved by taking the max-min and the min-max of I over
certain dual families of subsets of a real Banach space. In [12] and [13], new critical point results called
fountain theorems are established. These are effective tools for studying the existence of infinitely many
large or small energy solutions. It should be noted that the Palais–Smale condition on the functional plays
an important role for these theorems and their applications.

Motivated by the results above, our aim in this paper is to prove a general critical point theorem for a class
of perturbed functionals without satisfying the Palais–Smale condition. More precisely, we want to give an
answer to the important question about the existence of critical points of functionals of the type I = I1 + I2,
provided that I1 has at least one critical point. Our abstract results aremotivated by the existence of solutions
of the following class of nonlinear equation in Orlicz–Sobolev spaces:

{
− div(a(|∇u|)∇u) = f(x, u) + λg(x, u) in Ω,

u = 0 on ∂Ω,
(1.3)

where Ω ⊂ ℝN is supposed to be a bounded domain, λ ∈ ℝ and f, g are two continuous functions. Another
motivation comes from nonlocal problems for the fractional Laplacian given in the form

{
(−∆)su = λg(x, u) + f(x) in Ω,

u = 0 inℝN \ Ω,
(1.4)

where (−∆)s stands for the fractional Laplacian, Ω is an open bounded smooth domain, N ≥ 3, s ∈ (0, 1) and
f, g are continuous functions.

Our paper is organized as follows. In Section 2 we give some definitions and fundamental properties of
the Orlicz–Sobolev spaces. In Section 3 we establish two critical point theorems which asserts the existence
of at least one critical point of certain functionals. In the last sections, namely Sections 4 and 5, we are going
to apply our abstract results to certain classes of nonlinear equations in Orlicz–Sobolev spaces like (1.3) and
to nonlocal equations driven by the fractional Laplacian as written in (1.4), respectively.

Some of the methods used in this paper have been widely described in the recent monographs [26, 27].
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2 Preliminary Results
We denote by Lp(ℝN) the usual Lebesgue space equipped with the norm

‖u‖m = ( ∫ℝN |u|m dx)
1
m

for all 1 ≤ m < ∞.

Furthermore, L∞(ℝN ,ℝ) stands for the space of all essentially bounded (measurable) functions from ℝN
intoℝ endowed with the norm

‖u‖∞ = ess sup{|u(x)| : x ∈ ℝN}.
By B(0, R)wedenote the open ball of radius R centered at zero and Bc(0, R) = ℝN \ B(0, R) is the complement
of B(0, R) inℝN .

The following definition is important in our treatment.

Definition 2.1. Let X be a real Banach space, let c ∈ ℝ and let F ⊂ X be a closed subset. We say that
I ∈ C1(X,ℝ) satisfies the Palais–Smale condition at level c ∈ ℝ on F ((PS)F,c for short), if any subsequence
(un)n∈ℕ ⊆ F such that I(un) → c and I󸀠(un) → 0 in X∗, has a convergent subsequence to some u ∈ F. If F = X,
we write (PS)c.

This compactness-type condition on I is crucial in deriving the minimax theory of the critical values.
Let us recall the following version of Ekeland’s variational principle established by Ekeland [16] or

Gonçalves and Miyagaki [18].

Theorem 2.2. Let X be a real Banach space. If I ∈ C1(X,ℝ) is bounded from below on a closed subset F ⊂ X
with a nonempty interior and if

I(v) < 0 < inf
u∈∂F I(u) for some v ∈ F∘, (2.1)

then
c := inf

u∈F I(u) (2.2)

is a critical value provided that (PS)F,c holds.

Definition 2.3. Let X be a real Banach space and I ∈ C1(X,ℝ).
(1) We say that u is a c-Ekeland solution of I if I(u) = 0 and I󸀠(u) = c, where c is given in (2.2).
(2) We say that I has the Ekeland geometry if I satisfies property (2.1).
(3) We say that I has a mountain pass geometry if there exist u1 ∈ X and constants r, ρ > 0 such that

I(u1) < 0, ‖u1‖ > r and I(u) ≥ ρ when ‖u‖ = r.

(4) We say that u is a c-mountain pass solution of I if it has amountain pass geometry, I(u) = c and I󸀠(u) = c,
where

c = inf
γ∈Γ max

0≤t≤1 I(γ(t))
and

Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = u}.

Let X be a real Banach space and let I ∈ C1(X,ℝ). We denote by Ĩ the functional of class C1(X,ℝ) defined by

Ĩ(u) = I(u) for ‖u‖ ≤ 2M and Ĩ(u) = α for ‖u‖ ≥ 4M, (2.3)

where M is a positive constant and α ∈ ℝ.
Now, we recall some basic facts about Orlicz and Orlicz–Sobolev spaces. For more details we refer to

Adams and Hedberg [1], Adams [2], Gossez [19], Mihăilescu and Rădulescu [23], Rao and Ren [30] and the
references therein.

Let Ω be a bounded domain inℝN , N ≥ 3, with smooth boundary ∂Ω.
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Assume that a : (0,∞) → ℝ is a function such that the mapping φ : ℝ → ℝ, defined by

φ(t) = a(|t|)t for t ̸= 0 and φ(t) = 0 for t = 0,

is an odd, increasing homeomorphisms fromℝ ontoℝ. We define

ϕ(t) =
t

∫
0

φ(s) ds and ϕ∗(t) = t

∫
0

φ−1(s) ds for all t ∈ ℝ.

Observe that ϕ is a Young function, that is,

ϕ(0) = 0, ϕ is convex and lim
x→∞ϕ(x) = +∞.

Moreover, since ϕ(x) = 0 if and only if x = 0, we obtain

lim
x→0 ϕ(x)x = 0 and lim

x→∞ ϕ(x)
x
= +∞.

Then ϕ is called a N-function. The function ϕ∗ is called the complementary function of ϕ. We observe that
ϕ∗ is also an N-function and Young’s inequality holds, that is,

t ≤ ϕ(s) + ϕ∗(t) for all s, t ≥ 0.

TheOrlicz space Lϕ(Ω) defined by theN-function is the space of allmeasurable functions u : Ω → ℝ such
that

‖u‖Lϕ = sup{∫
Ω

uv dx : ∫
Ω

ϕ∗(|v|) dx ≤ 1} < ∞.
Then (Lϕ(Ω), ‖ ⋅ ‖Lϕ ) is a Banach space whose norm is equivalent to the Luxemburg norm

‖u‖ϕ := inf{k > 0 : ∫
Ω

ϕ(uk )
dx ≤ 1}.

In Orlicz spaces we also have Hölder’s inequality in the form

∫
Ω

uv dx ≤ 2‖u‖Lϕ‖u‖Lϕ∗ for all u ∈ Lϕ(Ω) and for all v ∈ Lϕ∗ (Ω),
see, for example, Rao and Ren [30].

We denote byW1Lϕ(Ω) the Orlicz–Sobolev space defined by

W1Lϕ(Ω) = {u ∈ Lϕ : ∂u
∂xi
∈ Lϕ(Ω) for i = 1, . . . , N}.

This is a Banach space with respect to the norm

‖u‖1,ϕ := ‖u‖ϕ + |||∇u|||ϕ .

Furthermore, we define the Orlicz–Sobolev spaceW1
0Lϕ as the closure of C∞0 (Ω) inW1Lϕ(Ω). By Lemma 5.7

in Gossez [19] we may consider onW1
0Lϕ the equivalent norm

‖u‖ := |||∇u|||ϕ .

We define
φ0 := inft>0 tφ(t)ϕ(t)

and φ0 := sup
t>0 tφ(t)

ϕ(t)
.

In this paper we assume that
1 ≤ φ0 <

tφ(t)
ϕ(t)
≤ φ0 < ∞ for all t ≥ 0. (2.4)
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Condition (2.4) implies that ϕ satisfies the ∆2-condition, that is,

ϕ(2t) ≤ Kϕ(t) for all t ≥ 0, (2.5)

where K is a positive constant. In addition, we have the following statements:

‖u‖φ0
≤ ∫

Ω

ϕ(|∇u|) dx ≤ ‖u‖φ0 for all u ∈ W1
0Lϕ(Ω) with ‖u‖ < 1, (2.6)

‖u‖φ0 ≤ ∫
Ω

ϕ(|∇u|) dx ≤ ‖u‖φ0 for all u ∈ W1
0Lϕ(Ω) with ‖u‖ > 1, (2.7)

see Mihăilescu and Rădulescu [23].
Furthermore, in this paper we assume that the function ϕ satisfies the following condition:

[0, +∞) ∋ t 󳨃→ ϕ(√t) is convex. (2.8)

Conditions (2.5) and (2.8) guarantee that the Orlicz–Sobolev spaceW1
0Lϕ(Ω) is a reflexive Banach space, see

Mihăilescu and Rădulescu [24].

3 Critical Point Theory for Perturbed Functionals
We are now ready to state our main abstract result.

Theorem 3.1. Let X be a real Banach space and let Iλ be a real-valued functional on X such that

Iλ = I1 + λI2,

with λ ∈ ℝ and I1, I2 ∈ C1(X,ℝ). We suppose that:
(I) I1 has an Ekeland geometry, I1 satisfies the (PS)F,c-condition and Ĩ2 as well as Ĩ󸀠2 are bounded, where Ĩ2

and Ĩ󸀠2 are defined in (2.3).
(II) For a c-Ekeland solution u of I1, there exists a positive constant M such that

‖u‖ ≤ M,

where M is given in (2.3).
(III) For every λ > 0, Ĩλ = I1 + λĨ2 ∈ C1(X,ℝ) and it satisfies the (PS)F,c-condition.
Then there exists λ0 > 0 such that, for each |λ| < λ0, Iλ has a critical point.

Proof. By assumption (I) along with Theorem 2.2, we can conclude that there exist c ∈ ℝ, a closed subset
F ⊂ X and u1 ∈ X such that

c = inf
u∈F I1(u) = I1(u1) < 0.

Step 1: Ĩλ admits a critical point u2 ∈ X. Because of the boundedness of Ĩ2, we get

I1(u) − Cλ ≤ Ĩλ(u) ≤ I1(u) + Cλ for all u ∈ X, (3.1)

where C > 0 is independent of λ and u. From (3.1) and condition (I) it follows that, for |λ| small enough,

−∞ < inf
u∈F Ĩλ(u) < 0

and
0 < inf

u∈∂F I1(u) − Cλ < inf
u∈∂F Ĩλ(u).

This implies that, for |λ| small enough, Ĩλ has the Ekeland geometry and satisfies the (PS)F,c-condition. These
facts in combination with Theorem 2.2 show that, for |λ| small enough, Ĩλ admits a critical point u2 ∈ X such
that

cλ = inf
u∈F Ĩλ(u) = Ĩλ(u2).
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Step 2: cλ → c as λ → 0. In view of (3.1), we infer that

c − |λ|C ≤ cλ ≤ c + |λ|C for all λ ∈ ℝ,

which proves the claim.

Step 3. There exists λ0 > 0 such that, for |λ| < λ0, any cλ-Ekeland solution u of Ĩλ satisfies

‖u‖ ≤ 2M.

Suppose that the claim is not satisfied. Then there exist sequences (λn)n∈ℕ ⊆ ℝ and (un)n∈ℕ ⊆ X such that
(λn)n∈ℕ converges to zero, un is a cλn -Ekeland solution of Ĩλn and

‖un‖ > 2M. (3.2)

We are going to shows that un → u0 in X (for a subsequence if necessary, still denoted by (un)n∈ℕ), where u0 is
a c-Ekeland solution of I1. By definition, Ĩλn (un) = cλn and Ĩ󸀠λn (un) = 0. Hence, using Step 2, the boundedness
of Ĩ2 and the fact that λn → 0 leads to

I1(un) → c and I󸀠1(un) → 0 as n → +∞.

By assumption (I) it follows that there exists a subsequence of (un) (still denoted by un) and u0 ∈ X such that
un → u0 in X. Hence, we obtain

I1(u0) = c and I󸀠1(u0) = 0.
This shows that u0 is a c-Ekeland solution of I1. Therefore, with a view of (II), we finally get

‖un‖ = ‖un − u0 + u0‖ ≤ ‖un − u0‖ + ‖u0‖ < 2M

for all n large enough. This is a contradiction to (3.2) and so, Step 3 has been proved.

Now, combining the steps above, we conclude, for |λ| small enough, that

Ĩλ(u2) = Iλ(u2) = cλ and Ĩ󸀠λ(u2) = I󸀠λ(u2) = 0.
This finishes the proof.

Remark 3.2. (1) Under the conditions of Theorem 3.1, we point out that the functional Iλ does not have to
satisfy the (PS)-condition.

(2) LetX beaBanach spaceof real-valued functionswhichhas the followingproperty: If un ⇀ u inX, then
there exists a subsequence (uφ(n))n∈ℕ of (un)n∈ℕ such that uφ(n) → u in L∞(X). In this case we can replace
‖u‖ ≤ M in (2.3) by ‖u‖∞ ≤ M. Moreover, we can replace assumption (II) in Theorem 3.1 by

‖u‖∞ ≤ M,

where M is given in (2.3) and u being a c-Ekeland solution of I1.

As a direct consequence of Theorem (3.1) we can state the following results.

Theorem 3.3. Let X be a real Banach space and let Iλ be a real-valued functional on X such that

Iλ = I1 + λI2

with λ ∈ ℝ and I1, I2 ∈ C1(X,ℝ). We suppose the following assumptions:
(1) I1 has a mountain pass geometry, I1 satisfies the (PS)-condition, Ĩ2 and Ĩ󸀠2 are bounded.
(2) The exists a positive constant M such that

‖u‖ ≤ M,

where M is given in (2.3) for every c-mountain pass solution u of I1.
(3) For every λ > 0, Ĩλ = I1 + λĨ2 satisfies the (PS)-condition.
Then there exists λ0 > 0 such that, for all |λ| < λ0, Iλ has a critical point.

Proof. Applying the mountain pass theorem, see, for example, Rabinowitz [28], the proof can be done in
a similar way to that of Theorem 3.1.
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4 Nonhomogeneous Nonlinear Equations in Orlicz–Sobolev Spaces
In this section we are going to apply the abstract critical point results from Section 3 to nonhomogeneous
nonlinear equations defined in Orlicz–Sobolev spaces. We denote by E the generalized Orlicz–Sobolev space
W1

0Lϕ(Ω) where we assume (2.5) and (2.8) introduced in Section 2.
We are interested in weak solutions to the nonhomogeneous equation

{
− div(a(|∇u|)∇u) = |u|p−2u + λg(x, u) in Ω,

u = 0 on ∂Ω,
(4.1)

where λ ∈ ℝ and Ω ⊂ ℝN (N ≥ 3) is a bounded domain with smooth boundary ∂Ω. We suppose the following
hypotheses:
(A) 1 < p < φ0 and N < φ0.
(B) g( ⋅ , ⋅ ) is continuous on Ω × [0,∞).

The main result of this section is given in the next theorem.

Theorem 4.1. Assume that conditions (A) and (B) are fulfilled. Then there exists λ0 > 0 such that for all |λ| < λ0
problem (4.1) has at least one weak solution.

Remark 4.2. Problem (4.1) has been widely studied in the literature, see, for example, Mihăilescu and
Rădulescu [23] and Rădulescu and Repovš [32] just to mention the main ones. The main novelty in treating
problem (4.1) is the fact that we assume the main term to be in the equation in order to have an Ekeland
structure. We do not assume any other conditions for the perturbed term.

We first introduce the variational setting for problem (4.1). We denote by Iλ : E → ℝ the energy function of
problem defined by

Iλ(u) = ∫
Ω

ϕ(|∇u|) dx − 1
p ∫

Ω

|u|p dx − λ∫
Ω

G(x, u) dx,

where G(x, s) = ∫s0 g(x, t) dt. Note that under assumptions (A) and (B), the functional Iλ : E → ℝ is well-
defined, of class C1 on E and any critical point of Iλ is a weak solution of problem (4.1).

We introduce the functionals I1, I2, I3 : E → ℝ defined by

I1(u) = ∫
Ω

ϕ(|∇u|) dx − 1
p ∫

Ω

|u|p dx,

I2(u) = ∫
Ω

G(x, u) dx,

I3(u) = ∫
Ω

ϕ(|∇u|) dx.

In order to prove Theorem 4.1 we will use Theorem 3.1 in combination with Ekeland’s variational prin-
ciple which is the nonlinear version of the Bishop–Phelps theorem.

Lemma 4.3. Suppose that assumption (A) is satisfied. Then I1 has an Ekeland geometry property.

Proof. First,wenote that by condition (2.4)weknow that E is continuously embedded in the classical Sobolev
spaceW1,φ0

0 (Ω) and consequently, E is continuously embedded in L∞(Ω). Hence, there exists α > 0 such that
‖u‖∞ ≤ α‖u‖ for all u ∈ E.

The inequality above along with (2.7) show that for ‖u‖ > 1 we have

I1(u) = ∫
Ω

ϕ(|∇u|) dx − 1
p ∫

Ω

|u|p dx ≥ ‖u‖φ0 − αp|Ω|‖u‖p ≥ ‖u‖p(‖u‖φ0−p − αp|Ω|).
We set ρ > max(1, (αp|Ω|)

1
φ0−p ). Therefore, since p < φ0, we obtain

I1(u) ≥ ρφ0 − αp|Ω|ρp = γ > 0 for all ‖u‖ = ρ. (4.2)
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Let v ∈ E \ {0}. Then, from (2.6) and (A), we get

I1(tv) = ∫
Ω

ϕ(t|∇v|) dx − t
p

p ∫
Ω

|v|p dx ≤ tφ0‖v‖φ0 −
tp

p ∫
Ω

|v|p dx < 0 (4.3)

for all t > 0 small enough. Taking F = B(0, ρ) and using (4.2) as well as (4.3), the desired result is shown.

Now we will show that I1 satisfies the (PS)-condition.

Lemma 4.4. Assume that assumption (A) is fulfilled. Then I1 satisfied the (PS)-condition.

Proof. Let (un)n∈ℕ ⊆ E be a (PS)-sequence of I1, that is,
|I1(un)| ≤ C for all n ∈ ℕ and I󸀠1(un) → 0 as n →∞

for some C > 0.
We claim that (un)n∈ℕ is bounded in E. Arguing by contradiction, suppose that the sequence (un)n∈ℕ is

unbounded in E. Without loss of any generality, we can assume that ‖un‖ > 1 for all n ≥ 1. By relation (2.7)
we conclude that

C ≥ I1(un) ≥ ‖un‖φ0 − C‖un‖p . (4.4)

From (4.4) and assumption (A) we see that (un)n∈ℕ must be bounded. This proves the claim.
As before, by condition (2.4), we know that E is compactly embedded in L∞(Ω). Using this fact and

since I󸀠3 : E → E∗ is of type (S+), we conclude that un → u0 in E, which shows that the (PS)-condition is
satisfied.

Lemma 4.5. Assume that (A) holds. Then there exists M > 0 such that

‖u‖∞ ≤ M
for every c-Ekeland solution u ∈ E of I1.

Proof. Let u ∈ E be a c-Ekeland solution of I1. Then

I1(u) = c and I󸀠1(u) = 0.
Applying the same argument as in the proof of Lemma 4.4, we obtain

c ≥ min(‖u‖φ0 , ‖u‖φ0 ) − C‖u‖p ,

where C is a positive constant. It follows that there exists a positive constant β independent of u such that
‖u‖ ≤ β, by condition (A). Consequently, since E is continuously embedded in L∞(Ω), there exists M > 0
independent of u such that ‖u‖∞ ≤ M.

Now, we choose a function h ∈ D(ℝN ,ℝ) with 0 ≤ h ≤ 1 inℝN such that

h(x) = 1 for |x| ≤ 2M and h(x) = 0 for |x| ≥ 4M,

where M is given in Lemma 4.5. Then the function

G(t, u) := h(u(t))G(t, u(t))

is of class C1 in Ω × ℝ and by (B) we know that G(t, u) and Gu(t, u) are bounded on Ω × ℝ.
Next, we define Ĩλ , Ĩ2 : E → ℝ by

Ĩλ(u) = ∫
Ω

ϕ(|∇u|) dx − 1
p ∫

Ω

|u|p dx − λ∫
Ω

h(u(x))G(x, u(x)) dx,

Ĩ2(u) = ∫
Ω

h(u(x))G(x, u(x)) dx.
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Lemma 4.6. Assume that (A) and (B) are fulfilled. Then, for every λ ∈ ℝ, Ĩλ satisfies the (PS)-condition.

Proof. Let (un)n∈ℕ ⊆ E be a (PS)-sequence of Ĩλ, that is,
|Ĩλ(un)| ≤ C for all n ∈ ℕ and Ĩ󸀠λ(un) → 0 as n →∞

for some C > 0.
We claim that (un)n∈ℕ is bounded in E. Arguing by contradiction, we suppose that the sequence (un)n∈ℕ

is unbounded in E. Without loss of any generality, we can assume that ‖un‖ > max(4M, 1) for all n ≥ 1. Due
to the boundedness of G, we obtain

C ≥ Ĩλ(un) ≥ ‖un‖φ0 − C‖un‖p .

This shows the claim.
As before, by using the boundedness of G and Gu, the rest of the proof is similar to that in Lemma4.4.

Proof of Theorem 4.1. By the boundedness of G and G󸀠, we know that Ĩ2 and Ĩ󸀠2 are bounded. Then, from
Lemmas 4.3, 4.4, 4.5 and 4.6, we see that assumptions (I)–(III) of Theorem 3.1 are satisfied. Therefore, the
proof is finished.

5 Fractional Nonlinear Equations
In this section we are interested in weak solutions to nonlinear fractional problems. Precisely, we study the
fractional equation:

{
(−∆)su = λg(x, u) + f(x) in Ω,

u = 0 inℝN \ Ω,
(5.1)

where (−∆)s stands for the fractional Laplacian, Ω is a bounded domain with smooth boundary, s ∈ (0, 1),
N < 2s and λ is a parameter to be specified.

In the following we suppose the subsequent hypotheses:
(F) f ∈ L∞(Ω) and f > 0.

Our main result in this section reads as follows.

Theorem 5.1. Assume that conditions (B)and (F)are satisfied. Then there exists λ0 > 0 such that for all |λ| < λ0,
problem (5.1) has at least one weak solution.

Let
E = {u ∈ Hs(ℝN) : u = 0 inℝN \ Ω}

be endowed with the norm

‖u‖E = ( ∫ℝ2N |u(x) − u(y)|
2

|x − y|N+2s dx dy)
1
2

,

which is a uniformly convex Banach space. The embedding X → Lr(Ω) is continuous for r ∈ [1, 2∗s ] and com-
pact for r ∈ [1, 2∗s [, where 2∗s = 2N

N−2s . Further details about the space E can be found in the monograph of
Molica Bisci, Radulescu and Servadei [26]

The energy function Iλ : E → ℝ concerning problem (5.1) is defined by

Iλ(u) = ∫ℝ2N |u(x) − u(y)|
2

|x − y|N+2s dx dy − λ∫
Ω

G(x, u) dx − ∫
Ω

f(x)u dx,

where

G(x, s) =
s

∫
0

g(x, t) dt.

The functional Iλ is well-defined, of class C1 on E and any critical point of Iλ is a weak solution of prob-
lem (5.1).
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We define the functionals I1, I2 : E → ℝ by

I1(u) = ∫ℝ2N |u(x) − u(y)|
2

|x − y|N+2s dx dy − ∫
Ω

f(x)u dx,

I2(u) = ∫
Ω

G(x, u) dx.

Remark 5.2. Nonlocal problems like (5.1) has been studied by several authors in the past years and it became
a large interest due to its applications. Knowing thatwe cannot refer to all papers dealingwith fractional prob-
lems,wemention theworks of Bahrouni [7], Bahrouni andRădulescu [11], Caffarelli, Salsa and Silvestre [15],
Caffarelli and Silvestre [14], El-Manouni, Hajaiej and Winkert [17], Molica Bisci and Rădulescu [25], Molica
Bisci, Rădulescu and Servadei [26], Ros, Oton and Serra [31], Sire and Valdinoci [33] and the references
therein. The main novelty in our case is the fact that we do not need to assume any further condition on the
nonlinear g.

The key role in the proof of Theorem 5.1 is the application of the abstract critical point theorem developed in
Section 3. We start with a simple observation.

Lemma 5.3. Assume that the conditions of Theorem 5.1 are fulfilled. Then I1 satisfied the (PS)-condition.

Proof. The proof follows by standard arguments and is omitted.

Lemma 5.4. Assume that condition (F) is satisfied. Then it holds:
(i) I1 has an Ekeland geometry property.
(ii) There exists a positive constant β such that

‖u‖∞ ≤ M = β‖f‖∞,
with u being a c-Ekeland solution of I1.

Proof. (i) By Hölder’s inequality and condition (F) we derive

I1(u) = ‖u‖2 − ∫
Ω

f(x)u dx ≥ ‖u‖2 − ‖f‖2‖u‖2 ≥ ‖u‖2 − β‖f‖2‖u‖ ≥ ‖u‖(‖u‖ − β‖f‖2)

for some β > 0. Setting ρ > β‖f‖2 gives

I1(u) ≥ ρ2 − β‖f‖2ρ = γ > 0 for all ‖u‖ = ρ. (5.2)

Let v ∈ E \ {0} be such that v > 0. Then, by condition (F), we get

I1(tv) ≤ t2‖v‖2 − t∫
Ω

f(x)v dx < 0 for t small enough. (5.3)

Taking F = B(0, ρ) and using (5.2) as well as (5.3), the assertion follows.
(ii) Let u be any c-Ekeland solution of I1. We construct the barrier w ∈ E such that

(−∆)sw ≥ 1 in Ω,
w ≥ 0 in Ωc ,
w ≤ C in Ω,

where C is a positive constant depending only on diam(Ω).
Now, let v(x) = ‖f‖∞w(x). Then we clearly have

(−∆)su ≤ (−∆)sv and u = 0 ≤ v in Ωc .

Thus, by the comparison principle, we have u ≤ v in Ω. In particular,

u ≤ C‖f‖∞ in Ω. (5.4)
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Applying the same argument to (−u), we infer that

− u ≤ C‖f‖∞ in Ω. (5.5)

Combining (5.4) and (5.5), we get our desired result.

As we did in Section 4 we now choose a function h ∈ D(ℝN ,ℝ) with 0 ≤ h ≤ 1 inℝN such that

h(x) = 1 for |x| ≤ 2M and h(x) = 0 for |x| ≥ 4M,

Then the function
G(t, u) := h(u(t))G(t, u(t))

is of class C1 in Ω × ℝ. Moreover, by assumption (B), we see that G(t, u) and Gu(t, u) are bounded on Ω × ℝ.
Now we introduce the functionals Ĩλ , Ĩ2 : E → ℝ defined by

Ĩλ(u) = ∫ℝ2N |u(x) − u(y)|
2

|x − y|N+2s dx dy − λ∫
Ω

h(u(x))G(x, u) dx − ∫
Ω

f(x)u dx,

Ĩ2(u) = ∫
Ω

h(u(x))G(x, u) dx.

Lemma 5.5. Suppose that (B) and (F) are satisfied. Then, for each λ ∈ ℝ, Ĩλ satisfies the (PS)-condition.

Proof. In view of the boundedness of G(x, u) and G󸀠(x, u), the proof is similar to that in Lemma 4.6.

Proof of Theorem 5.1. By the boundedness of G and G󸀠, we conclude that Ĩ2 and Ĩ󸀠2 are bounded. Then, from
Lemmas 5.3, 5.4 and 5.5, we verify that conditions (I)–(III) of Theorem 3.1 are satisfied. Therefore, we have
shown the existence of a weak solution of problem (5.1).
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