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Abstract

We establish existence results and energy estimates of solutions for a homogeneous Neu-
mann problem involving the p–Laplace operator. The case of large dimensions, corre-
sponding to the lack of compactness of W1,p(Ω) in C0(Ω̄) is also considered. In particular,
for a precise localization of the parameter, the existence of a non-zero solution is estab-
lished, without requiring any asymptotic condition at zero or at infinity of the nonlinear
term. In the case of (p − 1)–sublinear terms at the origin, we deduce the existence of
solutions for small positive values of the parameter and we obtain that the corresponding
solutions have smaller and smaller energies as the parameter goes to zero. Finally, a mul-
tiplicity result is obtained and concrete examples of applications are provided. A basic
ingredient in our arguments is a recent local minimum theorem for differentiable function-
als.

2010 Mathematics Subject Classification. 35J60, 47J30, 58E05.
Key words. Critical point; Variational methods; Neumann problem; sub-critical growth.

1 Introduction

The aim of this paper is to investigate the existence and the qualitative properties of nontrivial weak
solutions of the following non-autonomous elliptic Neumann problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

−Δpu + α(x)|u|p−2u = λ f (x, u) in Ω
∂u
∂ν
= 0 on ∂Ω,

(1.1)

where p > 1 and Ω ⊂ RN is a bounded open subset with boundary of class C1.
As usual, Δp denotes the p-Laplace operator, namely Δpu := div(|∇u|p−2∇u). We assume that

α ∈ L∞(Ω), with ess infx∈Ω α(x) > 0, λ is a positive real parameter and ν denotes the outward unit
normal to ∂Ω.

Throughout this paper we assume that f : Ω × R→ R is a Carathéodory function such that

| f (x, t)| ≤ a1 + a2|t|q−1, ∀ (x, t) ∈ Ω × R, (1.2)

for some non-negative constants a1, a2, where q ∈]1, p∗[ and p∗ stands for the critical Sobolev
exponent, that is

p∗ :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pN

N − p
if p < N

+∞ if p ≥ N.

Finally, we denote by Fq the class of all Carathéodory functions for which condition (1.2) holds
true.

The question of existence of multiple non-zero solutions has been studied for Dirichlet prob-
lems also involving the p-Laplace operator and there are several such papers in the literature, using
different hypotheses and techniques. On the other hand, recently there have been established some
multiplicity results within the Neumann setting, see the papers [3, 5, 6, 7] and [9, 25, 34]. In these
works, the authors establish the existence of weak solutions for certain nonlinear elliptic problems,
by imposing different kinds of oscillatory behavior on the nonlinear term.

In all the above cited contributions the basic assumption p > N is imposed, which corresponds to
low-dimensional problems. This dimensionality condition implies that the Sobolev space W1,p(Ω)
is compactly embedded in C0(Ω̄) and this fact is used extensively in the aforementioned works; see
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Remark 3.9. In particular, in [14] and [16], the authors consider nonlinear Neumann eigenvalue
problems and prove a “three solutions theorem” using an abstract multiplicity result of Ricceri [35];
see also the related papers [19, 23]. Condition p > N is also assumed in a recent work of Wu and
Tan [36], in which there are used minimax techniques combined with critical point theory tools.

The difficulties caused by the lack of a compact embedding of W1,p(Ω) in C0(Ω̄) if p ≤ N are
overcome by a different procedure. Indeed, to apply variational techniques to Neumann problems in
the case p ≤ N, a suitable condition on the nonlinear term f , which implies that the problem admits
the zero solution, is usually required. Thus, three non-zero solutions can be surely obtained only
when the problem is perturbed; see [16, 32] and [33].

Very recently, by using variational methods, a precise interval of values of the parameter λ,
for which problem (1.1) admits at least three non-zero weak solutions has been achieved in [15,
Theorem 3.1] without explicit perturbations of the nonlinear term and in higher dimension. We also
recall that in the last few years, several authors have treated Neumann problems with p-Laplace
operators (with p ≤ N), by using completely different techniques. We refer to [17, 24] and the
references therein; see also the works [8, 20, 21].

We point out that problem (1.1) arises in the study of mathematical models in biological forma-
tion theory governed by diffusion and cross-diffusion systems [28]. We refer to the recent mono-
graph by Kristály, Rădulescu and Varga [22] for several related results and examples.

The main result of this paper (Theorem 3.1) ensures the existence of precise values of the param-
eter λ for which (1.1) admits at least one non-zero weak solution, without assuming any asymptotic
condition at zero or at infinity. A special case is also pointed out in Corollary 3.1. A related conse-
quence, where the unique condition requested on the datum is the (p − 1)-sublinearity at the origin,
is also presented in this paper; see Theorem 3.2.

We also observe that, when the nonlinear term is (p − 1)-sublinear at infinity, then the corre-
sponding energy functional is coercive, hence the existence of one solution (possibly zero) comes
from the direct methods theorem; see Remark 3.5. It is worth noticing that, in our cases, the potential
may be also not coercive; see, for instance, Example 3.1. Moreover, also in presence of coercivity,
our results ensure the existence of at least one non-zero weak solution.

A basic tool used in the proofs is a recent critical point theorem obtained by Bonanno in [1,
Theorem 5.1] for functionals of the form Jλ := Φ − λΨ, where λ is a positive parameter; see
Theorem 2.1 below.

Consider the Sobolev space W1,p(Ω) endowed with the norm

‖u‖ :=
( ∫
Ω

|∇u(x)|pdx +
∫
Ω

α(x)|u(x)|pdx
)1/p
,

which is equivalent to the usual one.
We state here, as an example, the following special case of our results; see also Remark 3.8.

Theorem 1.1 Let p > 1 and f : R→ R be a continuous function such that

lim
t→0+

f (t)
tp−1 = +∞, and lim

|t|→∞
f (t)
|t|s = 0, (1.3)

for some 0 ≤ s < p∗ − 1. Then, there exists λ� > 0 such that, for every λ ∈]0, λ�[, the following
autonomous Neumann problem{ −Δpu + α(x)|u|p−2u = λ f (u) in Ω

∂u/∂ν = 0 on ∂Ω, (1.4)
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admits at least one non-zero weak solution u0,λ ∈ W1,p(Ω). Moreover, we have ‖u0,λ‖ → 0 as λ→ 0+

and the mapping

λ 	→ 1
p

( ∫
Ω

|∇u0,λ(x)|pdx +
∫
Ω

α(x)|u0,λ(x)|pdx
)
− λ

∫
Ω

( ∫ u0,λ(x)

0
f (x, t)dt

)
dx,

is negative and strictly decreasing in ]0, λ�[.

We observe that Theorem 1.1 ensures the existence of one non-zero weak solution even if f (0) =
0 provided that (1.3) holds, and, if α is not constant, the solution is not constant. Moreover, a
concrete expression for λ�, that appears in the above result, is given in Remark 3.4. Furthermore,
we just point out that in Corollary 3.2, adding to hypotheses of Theorem 3.2 the classical Ambrosetti
and Rabinowitz condition, namely (AR), a second weak solution is achieved; see Example 3.2. It is
worth noticing that in Corollary 3.2 the assumptions are different from those usually required when
applying the mountain pass theorem; see Remark 3.10.

The paper is organized as follows. In Section 2, we recall some basic definitions and our main
tool, while Section 3 is devoted to our main results and examples.

2 Preliminaries

Let W1,p(Ω) endowed with the norm ‖ · ‖. From standard variational arguments, the weak solutions
of (1.1) are the critical points of the C1-functional given by

Jλ(u) :=
1
p

( ∫
Ω

|∇u(x)|pdx +
∫
Ω

α(x)|u(x)|pdx
)
− λ

∫
Ω

( ∫ u(x)

0
f (x, t)dt

)
dx,

for every u ∈ W1,p(Ω).
A function u : Ω→ R is said to be a weak solution of problem (1.1) if u ∈ W1,p(Ω) and∫

Ω

|∇u(x)|p−2∇u(x) · ∇v(x)dx +
∫
Ω

α(x)|u(x)|p−2u(x)v(x)dx = λ
∫
Ω

f (x, u(x))v(x)dx,

for every v ∈ W1,p(Ω).
Let X be a real Banach space. We say that a continuously Gâteaux differentiable functional

J : X → R verifies the Palais-Smale condition (in short (PS)-condition) if any sequence {un} such
that

(j1) {J(un)} is bounded,

(j2) lim
n→∞ ‖J′(un)‖X∗ = 0,

has a convergent subsequence.
For an exhaustive treatment of these topics we refer to [27, 30] and the references therein.
Let Φ,Ψ : X → R be two continuously Gâteaux differentiable functions. Set

J = Φ − Ψ,
and fix r1, r2 ∈ [−∞,+∞], with r1 < r2; we say that function J verifies the Palais-Smale condition
cut off lower at r1 and upper at r2 (in short [r1](PS)[r2]-condition) if any sequence {un} such that (j1),
(j2) hold and
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(j3) r1 < Φ(un) < r2, ∀ n ∈ N,

has a convergent subsequence.
Clearly, if r1 = −∞ and r2 = +∞ it coincides with the classical (PS)-condition. Moreover,

if r1 = −∞ and r2 ∈ R it is denoted by (PS)[r2], while if r1 ∈ R and r2 = +∞ it is denoted by
[r1](PS). Furthermore, if J satisfies [r1](PS)[r2]-condition, then it satisfies [ρ1](PS)[ρ2]-condition for all
ρ1, ρ2 ∈ [−∞,+∞] such that r1 ≤ ρ1 < ρ2 ≤ r2.

In particular, we deduce that if J satisfies the classical (PS)-condition, then it satisfies [ρ1](PS)[ρ2]-
condition for all ρ1, ρ2 ∈ [−∞,+∞] with ρ1 < ρ2. Set

β(r1, r2) := inf
v∈Φ−1(]r1,r2[)

sup
u∈Φ−1(]r1,r2[)

Ψ(u) − Ψ(v)

r2 − Φ(v)
, (2.5)

and

ρ2(r1, r2) := sup
v∈Φ−1(]r1,r2[)

Ψ(v) − sup
u∈Φ−1(]−∞,r1])

Ψ(u)

Φ(v) − r1
, (2.6)

for all r1, r2 ∈ R, with r1 < r2.
A crucial role in the existence proof of one non-zero weak solution for problem (1.1) is played

by the following version of an abstract local minimum theorem obtained in [1, Theorem 5.1], which
we recall here for convenience.

Theorem 2.1 Let X be a real Banach space and let Φ,Ψ : X → R be two continuously Gâteaux
differentiable functions. Assume that there are r1, r2 ∈ R, with r1 < r2, such that

β(r1, r2) < ρ2(r1, r2),

where β and ρ2 are given by (2.5) and (2.6), and for each

λ ∈
] 1
ρ2(r1, r2)

,
1

β(r1, r2)

[
,

the function Jλ := Φ − λΨ satisfies [r1](PS)[r2]-condition. Then, for all λ ∈
]

1
ρ2(r1,r2) ,

1
β(r1,r2)

[
there is

u0,λ ∈ Φ−1(]r1, r2[) such that Jλ(u0,λ) ≤ Jλ(u) for all u ∈ Φ−1(]r1, r2[) and J′
λ(u0,λ) = 0.

Remark 2.1 Theorem 2.1 has been inspired from the Ricceri variational principle; see [31, Theorem
2.5]. With respect to the mentioned principle, the above result furnishes a more precise localization
of the minimum u0,λ, and, in particular, since Φ(u0,λ) > r1, in many applications we have u0,λ � 0
as, for instance, in Theorem 3.1. Moreover, we also emphasize that in Theorem 2.1 no weak lower
semicontinuity assumption is requested on the contrary of [31, Theorem 2.5].

3 Main results

Recall that p∗ stands for the critical exponent of the Sobolev embedding W1,p(Ω) ↪→ Lq(Ω). Thus,
if p < N then p∗ = N p/(N − p) and for every q ∈ [1, p∗] there exists a positive constant κq such that

‖u‖Lq(Ω) ≤ κq‖u‖ , (3.7)

for every u ∈ W1,p(Ω). When p ≥ N this inequality holds for any q ∈ [1,+∞[.
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Moreover, for every two nonnegative constants γ, δ, with γ � δ, we set

aγ(δ) :=
A(γ) − q

∫
Ω

F(x, δ)dx

‖α‖L1(Ω)(γp − δp)q
, (3.8)

where
A(γ) := q‖α‖1/p

L1(Ω)γκ1a1 + ‖α‖q/p
L1(Ω)γ

qκ
q
qa2, (3.9)

and

F(x, ξ) :=
∫ ξ

0
f (x, t)dt,

for every (x, ξ) ∈ Ω × R.
The following result establishes a qualitative property of solutions to problem (1.1).

Theorem 3.1 Let f ∈ Fq and assume that there exist three real constants γ1, γ2 and δ, with 0 ≤
γ1 < δ < γ2, such that

aγ2 (δ) < aγ1 (δ). (3.10)

Then, for each parameter λ belonging to]
1

paγ1 (δ)
,

1
paγ2 (δ)

[
,

problem (1.1) admits at least one non-zero weak solution u0,λ ∈ W1,p(Ω), such that

‖α‖1/p
L1(Ω)γ1 < ‖u0,λ‖ < ‖α‖1/p

L1(Ω)γ2.

Proof. Our aim is to apply Theorem 2.1. Hence, let X := W1,p(Ω) and consider the functionals
Φ,Ψ : X → R defined by

Φ(u) :=
‖u‖p

p
, Ψ(u) :=

∫
Ω

F(x, u(x))dx, ∀ u ∈ X.

Clearly, Φ : X → R is a coercive and continuously Gâteaux differentiable functional. On the other
hand, Ψ is well-defined and continuously Gâteaux differentiable. More precisely, we have

Φ′(u)(v) =
∫
Ω

|∇u(x)|p−2∇u(x) · ∇v(x)dx +
∫
Ω

α(x)|u(x)|p−2u(x)v(x)dx,

Ψ′(u)(v) =
∫
Ω

f (x, u(x))v(x)dx,

for every u, v ∈ X.
Fix λ > 0. A critical point of the functional Jλ := Φ − λΨ is a function u ∈ X such that

Φ′(u)(v) − λΨ′(u)(v) = 0,

for every v ∈ X. Hence, the critical points of the functional Jλ are weak solutions of problem (1.1).
At this point, let us observe that Φ(0X) = Ψ(0X) = 0.Moreover, since f ∈ F, we have

F(x, ξ) ≤ a1|ξ| + a2
|ξ|q
q
, (3.11)
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for every (x, ξ) ∈ Ω × R. Now, taking into account relation (3.11), it follows that

Ψ(u) =
∫
Ω

F(x, u(x))dx ≤ a1‖u‖L1(Ω) +
a2

q
‖u‖q

Lq(Ω).

Then, for every u ∈ X such that Φ(u) ≤ r, owing to (3.7), we obtain

Ψ(u) ≤ (pr)1/pκ1a1 +
pq/pκ

q
qa2

q
rq/p.

Therefore

sup
u∈Φ−1(]−∞,r])

Ψ(u) ≤ (pr)1/pκ1a1 +
pq/pκ

q
qa2

q
rq/p. (3.12)

Next, we set

r1 :=
‖α‖L1(Ω)

p
γ

p
1 , r2 :=

‖α‖L1(Ω)

p
γ

p
2 , and uδ(x) := δ, for every x ∈ Ω.

Then uδ ∈ X and

Φ(uδ) =
1
p

( ∫
Ω

|∇uδ(x)|pdx +
∫
Ω

α(x)|uδ(x)|pdx
)
=
δp

p
‖α‖L1(Ω). (3.13)

Taking into account that γ1 < δ < γ2, by a direct computation, one has r1 < Φ(uδ) < r2. Moreover,

Ψ(uδ) =
∫
Ω

F(x, uδ(x)) dx =
∫
Ω

F(x, δ)dx. (3.14)

From (3.12) it follows that

sup
u∈Φ−1(]−∞,r2[)

Ψ(u) ≤ (pr2)1/pκ1a1 +
pq/pκ

q
qa2

q
rq/p

2 . (3.15)

and

sup
u∈Φ−1(]−∞,r1])

Ψ(u) ≤ (pr1)1/pκ1a1 +
pq/pκ

q
qa2

q
rq/p

1 . (3.16)

We have r1 < Φ(uδ) < r2. On the other hand,

β(r1, r2) := inf
v∈Φ−1(]r1,r2[)

sup
u∈Φ−1(]r1,r2[)

Ψ(u) − Ψ(v)

r2 − Φ(v)
≤

sup
u∈Φ−1(]−∞,r2[)

Ψ(u) − Ψ(uδ)

r2 − Φ(uδ)

and

ρ2(r1, r2) := sup
v∈Φ−1(]r1,r2[)

Ψ(v) − sup
u∈Φ−1(]−∞,r1])

Ψ(u)

Φ(v) − r1
≥
Ψ(uδ) − sup

u∈Φ−1(]−∞,r1])
Ψ(u)

Φ(uδ) − r1
.

Hence, by using the notation (3.8), from (3.14) and (3.15) together with (3.16), it follows that

β(r1, r2) ≤ paγ2 (δ), and ρ2(r1, r2) ≥ paγ1 (δ).
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Finally, hypothesis (3.10) yields
β(r1, r2) < ρ2(r1, r2).

Now, from [1, Proposition 2.1], the functional Jλ satisfies [r1](PS)[r2]-condition for all r1 and r2 with

r1 < r2 < +∞. Therefore, owing to Theorem 2.1, for each λ ∈
]

1
paγ1 (δ)

,
1

paγ2 (δ)

[
, the functional Jλ

admits at least one critical point u0,λ such that

r1 < Φ(u0,λ) < r2,

that is
‖α‖1/p

L1(Ω)γ1 < ‖u0,λ‖ < ‖α‖1/p
L1(Ω)γ2.

This completes the proof.

Remark 3.1 If p < N, a concrete upper bound for the constants κq in Theorem 3.1 (hence for the
values of constant A defined as in (3.9)) can be obtained considering an open and convex setΩ ⊂ RN

of diameter d and Lebesgue measure “ meas(Ω)”. In this case, if q ∈ [1, p∗[, we have

κq ≤ S q
(1 + N) meas(Ω)

p−q
pq

min
{
1, ess inf

x∈Ω
α(x)

}1/p , (3.17)

where

S q :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
{

1,
d
N

}
if q ∈ [1, p[,

max

⎧⎪⎪⎪⎨⎪⎪⎪⎩1,
d
N

(
pq − N(q − p)
pq + (p − q)

) q−p(1+q)
pq

⎫⎪⎪⎪⎬⎪⎪⎪⎭ if q ∈ [p, p∗[,

(3.18)

see, for instance, Remark 3.2 in [15] and, more generally, the exhaustive book [13]. Moreover, we
point out that the following alternative holds: either q ∈ [p, p∗[ and the diameter of Ω is sufficiently
small, that is,

d < N
(

pq − N(q − p)
pq + (p − q)

) p(1+q)−q
pq

,

or q ∈ [1, p[ and d < N. Inequality (3.17) can be rewritten as

κq ≤ (1 + N) meas(Ω)
p−q
pq

min {1, ess infx∈Ω α(x)}1/p , (3.19)

as observed in [15, Remark 3.3].
On the other hand, in the low-dimensional case that corresponds to p > N, assuming Ω to be

convex and by using [5, Remark 2.1], an easy computation ensures that for every q ≥ 1, we have

κq ≤ 2
p−1

p max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ 1

‖α‖
1
p

L1(Ω)

,
d

N
1
p

(
p − 1
p − N

meas(Ω)
) p−1

p ‖α‖∞
‖α‖L1(Ω)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ meas(Ω)1/q.
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Remark 3.2 If p > N and Ω is convex, by using again [5, Remark 2.1], a concrete estimate of the
solution u0,λ in C0(Ω̄) can be achieved. Precisely, we have

‖u0,λ‖∞ ≤ 2
p−1

p max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ 1

‖α‖
1
p

L1(Ω)

,
d

N
1
p

(
p − 1
p − N

meas(Ω)
) p−1

p ‖α‖∞
‖α‖L1(Ω)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ‖α‖1/p
L1(Ω)γ2.

Now, we point out a particular case of Theorem 3.1.

Corollary 3.1 Let f ∈ Fq and assume that there exist two positive constants γ and δ, with γ > δ,
such that ∫

Ω

F(x, δ)dx

δp >
A(γ)
qγp . (3.20)

Then, for each parameter λ belonging to⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
‖α‖L1(Ω)δ

p

p
∫
Ω

F(x, δ)dx
,
‖α‖L1(Ω)γ

pq
pA(γ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ,
problem (1.1) admits at least one non-zero weak solution u0,λ ∈ W1,p(Ω), such that

‖u0,λ‖ < ‖α‖1/p
L1(Ω)γ.

Proof. Our aim is to apply Theorem 3.1. To this end we pick γ1 = 0 and γ2 := γ. Bearing in mind
(3.8), we obtain

aγ(δ) =
A(γ) − q

∫
Ω

F(x, δ)dx

‖α‖L1(Ω)(γp − δp)q
,

as well as

a0(δ) =

∫
Ω

F(x, δ)dx

δp‖α‖L1(Ω)
.

Now, inequality (3.20) immediately yields

aγ(δ) < a0(δ).

Hence, Theorem 3.1 ensures the conclusion. A direct consequence of Corollary 3.1 is the following

property.

Theorem 3.2 Let f ∈ Fq and assume that

lim
ξ→0+

∫
Ω

F(x, ξ)dx

ξp = +∞. (3.21)

Furthermore, let γ > 0 and set

λ�γ :=
q‖α‖L1(Ω)

p
γp

A(γ)
.
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Then, for every λ ∈]0, λ�γ [, the problem (1.1) admits at least one non-zero weak solution u0,λ ∈
W1,p(Ω) such that ‖u0,λ‖ < ‖α‖1/p

L1(Ω)γ and

lim
λ→0+

‖u0,λ‖ = 0.

Proof. Fix λ ∈]0, λ�γ [. From (3.21) there exists a positive constant δ with δ < γ such that

‖α‖L1(Ω)δ
p

p
∫
Ω

F(x, δ)dx
< λ <

‖α‖L1(Ω)γ
pq

A(γ)p
.

Hence, owing to Corollary 3.1, problem (1.1) admits at least one non-zero weak solution u0,λ, such
that ‖u0,λ‖ < ‖α‖1/p

L1(Ω)γ. Then, for every λ ∈]0, λ�γ [, there exists at least one non-zero weak solution
u0,λ ∈ Φ−1(]0, r2[) of problem (1.1) and one has

‖u0,λ‖ < ‖α‖1/p
L1(Ω)γ. (3.22)

for every λ ∈]0, λ�γ [. Therefore, from (1.2), taking into account (3.7) and (3.22), it follows that∣∣∣∣∣∫
Ω

f (x, u0,λ(x))u0,λ(x)dx
∣∣∣∣∣ ≤ ‖α‖1/p

L1(Ω)γκ1a1 + ‖α‖q/p
L1(Ω)γ

qκ
q
qa2, (3.23)

for every λ ∈]0, λ�γ [. Now, J′
λ(u0,λ) = 0, for every λ ∈]0, λ�γ [ and in particular J′

λ(u0,λ)(u0,λ) = 0, that
is,

‖u0,λ‖p = λ

∫
Ω

f (x, u0,λ(x))u0,λ(x)dx,

for every λ ∈]0, λ�γ [. Then, from (3.23), it follows that

lim
λ→0+

‖u0,λ‖p = lim
λ→0+
λΨ′(u0,λ)(u0,λ) = 0,

that implies limλ→0+ ‖u0,λ‖ = 0. The proof is complete.

Remark 3.3 We claim that under the above assumptions, the mapping λ 	→ Jλ(u0,λ) is negative
and strictly decreasing in ]0, λ�γ [. Indeed, the restriction of the functional Jλ to Φ−1(]0, r2[), where
r2 := (‖α‖L1(Ω)/p)γp

2 , admits a global minimum, which is a critical point (local minimum) of Jλ in
X. Moreover, since uδ := δ ∈ Φ−1(]0, r2[) and

Φ(uδ)
Ψ(uδ)

=
‖α‖L1(Ω)δ

p

p
∫
Ω

F(x, δ)dx
< λ,

we have
Jλ(u0,λ) ≤ Jλ(uδ) = Φ(uδ) − λΨ(uδ) < 0.

Next, we observe that

Jλ(u) = λ
(
Φ(u)
λ

− Ψ(u)
)
,

for every u ∈ X and fix 0 < λ1 < λ2 < λ
�
γ . Set

mλ1 :=
(
Φ(u0,λ1 )
λ1

− Ψ(u0,λ1 )
)
= inf

u∈Φ−1(]0,r2[)

(
Φ(u)
λ1

− Ψ(u)
)
,
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and

mλ2 :=
(
Φ(u0,λ2 )
λ2

− Ψ(u0,λ2 )
)
= inf

u∈Φ−1(]0,r2[)

(
Φ(u)
λ2

− Ψ(u)
)
.

Clearly, as claimed before, mλi < 0 (for i = 1, 2), and mλ2 ≤ mλ1 thanks to λ1 < λ2. Then the
mapping λ 	→ Jλ(u0,λ) is strictly decreasing in ]0, λ�γ [ owing to

Jλ2 (u0,λ2 ) = λ2mλ2 ≤ λ2mλ1 < λ1mλ1 = Jλ1 (u0,λ1 ).

This concludes the proof of our claim.

Remark 3.4 Roughly speaking, Theorem 3.2 ensures that if f has the global growth given by (1.2)
and the asymptotic condition at zero (3.21) is verified then, for every parameter λ belonging to the
real interval ΛΩ :=]0, λ�[, where

λ� :=
q‖α‖L1(Ω)

p
sup
γ>0

γp

A(γ)
,

the problem (1.1) admits at least one non-zero solution u0,λ ∈ W1,p(Ω). Moreover ‖u0,λ‖ → 0, as
λ→ 0+. Furthermore, from a direct computation, it follows that

λ� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞ if 1 < q < p
1
κ

p
pa2

if q = p

q‖α‖(p−1)/p
L1(Ω) γ

p−1
max

p(qκ1a1 + ‖α‖(q−1)/p
L1(Ω) κ

q
qa2γ

q−1
max)

if q ∈ ]
p, p∗[ , (3.24)

where

γmax :=
1

‖α‖1/p
L1(Ω)

(
q
κ1a1

κ
q
qa2

(
p − 1
q − p

))1/(q−1)

.

We also note that, in the case q ∈ ]
p, p∗[, one has ‖u0,λ‖ < ‖α‖1/p

L1(Ω)γmax, uniformly for every λ ∈ ΛΩ.

Remark 3.5 We emphasize that, in particular, if f is (p − 1)-sublinear at infinity, Theorem 3.2
ensures that, problem (1.1) admits at least one non-zero weak solution for each positive parameter
λ. It is worth noticing that, in our case, the attained solution, as affirmed, is non-zero, while the
classical direct method approach, that can be adopted in this setting, ensures the existence of at least
one solution that may be zero.

Remark 3.6 For completeness we observe that if f is a non-negative function our results guarantee
that the attained weak solution is non-negative. To this end, let u0 be a weak solution of problem
(1.1). Arguing by contradiction, assume that the set A :=

{
x ∈ Ω : u0(x) < 0

}
has positive Lebesgue

measure. Put v(x) = min{0, u0(x)} for all x ∈ Ω. Clearly, v ∈ W1,p(Ω) and∫
Ω

|∇u0(x)|p−2∇u0(x) · ∇v(x)dx +
∫
Ω

α(x)|u0(x)|p−2u0(x)v(x)dx

−λ
∫
Ω

f (x, u0(x))v(x)dx = 0,
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that is, ∫
A
|∇u0(x)|pdx +

∫
A
α(x)|u0(x)|pdx = λ

∫
A

f (x, u0(x))u0(x)dx ≤ 0.

Hence ∫
A
|∇u0(x)|pdx +

∫
A
α(x)|u0(x)|pdx = 0.

Then, u0 = 0 almost everywhere in A. This is not possible by the definition of A, so it follows that
u0 is non-negative.

Remark 3.7 A careful analysis of the proof of Theorem 3.2 ensures that the result still remains true
after replacing condition (3.21) with the more general assumption

lim sup
ξ→0+

∫
Ω

F(x, ξ)dx

ξp = +∞. (3.25)

Moreover, in the autonomous case, the previous asymptotic condition at zero assume the form

lim sup
ξ→0+

F(ξ)
ξp = +∞. (3.26)

Remark 3.8 We just observe that Theorem 1.1 in Introduction is a simple consequence of Theorem
3.2 and Remark 3.3. Indeed, if

lim
t→0+

f (t)
tp−1 = +∞ (3.27)

holds, then hypothesis (3.26) is automatically verified. Moreover, hypothesis

lim
|t|→∞

f (t)
|t|s = 0,

where 0 ≤ s < p∗ − 1, ensures that f has a subcritical growth.

In the sequel, there is an example of application of our results.

Example 3.1 Let Ω be a bounded open subset of RN with 1 < p < N and consider the following
problem ⎧⎪⎪⎪⎨⎪⎪⎪⎩

−Δpu + |u|p−2u = λ[η(x)|u|r−2u + β(x)|u|s−2u] in Ω
∂u
∂ν
= 0 on ∂Ω,

(3.28)

where η, β : Ω → R are two continuous positive and bounded functions, 1 < r < p and p < s < p∗.
Then, for every

λ ∈
⎤⎥⎥⎥⎥⎦0, s meas(Ω)(p−1)/pγp−1

max

2p max{‖η‖∞, ‖β‖∞}(sκ1 +meas(Ω)(s−1)/pκs
sγ

s−1
max)

⎡⎢⎢⎢⎢⎣ ,
where

γmax :=
1

meas(Ω)1/p

(
s
κ1
κs

s

(
p − 1
s − p

))1/(s−1)

the problem (3.28) admits at least one non-zero weak solution u0,λ ∈ W1,p(Ω) such that

‖u0,λ‖ <
(
s
κ1
κs

s

(
p − 1
s − p

))1/(s−1)

,
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and limλ→0+ ‖u0,λ‖ = 0. To prove this, we can apply Theorem 3.2 with

f (x, t) := η(x)|t|r−2t + β(x)|t|s−2t,

for every (x, t) ∈ Ω × R. Indeed, it is easy to verify that f ∈ Fs since

| f (x, t)| ≤ 2 max{‖η‖∞, ‖β‖∞}(1 + |t|s−1), ∀ (x, t) ∈ Ω × R.
Moreover, a direct computation shows that

lim
ξ→0+

∫
Ω

F(x, ξ)dx

ξp ≥
meas(Ω) inf

x∈Ω
η(x)

r
lim
ξ→0+

1
ξp−r = +∞.

Hence, all the assumptions of Theorem 3.2 are verified and the conclusion follows.

Remark 3.9 A similar version of Theorem 3.2 in the low-dimensional case has been studied in
[10] and [11]. In their setting, taking advantage of the compact embedding of W1,p(Ω) into C0(Ω̄),
condition (1.2) can be removed and the authors are able to treat also cases with exponential growth;
see, for instance, [10, Example 3.1]. Furthermore, a direct comparison with Theorems 1 and 2 of
[37] can be find in [10, Remark 3.6]. In conclusion, taking into account Remarks 3.6 and 3.7, we
emphasize that, Theorem 3.2 represents an extension of [10, Theorem 3.3] and [11, Theorem 4.1]
to the case p ≤ N. Moreover, in the low-dimensional case, the additional presence of the growth
assumption (1.2) may determine, in some case, an improvement of the intervals of parameters for
which our approach guarantee the existence of at least one non-zero weak solution. Indeed, let p > N
and assume f : Ω × R→ R to be L1-Carathéodory. As [11, Theorem 3.4] shows, the existence of at
least one non-zero weak solution to Neumann problem is obtained for every λ ∈]0, λ f [, where

λ f :=
1

pcp sup
γ>0

γp∫
Ω

max
|ξ|≤γ

F(x, ξ)dx
,

and

c := sup
u∈W1,p(Ω)\{0}

supx∈Ω̄ |u(x)|(∫
Ω

|∇u(x)|pdx +
∫
Ω

α(x)|u(x)|pdx
)1/p < +∞.

If the function f satisfies also the growth condition (1.2) the necessity of to compare the intervals
]0, λ�[ and ]0, λ f [ naturally arises. We exhibit a concrete example in which ]0, λ f [⊂]0, λ�[. For
our goal, let us take a positive constant d and set Ω =]0, 2d[. At this point, consider the ordinary
non-autonomous Neumann problem⎧⎪⎪⎪⎨⎪⎪⎪⎩ −u′′ +

ku
2
= λβ(x)(1 + |u|q−1) in ]0, 2d[

u′(0) = u′(2d) = 0,
(3.29)

where β : [0, 2d] → R is a positive and continuous function, q > 2 and

0 < k <
‖β‖L1(0,2d)

2‖β‖∞(cd)2 . (3.30)

Set

N(c, q) :=
1

2c2

(
q − 2
q − 1

) (
q

q − 2

)1/(q−1)

,
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and

G(β, q) :=
(

d
2‖β‖L1(0,2d)

) (
q − 2
q − 1

) (
q

q − 2

)1/(q−1)

.

Hence, bearing in mind the above results, problem (3.29) admits a non-zero classical solution for
every λ ∈]0, λ f [ as well as for every λ ∈]0, λ�[. Now, taking into account that 1/c2 ≤ kd, simple
computations yield

λ f =
q

2c2‖β‖L1(0,2d)
sup
γ>0

(
γ

q + γq−1

)
≤ k

(
qd

2‖β‖L1(0,2d)

)
sup
γ>0

(
γ

q + γq−1

)
.

Then, since

sup
γ>0

(
γ

q + γq−1

)
=

1
q

(
q − 2
q − 1

) (
q

q − 2

)1/(q−1)

,

one has

λ f ≤ k
(

d
2‖β‖L1

) (
q − 2
q − 1

) (
q

q − 2

)1/(q−1)

= kG(β, q). (3.31)

On the other hand, thanks to κs ≤ (2d)1/sc, for every s ≥ 1, it follows that

λ� =
q

‖β‖∞ sup
γ>0

⎛⎜⎜⎜⎜⎜⎝ γ

q
√

2κ1 + 2q/2κ
q
qγq−1

⎞⎟⎟⎟⎟⎟⎠ ≥ q
2d‖β‖∞ sup

γ>0

⎛⎜⎜⎜⎜⎝ γ

q
√

2c + 2q/2cqγq−1

⎞⎟⎟⎟⎟⎠ .
Hence, since

sup
γ>0

⎛⎜⎜⎜⎜⎝ γ

q
√

2c + 2q/2cqγq−1

⎞⎟⎟⎟⎟⎠ = 1
2c2q

(
q − 2
q − 1

) (
q

q − 2

)1/(q−1)

,

one has

λ� ≥
(

1
2d‖β‖∞

)
N(c, q). (3.32)

Then, inequalities (3.31) and (3.32) together with condition (3.30) yield

λ f ≤ kG(β, q) <
(

1
2d‖β‖∞

)
N(c, q) ≤ λ�.

In conclusion, the expected strict inclusion ]0, λ f [⊂]0, λ�[ holds.

In the sequel we prove how the previous results can be employed in order to pass from the
existence of at least one nontrivial solution to the existence of at lest two nontrivial solutions. This
goal will be achieved making use of the particular nature of the first solution found, namely it is
a local minimum. This information will be used to assure the existence of a second solution as
a critical point of mountain pass type. In this direction, we begin with the following theorem,
where the celebrated Ambrosetti-Rabinowitz condition is required. As usual, this assumption plays
a crucial role in proving that every Palais-Smale sequence is bounded, as well as that the so called
‘mountain pass geometry’ is satisfied.
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Corollary 3.2 Let f : R→ R be a continuous function such that

| f (t)| ≤ a1 + a2|t|q−1, ∀ t ∈ R, (3.33)

for some non-negative constants a1, a2, where q ∈]p, p∗[. Furthermore, assume that condition (3.26)
holds in addition to

(AR) there are constants μ > p and r > 0 such that, for all |ξ| ≥ r, one has

0 < μF(ξ) ≤ ξ f (ξ).

Then, for each λ ∈ ΛΩ, problem (1.1) admits at least two weak solutions. If, in addition to the above
assumptions, one has f (0) � 0, the attained solutions are non-zero.

Proof. Fix λ ∈ ΛΩ. Owing to (3.33) and (3.26), Theorem 3.2 ensures that the problem (1.1) admits at
least one weak non-zero solution u1 which is a local minimum of the functional Jλ as defined in the
proof of Theorem 3.1. Now, we can assume that u1 is a strict local minimum for Jλ in X. Therefore,
there is ρ > 0 such that

inf
‖u−u1‖=ρ

Jλ(u) > Jλ(u1).

Furthermore, from (AR)-condition, by standard computations, one has that Jλ is unbounded from
below. So, there is u2 such that Jλ(u2) < Jλ(u1), for which Jλ satisfies mountain pass geometry.
At this point, again exploiting (AR), it follows that the functional Jλ satisfies the (PS)-condition.
Hence, the celebrated Ambrosetti-Rabinowitz theorem ensures the existence of a critical point ũ of
Jλ such that Jλ(ũ) > Jλ(u1). So, u1 and ũ are two distinct weak solutions of (1.1) and the proof is
complete.

Example 3.2 Let Ω be a bounded open subset of RN with 1 < p < N and consider the following
problem ⎧⎪⎪⎪⎨⎪⎪⎪⎩ −Δpu + α(x)|u|p−2u = λ(1 + u2m−1) in Ω

∂u
∂ν
= 0 on ∂Ω,

(3.34)

where m is a positive integer such that 1 < p < 2m < p∗. Then, for every

λ ∈
⎤⎥⎥⎥⎥⎥⎥⎥⎦0, 2m − p

pκ1(2m − 1)

⎛⎜⎜⎜⎜⎝2mκ1(p − 1)
κ2m

2m(2m − p)

⎞⎟⎟⎟⎟⎠ p−1
2m−1

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ,
problem (3.34) admits at least two non-zero ( f (0) � 0) weak solutions. To prove this, we can apply
Corollary 3.2 with

f (t) := 1 + t2m−1,

for every t ∈ R. Indeed, clearly the function f satisfies (3.33) and, since

lim
t→0+

f (t)
tp−1 = +∞,

also condition (3.26) holds true. Moreover, taking into account that

lim
|ξ|→∞

ξ f (ξ)
F(ξ)

= 2m lim
|ξ|→∞

ξ2m + ξ

ξ2m + 2mξ
= 2m > p,

there exist μ > p and r > 0 such that

0 < μF(ξ) ≤ ξ f (ξ),

for every |ξ| > r. Hence, all the assumptions of Corollary 3.2 are verified and the conclusion follows.
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Remark 3.10 Applying the mountain pass theorem to nonlinear differential problems, involving the

Laplace operator −Δu, it is usual to require that lim
t→0+

f (t)
t
= 0; see, for instance, condition (p3) in

[30, Theorem 2.15]. On the contrary, in Example 3.2, the above assumption at zero is not verified.
We also note that, very recently, Neumann problems have been studied without (AR)-condition by
using a Cerami-type condition; see [18] and references therein, as well as Remark 3.11 below. Even

in this case, hypothesis lim
t→0+

f (t)
t
< +∞ is requested. Hence, [18, Theorem 3.6] cannot be applied to

problem (3.34) in Example 3.2.

Remark 3.11 The (AR)-condition, adopted in Corollary 3.2, implies that the energy functional Jλ is
unbounded from below and satisfies the classical (PS)-condition, so that the classical mountain pass
theorem can be applied. Therefore, instead of assumption (AR), a Cerami-type condition could be
exploited in Corollary 3.2 in order to obtain the second solution. We refer, for instance, to [4, 18, 29]
for more details on related topics.

References

[1] G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal. 75 (2012),
2992–3007.

[2] G. Bonanno and P. Candito, Three solutions to a Neumann problem for elliptic equations involving the
p-Laplacian, Arch. Math. (Basel) 80 (2003), 424–429.

[3] G. Bonanno and G. D’Aguı̀, Multiplicity results for a perturbed elliptic Neumann problem, Abstr. Appl.
Anal. 2010 (2010), 1–10.

[4] G. Bonanno and R. Livrea, Existence and multiplicity of periodic solutions for second order Hamiltonian
systems depending on a parameter, preprint.

[5] G. Bonanno and G. Molica Bisci, A remark on a perturbed Neumann problem, Stud. Univ. Babes-Bolyai
Math. LV 4 (2010), 17–25.
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[19] A. Kristály, M. Mihailescu, and V. Rădulescu, Two nontrivial solutions for a non-homogeneous Neumann

problem: an Orlicz-Sobolev space setting, Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), 367–379.
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