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Abstract

In this paper, we consider eigenvalues to the follow-
ing double phase problem with unbalanced growth and
indefinite weight,

—Agu —Au= Am()|ul9?u  in RV,

where N>2, 1<p,q<N, p#gq, aeC% (RN,
[0,40)), a0 and m : RN - R is an indefinite
sign weight which may admit non-trivial positive and
negative parts. Here, A, is the g-Laplacian operator
and Ag is the weighted p-Laplace operator defined
by Agu = div(a(x)|Vu|P~2Vu). The problem can be
degenerate, in the sense that the infimum of a in RN
may be zero. Our main results distinguish between the
cases p < g and g < p. In the first case, we establish the
existence of a continuous family of eigenvalues, starting
from the principal frequency of a suitable single phase
eigenvalue problem. In the latter case, we prove the
existence of a discrete family of positive eigenvalues,
which diverges to infinity.
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2 | GOU and RADULESCU

1 | INTRODUCTION

In this paper, we investigate eigenvalues to the following double phase problem with unbalanced
growth and indefinite weight,

—ASu—Agu = Am()|u|?>u  in RV, 1.1

where N > 2,1< p,q <N, p #q,a € COLRN,[0,+c0)),a #0and m : RY — R is an indefinite
sign weight which may admit non-trivial positive and negative parts. Here, A is the g-Laplacian
operator and Ag is the weighted p-Laplace operator defined by Agu := div(a(x)|Vu|P~2Vu).
Throughout of this paper, we shall always assume that the weight function m : RN — R satisfies
the following assumption,

N
(H) m = my —m,, where m;,m, >0, m; 0, m; € L1(RV)nL®(RY) and m, € L*(R"N).
Remark 1.1. In our case, m, = 0 is allowable.

Problems like (1.1) arise when one looks for the stationary solutions of reaction-diffusion
systems of the form

u, = div[D(x, Vu)Vu] + g(x,u) (x,t) € RY x (0, ),

where D(x, Vu) = a(x)|Vu|P~2 + |Vu|972. This system has a wide range of applications in physics
and related fields, such as biophysics, plasma physics and chemical reaction design (see [7, 26]).
In such applications, the function u is a state variable and describes density or concentration
of multi-component substances, div [D(x, Vu)Vu] corresponds to the diffusion with a diffusion
coefficient D(x, Vu) and g(x, u) is the reaction and relates to source and loss processes. Typically,
in chemical and biological applications, the reaction term ¢(x,u) has a polynomial form with
respect to the unknown concentration denoted by u.

The analysis of the double phase eigenvalue problem (1.1) is closely associated with the
following single phase quasilinear eigenvalue problem,

_ —2. . oN
—A%u = um(x)|u|""u in RY. 1.2)

The first part of the paper is devoted to the study of (1.2). The main results we establish
regarding (1.2) are upcoming Theorem 3.1 and Proposition 3.1, which reveal that there exist
a sequence of eigenvalues to (1.2) and the first eigenvalue is simple. In the case of bounded
domains and r = 2, this problem is related to the Riesz-Fredholm theory of self-adjoint and
compact operators. The anisotropic linear case (if r = 2 and m(-) is non-constant) was first
considered in the pioneering papers of Bocher [6], Hess and Kato [17] and Pleijel [25]. An impor-
tant contribution in the case of unbounded domains is due to Allegretto and Huang [1] and
Szulkin and Willem [27]. In [27], the authors assumed that weight function may have singular
points.

Equation (1.1) contains the contribution of two differential operators in the left-hand side, so
this problem is not homogeneous. In fact, the differential operator u — —Agu — Aguisrelated to
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NON-AUTONOMOUS DOUBLE PHASE EIGENVALUE PROBLEMS 3

the ‘double-phase variational functional defined by
U / a(x)|Vul? + |Vu|?dx.
RN

The integrand of this functional is the function
E(x,t) = a(x)tP + t9 forall x € RNand t > 0.

When a = 1, then (1.1) becomes the so-called p & q Laplacian problem, which was investigated by
Benouhiba and Belyacine [4, 5]. A feature of this paper is that we do not assume that the function
a(-) is bounded away from zero, that is, we do not require that essinf , _zva(x) > 0. This implies
that the integrand £(x, t) exhibits unbalanced growth, namely there holds that

17 < &(x,t) < Cy(tP + t9) forallx € RN and ¢ > 0, (1.3)

where C, > 0 is a constant. In this scenario, the study is carried out in the framework of
Musielak-Orlicz-Sobolev spaces. Such functionals were first investigated by Marcellini [18-20]
in the context of problems of the calculus of variations and of non-linear elasticity for strongly
anisotropic materials. For such problems, there is no global (that is, up to the boundary) regular-
ity theory. There are only interior regularity results, which are primarily due to Baroni et al. [3] and
Marcellini [10, 20, 21]. In fact, most of works dealt with double phase problems having unbalanced
growth in bounded domains of RN, we refer the readers to [12-15, 22-24] and references therein.
However, there exist relatively few ones treating the problems in RY. The study of eigenvalue
problems like (1.1) is open until now. Since (1.1) is set in the whole space RY, lack of compactness
is one of major difficulties we encounter to discuss the eigenvalue problem (1.1) in Musielak-
Orlicz-Sobolev spaces and more careful analysis is needed in suitable weighted functions spaces.
Indeed, this is mainly because the embedding W1$(RN) < L"(RN) is only continuous for any
g < r < g* (see Lemma 2.3) and the weight function m : RN - R is indefinite, which cause that
the verification of the compactness of the underlying (minimizing and Palasi-Smale) sequences
becomes difficult. Consequently, we manage to study the problem (1.1) in a new weighted Sobolev
space E defined by the completion of Cg"([RN ) under the norm

1
q 1
= ||V q s d s ‘= ’ ERN’
lullg 1= IVull + </RN |u|? max{m,, w} x) w(x) a+xps ~

where || - || denotes the standard norm in DYE(RN). Here, W4 (RN) and D4 (RVN) are Musielak—
Orlicz-Sobolev spaces defined in Section 2. In this paper, when p < g, we establish the existence
of a continuous family of eigenvalues to (1.1), starting from the principal frequency to (1.2), see
Theorems 3.2 and 3.3. While q < p, we prove the existence of a discrete family of positive eigenval-
ues to (1.1), which diverges to infinity, see Theorem 3.4 and Proposition 3.2. The results we derive
reveal new facts of eigenvalues to double phase problems in RY. In both cases, we actually need
to assume q < g¢* := ]\%, because of the unbalanced growth property (1.3) with respect to the
double phase operator and the dominance is the g-Laplacian term. Thus, the problem under con-
sideration is Sobolev subcritical and the energy functional J corresponding to (1.1) is well-defined
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4 | GOU and RADULESCU

in the Sobolev space E by Theorem 2.3, where
1 1 pi
Jw) == a(x)|VulP dx + - [Vul?dx — = m(x)|ul? dx.
P JrN q JrN q JrN

Observe that § <1+ 1%] implies p < g*. When double phase problems are set in bounded domains
in RV, then the condition § <1+ % can be applied to prove the desired compact embedding
results, for example [22, Proposition 4]. While double phase problems are set in RY, the condition
§ <1+ % can no longer be applicable to derive the compact embedding results, which leads to

lack of compactness for the study. In this paper, such a condition is actually used to guarantee the
regularity of solutions to (1.1) (see [8, 9]), which along with the maximum principle developed in
[23, 24] can lead to the simplicity of eigenvalues, see Proposition 3.2.

2 | PRELIMINARIES

In the section, we are going to present some preliminary results used to establish our main
theorems. To deal with the eigenvalue problem (1.1), we shall work in the corresponding
Musielak-Orlicz—-Sobolev space. For the convenience of the readers, let us first present a few
definitions from [11, Section 2] concerning the main notions and function spaces used in this

paper.

Definition 2.1. A function ¢ : [0, +o0] — [0, +00) is called a ®-function if ¢ is convex and left-
continuous on [0, +0). In addition, ¢ satisfies that

®(0) =0, [lg(g ) =0, lim o) = +oo.

Definition 2.2. A function £ : RY x [0, +c0] — [0, 4+0c0) is called a generalized ®-function if it
satisfies the following conditions:

(i) for almost every x € RV, £(x, -) is a ®-function;

(ii) for almost every t € [0, +o0), (-, t) is measurable.

Definition 2.3. A generalized ®-function & : RN x [0, +o0] — [0, +00) satisfies A,-condition if
there exists K > 2 such that, for almost every x € RN and ¢ >0,

&(x,2t) = K&(x,1).

Definition 2.4. A ®-functiong : [0, +o0] — [0, +00)is said to be an N-function ifit is continuous
and positive on [0, +o0). In addition, it satisfies that

t t
limwzo, lim @=+oo
t—0t t—>+00

A generalized ®-function & : RN x [0, +00] — [0, +0) is said to be a generalized N-function if,
for almost every x € RN, &(x, ) is an N-function.
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Definition 2.5. A generalized N-function £ : RN X [0,40c0] — [0, +00) is called uniformly
convex if, for any ¢ > 0, there exists § > 0 such that, for almost every x € RN,

f(xn2) ca-9=222

2
whenever s, t > 0 and |x — t| > e max{|s|, |¢[}.

With these definitions in hand, we are now ready to introduce the double phase function & :
RN x [0, 4+00) = [0, +0c0) corresponding to (1.1) as

EGx,t) i=a()tP +t9, xeRN, t>0. 2.1
It is simple to check that & is a generalized N-function. Moreover, £ is uniformly convex and it
satisfies the A,-condition. Let us denote by M(R™) the space consisting of all Lebesgue measurable
function u : RN — R. The Musielak-Orlicz space L5 (RN ) is defined by

LERN) 1= {u e MRN) : pe(u) < +o0},

where p; is the modular function given by

petw) = [ gnludx = [ aCoul? + uftds. 22)
RN RN
Here, the space LS (R") is equipped with the Luxemburg norm given by
lullg :=inf {1>0: (%) <1}. 23)

Using the above properties satisfied by &, we can easily check that LS(RY) is a Banach space,
which is also separable and reflexive. The Musielak-Orlicz—Sobolev space WLE(RN) is defined
by

WHRN) 1= {u e LERN) 1 |Vu| € LE(RN)}.
Here, the space W1¢(RN) is equipped with the norm
llullye 2= llulle + 11Vulle,

where |[Vull; :=|[|Vullls. Clearly, WLE(RN) is a separable, reflexive Banach space. Let us
introduce the associated homogeneous Musielak—Orlicz—Sobolev DL4(RN) as the completion of
C(RN) under the norm ||Vul|.

Next, we are going to show some relations between the norm in LS(RN) and the modular
function p; given by (2.2) and (2.3), respectively, proofs of which can be completed by using the
ingredients presented in [16, Section 3.2].
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6 | GOU and RADULESCU

Lemma 2.1. Let £ : RN X [0,4+00) — [0, 4+00) be defined by (2.1). Then, the following assertions
hold.

(@) llully = 2ifand only if pz(5) = 1.
(i) llull < 1(=1,> 1,respectively) ifand only if p:(u) < 1(= 1,> 1, respectively).

(iii) If lulle <1, then ||u||r§nax{p,q} <pr(w) < ”u”rgnin{p,q}.
(iv) Ifllully > 1, then ||u||2nm{p’q} < pe(w) < ”u”?aX{p,q}.

(v) lim,,_, ;o llu,lle = 0(+o00, respectively) if and only if  lim, ., pe(u,) =
0(+o00, respectively).

Note that t9 < £(x, t) forany x € RN and t € R, by assertion (ii) of Lemma 2.1, then there holds
the following embedding result.

Lemma 2.2. Let £ : RN X [0, +00) — [0, +00) be defined by (2.1). Then, the embedding LS (RN) <
LI(RN) is continuous.

As a consequence of Lemma 2.2 and Sobolev’s embeddings in W4(RN) and D"4(RN) for 1 <
q < N, we have the following embedding result.

Lemma 2.3. Let £ : RN x[0,400) — [0,+00) be defined by (2.1). Then, the embedding
WLE(RN) & WHI(RN) < L'(RN) is continuous for any q <r < q*. Moreover, the embedding
DY (RN) & DL(RN) o L4 (RN) is continuous.

3 | MAIN RESULTS

In this section, we shall consider the eigenvalue problem (1.1) under the assumption (H). The
hypothesis (H) is always assumed to hold in what follows. First, we shall present some results
related to the following eigenvalue problem,

—A% = um(x)[ul""?u  in RV, (3.1)

Theorem 3.1. Assume (H) holds, N > 2,1 <r <N, a € CO(RN, [0, 4+0)) and a £ 0. Then, there
exists a sequence of solutions (Ug , i, Ug i) € R X DM(RN) to (3.1) with u,, ) € M and

0< HMar1 < Marn < < Hark <, lim Mark = oo ask - +oo,

k—o0

wheren(x,t) = a(x)t" forx € RN and t > 0,
M, = {u e DV(RV) : / m(x)|u|" dx = 1}.
RN
Proof. Define

W(u) ::/ a(@)|Vul"dx, M, :=M,nV,
RN
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where the Sobolev space V is the completion of C(‘;"(IRN ) under the norm

r 1
\% ’ swpdx |, = —,
IVull, + </[RN |ul" max{m,, w} x> w(x) Ty

x € RV,

Reasoning as the proof of [1, Lemma 1], we are able to show W(u) restricted on M, satisfies

the Palais-Smale condition. Then, by adapting Ljusternik—Schnirelman theory as the proof of

forthcoming Theorem 3.4, we can derive the desired conclusion. Thus, the proofis completed. []

Proposition 3.1. Assume (H) holds, N > 2,1 <r <N, a € C%'(RN,[0,+)) and a # 0. Then,
the first eigenvalue u,, , , obtained in Theorem 3.1 is simple and the eigenfunction u, , , has constant
sign. Moreover, if u € D(RN) is a non-trivial solution to (3.1) corresponding to p > i, ., then u

is sign-changing.

Since the function m is an indefinite sign weight, then proof of Proposition 3.1 is not

straightforward. To prove this, we need the following auxiliary result.

Lemma 3.1. Define

r r

I(u,v) : = —/ (Aau)u’—v dx—/ (Aav)vr_u dx, u,veDY(RN),u,v>0.
v o T v T 1

v
Then, I(u,v) > 0. Moreover, I(u,v) = 0 if and only if u = kv for some k € R.

Proof. Observe that
V<u;r—_1v’> = (1 +(r— 1)<$>r)Vu - r(%)r_le,
v(ZHE) = (1r o= () Jro-r(¥) v

Then, by the divergence theorem, we see

I(u,v) = /RN a(x)((l + (@ — 1)<§)r)|Vu|' —r(%)r1|Vu|’_2(Vv-Vu)> dx

+ /RN a(x)<(1 +(r— 1)(%)r>|Vv|’ - r(%)r_1|Vv|’_2(Vu . Vv)) dx.

Using Young’s inequality, we have

v r—1 3 v r—1 1 v\’
r(—) |Vuv—(vU-Vu)<r<—> |Vuv—|vU|<ou-n<—)|Vuv+|vmn
u u u

r—1 r—1 '
r(5) el (vu-voy<r(5) Vol vul < = D(2) Vol + [ Vul”

As a consequence, coming back to (3.2), we can conclude I(u,v) > 0. If I(u,v) = 0, then

v\’ u\’
Vi - Vo = [Vul|Vol, <a>|VuV=|VUV, (5)|er=|Vuw

3.2)
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8 | GOU and RADULESCU

It then follows that
[uVv —vVu| = 0.
This implies that there exists k € R such that u = kv and the proof is completed. O
Proof of Proposition 3.1. Note first that
HMar1 = uier}\t;l,. P(w).

If u € M, satisfies ¥(u) = u
tion, we may assume u

then |u| € M, and ¥(|u|) = u, ;. Therefore, without restric-
€ D'I(RN) satisfies the equation

a,r,1>

is non-negative. Observe that u

a,r,1 a,r,1

-2 -2 : N
_A;lua,r,l + :ua,r,lmZ(x)lua,r,llr ua,r,l = :ua,r,lml(x)lua,r,l'r ua,r,l 20 inR".

By maximum principle, u, ., > 0. Letu,,, € M, andv,,; € M, be two positive eigenfunctions
corresponding to u, , ;, then

a — r—1 a — r—1 : N
—AlUgy 1 = Mo MUy, —ATUg 1 = Ha M)V, ;i RT.

It is simple to calculate I(u,, 1,0, 1) = 0. As a result of Lemma 3.1, we have u,, ; = kv, , ; for
some k € R. This indicates that u, ,  is simple.

Arguing by contradiction, we suppose u € D'(RY) is a non-negative solution to (3.1)
corresponding to 4 > , ;. By the maximum principle, u > 0. Notice

/ a(x)|Vu|"dx = ;1/ m(x)|u|" dx > 0.
RN RN

In addition, we know that if u € DY(RN) is a solution to (3.1), then ku € D(RYN) is also a
solution to (3.1) for any k € R\{0}. Then, by scaling, we may assume

0< m(x)|u|" dx < 1. (3.3)
RN

Letu,,,; € Mandu,,; > 0beaneigenfunction to(3.1) corresponding to i, . ;. Then, u,, , ; solves
the equation

-2 : N
_A;lua,r,l = /"a,r,lm(x)lua,r,llr Ugry MR

As a consequence of Lemma 3.1 and (3.3), we have
0<I(u,uy,q) = ,u/ m(x)(ur - ”Zn) dx + Uy, / m(x)(u{w1 - u’) dx
RN T Y s

= = Hapa) [ OO dx = (= ) <0
R
This is impossible, hence u is sign-changing and the proof is completed. O
Theorem 3.2. Assume (H) holds, N >2,1< p,q<N, p#q, a € C*(RN,[0,+00)) and a # 0.

Then, (1.1) has no non-trivial solutions in D (RN) for any 0 < A < Ma,q,1> Where iy o 4 > Ois the first
eigenvalue to (3.1) witha = landr = q.
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NON-AUTONOMOUS DOUBLE PHASE EIGENVALUE PROBLEMS 9

Proof. Letu € DL4(RN) be a solution to (1.1) for some 0 < A < Mi,q,1- Observe first that

/ a(x)qulpdx+/ |Vu|qu=/1/ m(x)|u|? dx. (3.4)
RN RN RN

This impliesu = 0if 4 = 0. Letus assume 0 < 1 < ; 4 ;. Assume u # 0, it then follows from (3.4)
that

/ m(x)|u|?dx > 0. (3.5)
RN

In addition, since y; 5, > 0 is the first eigenvalue to (3.1), then

/N [VulTdx > py g1 /N m(x)|u|? dx. (3.6)
R R

This along with (3.4) leads to

#1q1/ m(x)|u|qu</1/ m(x)|ul? dx.
” RN RN

Using (3.5), we then get u = 0. This is a contradiction. Next we assume A = ;. In this case, by
combining (3.4) and (3.6), we obtain

/ a(x)|VulP dx <0,
RN

hence u = 0. Thus, the proof is completed. O

31 | Casep<gq

In this case, to establish the existence of solutions to (1.1), we shall adapt some ideas from [1]. Let
us first introduce the weight function

1 N
wx)=——, x€eR".
) A+ [x])a

Let E be the completion of Cg"(RN ) under the norm

q
lullg := [IVulls + </N |ul? max{mz,w}dx>
R

It is standard to conclude that E is a separable and reflexive Banach space. In order to prove the
existence of solutions to (1.1), we shall define the associated energy functional J : E — R by

J(u) :=l/ a(x)qulpdx+l/ |Vu|qu—/—1/ m(x)|u|? dx.
P JrN q JrN q JrN

Theorem 3.3. Assume (H) holds, N >2,1< p <q <N, a € C*(RN,[0,+c0)) and a # 0. Then,
there exist positive solutions to (1.1) for any 2 > iy g ;.
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10 | GOU and RADULESCU

In this case, we find that J is unbounded from below in E. Indeed, letu, ,, € DY4(RN) be an
eigenfunction of (3.1) corresponding to y; ;. We observe

tP td A
J(t = \Y) Pdx+—(1- \Y 9dx.
()= /RN a0Vt gal” dx+ < >/RN| Hrgal” dx

HMig1

Since p < g and 1 > y;, J(tul,q,l) — —oo as t — +oo0. In this situation, to seek solutions to (1.1),
we introduce the Nehari manifold

N :={u e E\{0} : I(u) =0},
where
I(w) := / a(x)|Vu|P dx +/ [Vu|?dx —/1/ m(x)|ul? dx.
RN RN RN
Then, we are able to define the minimization problem
m = inf J(u). 3.7
inf () (3.7
Obviously, any minimizer of (3.7) is a solution to (1.1).
Proof of Theorem 3.3. Let {u,} C N be a minimizing sequence to (3.7). Then, m = J(u,) + 0,(1)

and I(u,) = 0. Since I(Ju|) < I(u) = 0 for any u € N, then there exists a unique 0 < ,,, < 1such
that I(¢,|u|) = 0, where

t ( Jon QCOIV [l dx >_
lul = :

A fon m@)|u|9dx — [on [V]ul|?dx

Moreover, for any u € N, we see
1 1 1
Jw) =J(u) — =I(u) = (— - —) / a(x)|VulP dx. (3.8)
q P q) JrN

Therefore, for anyu € N,

J(t|u||u|)=tf;|<l—l>/ a(X)|V|u|l? dx < <l—l>/ a(x)|Vul? dx = J(u).
p q RN p q RN

As a consequence, we shall assume {u,} C N is a non-negative minimizing sequence to (3.7).
Otherwise, we can replace {u, } by {t|un| |u, |} as a new minimizing sequence to (3.7).

First we are going to prove m > 0. It follows from (3.8) that m > 0. Let us argue by contradiction
that m = 0. Then, by (3.8), we have

/ a(x)|Vu,|? dx = 0,(1).
RN
Let us first assume

/ m(x)|u,|?dx = o,(1). (3.9
RN
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NON-AUTONOMOUS DOUBLE PHASE EIGENVALUE PROBLEMS 11

Since I(u,,) = 0, there holds

/N [Vu,|?dx = 0,(1).
R

In this case, we set

u
v, i= n >0, VneNt. (3.10)

(foe GOl 19 )5

It is easy to see {v,} C M,. Since I(u,) = 0,

N 1P d
/ a(x)|Vu,|P dx = /[R a(x)|Vu,| xp - 1 _ 1</1_/ |an|qu>.
“ (foow mEOlttndx) s ( fow MO 10,9 dx) -

(3.11)
In view of (3.9) and (3.11),
/ a(x)|Vu,|P dx = 0,(1).
RN
It then yields that
/ m()|v, |P dx < — / a(x)|Vu, | dx = 0,(1). (3.12)
RN a,p,1 JRN

Invoking Holder’s inequality, Sobolev’s inequality and (3.12), we then get

e] 1

q P q*
/RNm<x)|vn| dx < (/RNm(x)w dx) </RN’”(’“)'”"' dx)
l¢] 1-6

<lmll (/RNm(x>|v| x /RN'”' x

0 ¢"0-0)
<cnm||3,;9</ m(x)|vn|de> ( / |an|qu> T o),
RN RN

where0 < 6 < 1landq =6p + (1 — 6)q". This is a contradiction, because of v, € M, . Let us next
assume that there exists some A, > 0 such that

-6

/ m(x)|u,|?9dx = Ay + 0,(1).
RN

Since I(u,) =0,

a(x)|Vu, |P dx
/ |an|qu=/1—/RN NVt =21+0,(1).
Y Jow MmOl |9 dx
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12 | GOU and RADULESCU

Therefore, there holds ||an||§ =21+ 0,(1). In virtue of [1, Lemma 1], we then get that {v,} is
compact in V, where the Sobolev space V is the completion of C(‘;"(IRN ) under the norm

1
IVull, + (/ uld max{mz,cu}dx)q.
RN

Letv € V besuchthatv, - vinV asn — oo, then v # 0 and v > 0. It then infers thatv € Visa
non-negative eigenfunction to (3.1) corresponding to 4. By Lemma 3.1, we reach a contradiction,
because 4 > u; g ;. As a consequence, we have m > 0.

It is standard to show that A is a natural constraint. By the fact that there exists a non-negative
minimizing sequence to (3.7) and applying Ekeland’s variational principle, there exists a Palais—
Smale sequence {u,} C E with u;’ = 0,(1) and I(u,,) = 0,(1) for J at the level m > 0. Let us now
prove that {u, } is bounded in E. Observe

m+0,(1) = J(u,) — ~I(u,) + 0,(1) = <l - 1) / a(x)lu, |P dx. (3.13)
q P q) Je

Let us verify that {||Vu,|| q} is bounded. On the contrary, we may assume ||Vu, ||, > +c0 asn —
. Define v,, by (3.10), use the fact I(u,) = 0,,(1) and (3.13), then there holds that ||Vv,, ||5 =1+
0,,(1). With the help of [1, Lemma 1], we can also reach a contradiction. This implies {||Vu, ||} is
bounded. By Hardy’s inequality, it then follows that

|14, P\’ q
Ml ax < (22— |V, dx < C.
ry (14 |x])2 N-p RN

Notice that I(u,) = 0,(1), then

[ mougltax = [ meolugtax— [ mGolu i ax
RN RN RN
S/ m(x)|un|qu=/ a(x)qunlpdx+/ [Vu,|9dx +0,(1) < C.
RN RN RN

As a result, we get that {u,,} is bounded in E. Then, there exists u € E such that u, — u in E as
n — oo. Since {u,} C E is a bounded Palais-Smale sequence for J,

—Aju, — Agu, = Am()|u, |9 %u, +0,(1) in RY. (3.14)
Therefore, we are able to derive that u € E satisfies the following equation:
—Agu —Agu = Am()|u|?>u in RN, (3.15)

Since the embedding E & DLE(RN) & LI (RN) is continuous by Lemma 2.3, {u, } is bounded in
LY (RN) and u,, — u in LY (RV) as n — oo. It follows that {|u, |} is bounded in L¥-4(RY) and
N N

lu,|9 = |ul? in LN=4(RN) as n — co. Due to m; € L7 (RN), we have

/ my(x)|u, |9 dx = / my(x)|ul?dx + 0,(1). (3.16)
RN RN
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NON-AUTONOMOUS DOUBLE PHASE EIGENVALUE PROBLEMS 13

This readily indicates u # 0. Otherwise, there holds

[ m@litar= [ @i [ mlgdx <o, G
RN RN RN

Since I(u,) = 0,(1),

/ a(x)|Vu,|? dx + / [Vu,|?dx < 0,(1).
RN RN

This in turn gives J(u,) = 0,(1), which is impossible, because of m > 0. Therefore, u is a non-
trivial solution to (1.1). Moreover, as a consequence of maximum principle, see [24, Proposition
2.3], we have u > 0. Thus, the proof is completed. O

32 | Caseq<p

Next, we are going to deal with the case g < p. In this case, we define

d(u) := l/ a(x)IVulpdx+l/ [Vul|? dx,
P JrN q JrN

S = {ueE : l/ m(x)lulqu=1}.
q JrN

Lemma 3.2. Assume (H) holds, N >2,1< g < p <N, a € C*»(RN,[0,+))and a # 0. Then, ®
restricted on S satisfies the Palais—Smale condition at any level ¢ € R.

Proof. Let {u,} C E be a Palais—-Smale sequence for @ restricted on S at the level ¢ € R. Then,

D(u,) = c+0,(1), (D) (w,) = 0,(1).

The aim is to prove that {u,} is compact in E. It is straightforward to see that {u,,} is bounded in
DY (RN), because of {u,} C S.Invirtue of Hardy’s inequality, we obtain

u, |4 p
/ e <L) / |V, |9 dx < C.
rN (1 + |x])4 N-p RN

In addition, note that

[ meouitas= [ m@pwitax= [ mGo, i x
RN RN RN

By Holder’s inequality and Sobolev’s inequality, we have

Noo\® N\
/ my(x0)|u, |7 dx < </ |m, |4 dx> (/ |u,, | V- dx>
RN RN RN

N N
<C</ Imllqu> /qunlqugc.
RN RN
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14 | GOU and RADULESCU

Accordingly, we obtain that {u,} is bounded in E. It then yields that there exists u € E such that
u, = u in E as n — . Since the embedding E < L9 (RV) is continuous, {u,} is bounded in

LY (RN) and u,, = u in LY (RV) as n — oo. It then follows that {|u, |9} is bounded in L¥-4(RN)
N N

and |u, |9 — |u|? in L¥-4(RY) as n — co. Due to m; € L4 (RN),

/ my(x)|u,|?dx = / my(x)|ul?dx + 0,(1). (3.18)
RN RN

It readily indicates that u # 0. Otherwise, by (3.18), there holds that

q= /R;N m(X)lunlq dx = </RN ml(x)|un|‘1 dx — '/RN mz(x)|un|q dx < On(l). (319)

This is impossible. Since {u,,} C E is abounded Palais-Smale sequence for @ restricted on S, there
exists a sequence {4,} C R such that u,, € E satisfies the equation

—Agun —Agu, = A,m(0)|u, |9 %u, +0,(1) in RV, (3.20)

where

/1n=l/ a(x)qunlpdx+l/ [Vu,|?dx + 0,(1).
q JrN q JrN

Notice that {u,} is bounded in DL$(RN), then {4,,} is bounded in R and there exists A € R such
that 4, - 1in R as n — co. Furthermore, u € E and it satisfies the equation

—Agu —Agu= Am()|u|?>u in RN, (3.21)

Thanks to u # 0, we then have 4 > 0. Taking into account (3.20) and (3.21), we conclude
/[RN (a()(IVu, P>V, — [VulP=2Vu) + (1Vu, |77V, — [Vul972Vu)) - (Vu, — Vu) dx
=1, /RN m(xX)|u, |9 2u, (u, —u)dx — A /RN m(x)|u|?*u(u,, — u)dx + o,(1)
= (=) A Ol 1, — ) dx
+2 /RN m(x) (Ju, 17w, — [u|7*u)(u, — u)dx + 0,(1). (3.22)

Observe first that

<

./[R;N m(x)lun|q_2un(un - u) dx

/ 12 OOt |41, — ) dx
IRN

+

[ o2ty = )
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In addition, we see

' / 12 Gt |10, (1 — 10)
RN

N % x qq:‘l * qL*
<</ |m1|qu) (/ 4|9 dx) (/ Iy — ul? dx) ,
RN RN RN

/ MGt 9ttty — ) dx
IRN

<< / mz(x)|un|‘Idx>T< / mz(x>|u|qu>5+ / a9 dx.
RN RN RN

Therefore, utilizing the fact that {u,,} is bonded in E, we get

<C.

[ MOl 192 =) dx
RN
It necessarily follows that

A, =) / m(x)|u, |7 u, (u, — u)dx = 0, (1).
RN

(3.23)

Note thatu, =~ uin Easn — oo, thenu,, = uin D*4(RN)asn — co. We then deduce thatu,, — u

in L?OC(RN )asn — oo. As a consequence, we have

[ (1,192, )ty = )k = 0, )
B(0.R)
On the other hand, by Holder’s inequality and Sobolev’s inequality, we get

/ ) (192t — |l 9200) (11, — 1) dx
RN\B(0,R)

N
< ( / jmy @ dx)
RN\B(0,R)
N
< c( / Iy 3 dx)
RN\B(0,R)

where we also used the facts

Zle

-1 -1
(M + a2 )l =l

Zl=

(Va1 + IValy™ )1V, = Vully = 0g(D),

(Is|972s = [t|77%t)(s — ) >0, Vs,tE€R,q>1,

N
/ |my| 7 dx = og(D),
RN\B(0,R)

(3.24)

(3.25)
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16 | GOU and RADULESCU

N
where the second fact holds because of m; € L4 (RV) from the assumption (H). Combining (3.23),
(3.24) and (3.25), by (3.22), we then obtain

/N (a()(IVu, P72V, — [VulP?Vu) + (|Vu,|9*Vu, — |Vu|7*Vu)) - (Vu, — Vu)dx = 0,(1).
R
Observe that

12y — 2,|" < C((12," %2y — |2,]°2,) - (2 — zz))g(lzllr + |zz|r)1_§, Vz,,z, €RN, (3.26)
where 6 =rifl <r <2and 6 = 2ifr > 2. Then, we see

/ a(x)(|Vu,, — Vu|P)dx +/ |[Vu, — Vul?dx
RN RN
[ -8
< c(/ a(x)(|Vu,|P~*Vu, — [VulP2Vu) - (Vu, — Vu)dx) (/ a(x)(IVu,|? + IVuIP)dx>
RN RN

8 18
+ c(/ (1Va, |97V, — |Vul?Vu) - (Vu, — Vu) dx) (/ [Vu,|? + | Vul? dX> =0,(D).
RN RN

This immediately indicates that u, — u in DM¥(RN) as n — . Taking advantage of (3.20) and
(3.21), we then get

/m(x)lunlqu=/ m(x)|ul?dx + 0,(1),
RN RN

because of 4, = 4 + 0,(1) and A # 0. In view of (3.18),
[ @l = [ mul? dx-+0,0),
RN RN

Since u,, — u in DM(RY) as n — oo, by Hardy’s inequality,

lup —ul® (P vulide — oD
/RN @+ & N-p /RNW“n Vul?dx = 0,(1)

Consequently, we derive that u,, — u in E as n — oo. Thus, the proof is completed. [

Theorem 3.4. Assume (H) holds, N >2,1<q < p <N, a € CoYRV,[0,+c0)) and a # 0. Then,
there exists a sequence of solutions (4, u; ) € R X E withu,, € S and

0<y <A, << <+, limA - 40 ask - +oo0.

k—o0

Proof. To establish the existence of a sequence of eigenvalues to (1.1), we shall take into account
Ljusternik-Schnirelman theory in [2]. Define

¥:={ACS : Aiscompactand A = —A}
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NON-AUTONOMOUS DOUBLE PHASE EIGENVALUE PROBLEMS 17

For aset A € Z, the genus of A is defined by
y(A) :=min{n € N : exists a function ¢ € C(4,R"\{0}) satisfying p(—x) = —p(x)}.

If such a minimum does not exist, we set y(A) = +oo.
Let us now define

T, ={A€eZ:y(A) =k}, VkeN'.

First we see that, for any k € N*t, £, # @. Indeed, let X, be a k-dimensional subspace of E, by
Borsuk-Ulam’s theorem, then y(S N X}) > k. Define
A, 1= inf sup ®(u).
k AEZy ueg

Since ;1 C Iy, Ay < A4y for any k € N*. From Lemma 3.2, 4, is a critical point of J restricted
on S for any k € N*. Then, we derive that

0<Ay <Ay <o S S Ajyy < oov

Next we prove 4, — 400 ask — +oo. Let{e;} C E be such that E = span{e;, e,, ..., ¢;,...}. Let {ei’} c

E be such that E/ = span{e{,e;, . elf, ...}, where E’ denotes the dual space of E. Define X; :=
span{e;} and

k 0
Yk::@xi, Z, :=EPX, VkenN'
i=1 i=k

Let A € 3 satisfy y(A) > k. By basic properties of the genus, we have A N Z; # @. Define

B, := inf sup J(u), VkeN*.
K A€EL yeAnz,

Then, 3, - +o0 as k — oo. Otherwise, we may assume {8, } C R is bounded. Thus, there exists a

sequence {u, } C A N Z; such that {®(u; )} C R is bounded. It then follows that {u; } is bounded in

E. Further, there exists u € E such that u, — u in E as n — co. Observe that (elf, uy = (elf, u) +

0,(1) = 0,(1), because of u, € Z,. Therefore, we have u =0 and u;, — 0 in E as k — oo. This
N

along with the assumption that m; € L9 (RV) from the assumption (H) leads to

[ ot dx = o,

Since m, > 0 from the assumption (H),

/ m(x)luqudx:/ my (x)|uy |4 dx—/ m,(x)|u |2 dx < 0, (1),
RN RN RN

which is impossible due to u;, € S. Consequently, we get that 3, — +o0 as k - co. Thanks to
Ay = Py forany k € N*, 1, — +ooask — co. Since uy € E is a critical point for E restricted on S,
there exists 4, € R such that

—A;uk - Aquk = lkm(x)luqu_zuk in RN,
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18 | GOU and RADULESCU

where

/lk=l/ a(x)quklpdx+l/ Vi |9dx > @) = 4, ¥k eN'.
q JrN q JrN

Thus, the proof is completed. O

Lemma 3.3. Define

q_ya q_
I(u,v) =—/ (Agu)— dx—/ (Aqu) =" dx
RN p uq_l RN uq_l
q _ 44 q _ 44
_/ (A“v)v u dx—/ (Aqv)v U7 dx,
RN p Uq_1 RN Uq_1

whereu,v € DYS(RN), u,v > 0and 1 < q < p. Then, I(u,v) > 0. Moreover, I(u,v) = 0 if and only
ifu = kv for some k € R.

(3.27)

Proof. Let us first show

9 _ 14 q _ 44
I(u,v) :=— A% ) 2 gy — A%y ) 8 gy >0, uve Dl’g(RN),u,v > 0.
1 p -1 p -1
RN ud RN v4

It is straightforward to compute
ud — v v\4 v\9-1
V< — >_ <1+(q—1)(a> )Vu—q(;) Vo, (3.28)

v(22) = (1+@-n(4))vo-a(4) " vu (329)

Therefore, by the divergence theorem, we derive that

I, (u,v) = / a(x)<(1 +(q - 1)<§)q>|Vu|p - q(%)q_IIVulp_ZVu . VU> dx
RN
+/ a(x)<<1 +(g— 1)(%)q>|VU|p - q<%>q_1|Vv|p'2Vv . Vu> dx.
RN

Using Young’s inequality, we know that

q-1 q-1
q(%) |Vulp_2|Vu-Vv|<q(%) |Vu|P~1 Vol

-1

-1
Q(pp )(u) T vup + 4 g 1vole
B plg=1 p2(g-1) (p=9)
_ q(p 1)<U> = |Vu|§(§ 0 + —|VU|p
p \u p

q
<@=D(5) 1vuP + E Tl + Vo,
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NON-AUTONOMOUS DOUBLE PHASE EIGENVALUE PROBLEMS 19

Similarly, we can get
q-1 gqg-1 q —
q(ﬂ) IVolP~2|Vu - Val <q<2) |Vu|P—1|Vu|<(q—1)<E> |Vv|P+lJ}Tq|Vu|P+2|Vu|P.
v v v p

It then follows that I, (u, v) > 0. Next, we prove that

ud —v4 v9 — ud LE N
L(u,v) :=— A u dx — AV dx >0, u,veD"S(R"Y),u,v>0.
b ) /sz(q)uq—l /RN(q)Uq—l z ®™)

In view of (3.28) and (3.29), by the divergence theorem,
L(u,v) = / (1 +(q— 1)<2)q>|Vqu - q(2>q_1|Vu|q’2Vu - Vodx
2 RN u u

- _/RN (1 +(q— U(%)q)'VUIq - q<%>q_1|vv|q‘2Vv - Vudx.

Using again Young’s inequality, we obtain

q-1 71 !

a(2)" a2 v vor<q(2)" vuevel < @ - (L) 1vale + 901,
q-1 a1 !

q(%) |VU|972| Vo - Vu| <q<%> V|97 Vul <(q—1)(%) IVol? + [Vuld.

Therefore, we have I,(u, v) = 0. Accordingly, there holds that I(u,v) > 0 for any u,v € DY$(RN)
and u,v > 0. If I(u, v) = 0, then I,(u, v) = 0. This leads to

Vu - Vo = [Vu||Vol, (§>q|w|q = |Vold, (%)quw = |Vul4,
As a consequence, we see that
[uVuv — vVu| = 0.
This implies that there exists k € R such that u = kv and the proof is completed. [

Remark 3.1. In fact, Lemma 3.3 is established for the double phase operator under the assumption
q < p, which is not a direct consequence of Lemma 3.1. It is unknown to us if Lemma 3.3 remains
valid for the case p < q. From the proof of Lemma 3.3, one can see that the assumption g < p is
crucial, which is the premise of the use of Young’s inequality.

Proposition 3.2. Assume (H) holds, N >2,1<q < p <N, § <1+ %, a € COLRN, [0, +0))
and a # 0. Assume that any eigenfunction to (1.1) corresponding to A is non-negative. Then, 1
is simple.

Proof. Let u € E be a non-negative eigenfunction to (1.1) corresponding to A. It follows from
[8] and [23, Proposition 3] or [24, Proposition 2.3] that u > 0. Let u > 0 and v > 0 be two
eigenfunctions to (1.1) corresponding to 4. Then, we see that

—ASu—Agu = Am(x)ud=t, —ASV —Agv = Am(x)v?t in RN,
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As a result, there holds that
I(u,v) = /l/ m(x)(u? —v?)dx + /1/ m(x)(v? —u?)dx = 0.
RN RN

It then follows from Lemma 3.3 that the desired conclusion holds. This completes the proof. []

Proposition 3.3. Assume (H) holds, N > 2,1 < p,q<N,p#q,a € Co(RN,[0,400))and a % 0.
Then,

%fRN a(x)|VulP dx + é/RN |Vuld dx

Myg1 = inf > u € E\{0}, /N m(x)|u|?dx > 0¢.
R

o Jan m(0)lul? dx

Proof. Since u; 4, is the first eigenvalue to (3.1) and E C DM4(RY),

Vul|9dx
Myg1 = inf fRN'—l : u € DHRN)\{0}, / m(x)|ul?dx >0
@ Sy mCO) ]9 dx -

%/RN a(x)|Vuy g, |P dx + éfRN |Vulq dx
< inf - : u € E\{0}, / m(x)|u|?dx > 0.
7 S m(X)|ul9 dx RN

Letu, 4; € E be an eigenfunction to (3.1) corresponding to u; 4; and p < g, then

%/[RN a(x)|Vul|P dx + é/RN |Vu|? dx
inf - : u € E\{0}, / m(x)|ulfdx >0
p S m(xX)|ul9 dx RN

p q
"? S a(x)|Vuy 4P dx + % Jan |V 4119 dx .
< =u +o0 as n — oo.
= q 1,9,1 n
% fRN m(x)|u1’q,1|q dx

Similarly, if g < p, then

%/RN a(x)|VulP dx + é/RN |Vu|?dx

inf - : u € E\{0}, / m(x)|ul9dx >0
Z Sy m(xX)|ul9 dx RN
I# Sy () Vuy g |P dx + q% Jan Vg 119 dx
< T =g+ 0,(1) asn— oo.
o Jax m(O)|uy 4119 dx
Thus, the desired result follows and the proof is completed. O
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Remark 3.2. Under the assumptions of Theorem 3.4, by Theorem 3.2 and Proposition 3.3, we have

%/RN a(x)|Vu|P dx + ifRN |Vul9dx

Ay > inf > u € E\{0}, / m(x)|u|?dx > 0¢.
RN

é S m(X)|uld dx
Remark 3.3. The arguments developed in this paper allow to obtain similar results if the hypothesis
(H) is replaced by the following condition introduced by Szulkin and Willem [27],

N
(H) meL, RY), m*=m;+m,#0, m €Le(®R"), for every yeRN, lim
y9my(x) = 0 and lim |, , |x]|9m,(x) = 0, where m't 1= max{m(x),0}.

x—y 1X =
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