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Existence and multiplicity of solutions
for double-phase Robin problems

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu and Dušan D. Repovš

Abstract

We consider a double phase Robin problem with a Carathéodory nonlinearity. When the reaction
is superlinear but without satisfying the Ambrosetti–Rabinowitz condition, we prove an existence
theorem. When the reaction is resonant, we prove a multiplicity theorem. Our approach is Morse
theoretic, using the notion of homological local linking.

1. Introduction

Let Ω ⊆ R
N be a bounded domain with Lipschitz boundary ∂Ω. In this paper, we study the

following two phase Robin problem⎧⎨
⎩
−div (a0(z)|Du|p−2Du) − Δqu + ξ(z)|u|p−2u = f(z, u) in Ω
∂u

∂nθ
+ β(z)|u|p−2u = 0 on ∂Ω,

⎫⎬
⎭ (1)

where 1 < q < p � N .
In this problem, the weight a0 : Ω → R is Lipschitz continuous and a0(z) > 0 for all z ∈ Ω.

The potential function ξ ∈ L∞(Ω) satisfies ξ(z) � 0 for a.a. z ∈ Ω, while the reaction term
f(z, x) is Carathéodory (that is, for all x ∈ R, the mapping z �→ f(z, x) is measurable and for
a.a. z ∈ Ω the function x �→ f(z, x) is continuous; the abbreviation ‘a.a.’ stands for ‘almost
all’). Let F (z, ·) be the primitive of f(z, ·), that is, F (z, x) =

∫ x

0
f(z, s)ds. We assume that for

a.a. z ∈ Ω, F (z, ·) is q-linear near the origin. On the other hand, near ±∞, we consider two
distinct cases for f(z, ·).

(i) For a.a. z ∈ Ω, f(z, ·) is (p− 1)-superlinear but without satisfying the Ambrosetti–
Rabinowitz condition (the AR-condition for short), which is common in the literature when
dealing with superlinear problems.

(ii) For a.a. z ∈ Ω, f(z, ·) is (p− 1)-linear and possibly resonant with respect to the principal
eigenvalue of the weighted p-Laplacian

u �→ −div (a0(z)|Du|p−2Du)

with Robin boundary condition.

In the boundary condition, ∂u
∂nθ

denotes the conormal derivative of u corresponding to the
modular function θ(z, x) = a0(z)xp + xq for all z ∈ Ω, all x � 0. We interpret this derivative
via the nonlinear Green identity (see [18, p. 34]) and

∂u

∂nθ
= [a0(z)|Du|p−2 + |Du|q−2]

∂u

∂n
for all u ∈ C1(Ω),
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with n(·) being the outward unit normal on ∂Ω. The boundary coefficient β satisfies β ∈
C0,α(∂Ω) with 0 < α < 1 and β(z) � 0 for all z ∈ ∂Ω.

The differential operator in problem (1) is a weighted (p, q)-Laplace operator and it
corresponds to the energy functional

u �→
∫

Ω

[a0(z)|Du|p + |Du|q]dz.

Since we do not assume that the weight function a0(z) is bounded away from zero, the
continuous integrand θ0 : Ω × R

N → R+ of this integral functional exhibits unbalanced growth,
namely

|y|q � θ0(z, y) � c0(1 + |y|p) for a.a. z ∈ Ω, all y ∈ R
N and some c0 > 0.

Such integral functionals were first investigated by Marcellini [14] and Zhikov [22], in
connection with problems in nonlinear elasticity theory. Recently, Baroni, Colombo and
Mingione [3] and Colombo and Mingione [6, 7] revived the interest in them and produced
important local regularity results for the minimizers of such functionals. A global regularity
theory for such problems remains elusive.

In this paper, using tools from Morse theory (in particular, critical groups), we prove
an existence theorem (for the superlinear case) and a multiplicity theorem (for the linear
resonant case). Existence and multiplicity results for two phase problems were proved recently
by Cencelj, Rădulescu and Repovš [4] (problems with variable growth), Colasuonno and
Squassina [5] (eigenvalue problems), Liu and Dai [13] (existence of solutions for problems
with superlinear reaction), Papageorgiou, Rădulescu and Repovš [19] (multiple solutions
for superlinear problems), and Papageorgiou, Vetro and Vetro [20] (parametric Dirichlet
problems). The approach in all the aforementioned works is different and the hypotheses on
the reaction are more restrictive.

Finally, we mention that (p, q)-equations arise in many mathematical models of physical
processes. We refer to the very recent works of Bahrouni, Rădulescu and Repovš [1, 2] and
the references therein.

2. Mathematical background

The study of two-phase problems requires the use of Musielak–Orlicz spaces. So, let θ : Ω ×
R+ → R+ be the modular function defined by

θ(z, x) = a0(z)xp + xq for all z ∈ Ω, x � 0.

This is a generalized N-function (see Musielak [16]) and it satisfies

θ(z, 2x) � 2pθ(z, x) for all z ∈ Ω, x � 0,

that is, θ(z, ·) satisfies the (Δ2)-property (see [16, p. 52]). Using the modular function θ(z, x),
we can define the Musielak–Orlicz space Lθ(Ω) as follows:

Lθ(Ω) =
{
u : Ω → R; u is measurable and

∫
Ω

θ(z, |u|)dz < ∞
}
.

This space is equipped with the so-called ‘Luxemburg norm’ defined by

‖u‖θ = inf
{
λ > 0 :

∫
Ω

θ(z,
|u|
λ

)dz � 1
}
.

Using Lθ(Ω), we can define the following Sobolev-type space W 1,θ(Ω), by setting

W 1,θ(Ω) = {u ∈ Lθ(Ω) : |Du| ∈ Lθ(Ω)}.
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We equip W 1,θ(Ω) with the norm ‖ · ‖ defined by

‖u‖ = ‖u‖θ + ‖Du‖θ,
where ‖Du‖θ = ‖ |Du| ‖θ. The spaces Lθ(Ω) and W 1,θ(Ω) are separable and uniformly convex
(hence reflexive) Banach spaces.

Let θ̂(z, x) be another modular function. We say that ‘θ̂ is weaker than θ’ and write θ̂ ≺ θ,
if there exist c1, c2 > 0 and a function η ∈ L1(Ω) such that

θ̂(z, x) � c1 θ(z, c2x) + η(z) for a.a. z ∈ Ω and all x � 0.

Then we have

Lθ(Ω) ↪→ Lθ̂(Ω) and W 1,θ(Ω) ↪→ W 1,θ̂(Ω) continuously.

Combining this fact with the classical Sobolev embedding theorem, we obtain the following
embeddings; see Propositions 2.15 and 2.18 of Colasuonno and Squassina [5].

Proposition 1. We assume that 1 < q < p < ∞. Then the following properties hold.

(a) If q 	= N , then W 1,θ(Ω) ↪→ Lr(Ω) continuously for all 1 � r � q∗, where

q∗ =

⎧⎪⎨
⎪⎩

Nq

N − q
if q < N

+∞ if q � N.

(b) If q = N , then W 1,θ(Ω) ↪→ Lr(Ω) continuously for all 1 � r < ∞.
(c) If q � N , then W 1,θ(Ω) ↪→ Lr(Ω) compactly for all 1 � r < q∗.
(d) If q > N , then W 1,θ(Ω) ↪→ L∞(Ω) compactly.
(e) W 1,θ(Ω) ↪→ W 1,q(Ω) continuously.

We have

Lp(Ω) ↪→ Lθ(Ω) ↪→ Lp
a0

(Ω) ∩ Lq(Ω)

with both embeddings being continuous.
We consider the modular function

ρθ(u) =
∫

Ω

θ(z, |Du|)dz =
∫

Ω

[a0(z)|Du|p + |Du|q]dz for all u ∈ W 1,θ(Ω).

There is a close relationship between the norm ‖ · ‖ of W 1,θ(Ω) and the modular functional
ρθ(·); see Proposition 2.1 of Liu and Dai [13].

Proposition 2. (a) If u 	= 0, then ‖Du‖θ = λ if and only if ρθ(uλ ) � 1.
(b) ‖Du‖θ < 1 (respectively, = 1, > 1) if and only if ρθ(u) < 1 (respectively, = 1, > 1).
(c) If ‖Du‖θ < 1, then ‖Du‖pθ � ρθ(u) � ‖Du‖qθ.
(d) If ‖Du‖θ > 1, then ‖Du‖qθ � ρθ(u) � ‖Du‖pθ.
(e) ‖Du‖θ → 0 if and only if ρθ(u) → 0.
(f) ‖Du‖θ → +∞ if and only if ρθ(u) → +∞.

On ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·). Using this
measure, we can define in the usual way the ‘boundary’ Lebesgue spaces Ls(∂Ω) for 1 � s � ∞.
It is well known that there exists a unique continuous linear map γ0 : W 1,q(Ω) → Lq(∂Ω),
known as the ‘trace map’, such that

γ0(u) = u|∂Ω for all u ∈ W 1,q(Ω) ∩ C(Ω).
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We have

im γ0 = W
1
q′ ,q(Ω)

(
1
q

+
1
q′

= 1
)

and ker γ0 = W 1,q
0 (Ω).

Moreover, the trace map γ0(·) is compact into Ls(∂Ω) for all 1 � s < (N − 1)q/(N − q) if
q < N , and for all 1 � s < ∞ if q � N . In what follows, for the sake of notational simplicity,
we drop the use of the trace map γ0(·). All restrictions of the Sobolev functions on the boundary
∂Ω are understood in the sense of traces.

Let 〈 ·, · 〉 denote the duality brackets for the pair (W 1,θ(Ω),W 1,θ(Ω)∗) and 〈 ·, · 〉1,q denote
the duality brackets for the pair (W 1,q(Ω),W 1,q(Ω)∗). We introduce the maps Aa0

p : W 1,θ(Ω) →
W 1,θ(Ω)∗ and Aq : W 1,q(Ω) → W 1,q(Ω)∗ defined by

〈Aa0
p (u), h〉 =

∫
Ω

a0(z)|Du|p−2(Du,Dh)RN dz for all u, h ∈ W 1,θ(Ω),

〈Aq(u), h〉1,q =
∫

Ω

|Du|q−2(Du,Dh)RN dz for all u, h ∈ W 1,q(Ω).

We have

〈Aq(u), h〉1,q = 〈Aq(u), h〉 for all u, h ∈ W 1,θ(Ω).

We introduce the following hypotheses on the weight a0(·) and on the coefficients ξ(·) and
β(·).
H0: a0 : Ω → R is Lipschitz continuous, a0(z) > 0 for all z ∈ Ω, ξ ∈ L∞(Ω), ξ(z) � 0 for a.a.

z ∈ Ω, β ∈ C0,α(∂Ω) with 0 < α < 1, ξ 	≡ 0 or β 	≡ 0 and q > Np/(N + p− 1).

Remark 1. The latter condition on the exponent q implies that W 1,θ(Ω) ↪→ Lp(∂Ω)
compactly and q < p∗.

We introduce the C1-functional γp : W 1,θ(Ω) → R defined by

γp(u) =
∫

Ω

a0(z)|Du|pdz +
∫

Ω

ξ(z)|u|pdz +
∫
∂Ω

β(z)|u|pdσ for all u ∈ W 1,θ(Ω).

Then hypotheses H0, Lemma 4.11 of Mugnai and Papageorgiou [15], and Proposition 2.4 of
Gasinski and Papageorgiou [10], imply

c1 ‖u‖p � γp(u) for some c1 > 0, all u ∈ W 1,θ(Ω). (2)

We denote by λ̂1(p) the first (principal) eigenvalue of the following nonlinear eigenvalue
problem ⎧⎪⎨

⎪⎩
−div (a0(z)|Du|p−2Du) + ξ(z)|u|p−2u = λ̂|u|p−2u in Ω

∂u

∂np
+ β(z)|u|p−2u = 0 on ∂Ω.

⎫⎪⎬
⎪⎭ (3)

Here, ∂u
∂np

= |Du|p−2 ∂u
∂n . The eigenvalue λ̂1(p) has the following variational characterization

λ̂1(p) = inf
{
γp(u)
‖u‖pp : u ∈ W 1,p(Ω) \ {0}

}
(see [17]). (4)

Then by (2), we see that λ̂1(p) > 0. This eigenvalue is simple (that is, if û, v̂ are corresponding
eigenfunctions, then û = ηv̂ with η ∈ R \ {0}) and isolated (that is, if σ̂(p) denotes the spectrum
of (3), then we can find ε > 0 such that (λ̂1(p), λ̂1(p) + ε) ∩ σ̂(p) = ∅). The infimum in (4) is
realized on the corresponding one-dimensional eigenspace, the elements of which have fixed
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sign. We denote by û1(p) the corresponding positive, Lp-normalized (that is, ‖û1(p)‖p = 1)
eigenfunction. We know that û1(p) ∈ L∞(Ω) (see [5, Section 3.2]) and û1(p)(z) > 0 for a.a.
z ∈ Ω (see [19, Proposition 4]).

We will also use the spectrum of the following nonlinear eigenvalue problem

−Δqu = λ̂|u|q−2u in Ω,
∂u

∂n
= 0 on ∂Ω.

It is well known that this problem has a sequence of variational eigenvalues {λ̂k(q)}k�1 such
that λ̂k(q) → +∞ as k → ∞. We have λ̂1(q) = 0 < λ̂2(q) (see [9, Section 6.2]).

Let X be a Banach space and φ ∈ C1(X,R). We denote by Kφ the critical set of φ, that is,

Kφ = {u ∈ X : φ′(u) = 0}.
Also, if η ∈ R, then we set

φη = {u ∈ X : φ(u) � η}.
Consider a topological pair (A,B) such that B ⊆ A ⊆ X. Then for every k ∈ N0, we denote

by Hk(A,B) the kth-singular homology group for the pair (A,B) with coefficients in a field F

of characteristic zero (for example, F = R). Then each Hk(A,B) is an F-vector space and we
denote by dimHk(A,B) its dimension. We also recall that the homeomorphisms induced by
maps of pairs and the boundary homomorphism ∂, are all F-linear.

Suppose that u ∈ Kφ is isolated. Then for every k ∈ N0, we define the ‘k-critical group’ of φ
at u by

Ck(φ, u) = Hk(φc ∩ U, φc ∩ U \ {u}),
where U is an isolating neighborhood of u, that is, Kφ ∩ U ∩ φc = {u}. The excision property
of singular homology implies that this definition is independent of the choice of the isolating
neighborhood U .

We say that φ satisfies the ‘C-condition’ if it has the following property:

‘Every sequence {un}n�1 ⊆ X such that {φ(un)}n�1 ⊆ R is bounded and
(1 + ‖un‖)φ′(un) → 0 in X∗ as n → ∞, has a strongly convergent subsequence’.

Suppose that φ ∈ C1(X,R) satisfies the C-condition and that inf φ(Kφ) > −∞. Let c <
inf φ(Kφ). Then the critical groups of φ at infinity are defined by

Ck(φ,∞) = Hk(X,φc) for all k ∈ N0.

On account of the second deformation theorem (see [18, Theorem 5.3.12, p. 386]) this definition
is independent of the choice of the level c < inf φ(Kφ).

Our approach is based on the notion of local (m,n)-linking (m,n ∈ N), sees [18, Definition
6.6.13, p. 534].

Definition 3. Let X be a Banach space, φ ∈ C1(X,R), and 0 an isolated critical point of φ
with φ(0) = 0. Let m,n ∈ N. We say that φ has a ‘local (m,n)-linking’ near the origin if there
exist a neighborhood U of 0 and nonempty sets E0, E ⊆ U , and D ⊆ X such that 0 	∈ E0 ⊆ E,
E0 ∩D = ∅ and

(a) 0 is the only critical point of φ in φ0 ∩ U ;
(b) dim im i∗ − dim im j∗ � n, where

i∗ : Hm−1(E0) → Hm−1(X \D) and j∗ : Hm−1(E0) → Hm−1(E)

are the homomorphisms induced by the inclusion maps i : E0 → X \D and j : E0 → E;
(c) φ|E � 0 < φ|U∩D\{0}.
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Remark 2. The notion of ‘local (m,n)-linking’ was introduced by Perera [21] as a
generalization of the concept of local linking due to Liu [12]. Here we introduce a slightly
more general version of this notion.

3. The superlinear case

In this section, we treat the superlinear case, that is, we assume that the reaction f(z, ·) exhibits
(p− 1)-superlinear growth near ±∞.

The hypotheses on f(z, x) are the following.
H1: f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω and

(i) |f(z, x)| � â(z)(1 + |x|r−1) for a.a. z ∈ Ω and all x ∈ Ω, with â ∈ L∞(Ω), p < r < q∗;
(ii) if F (z, x) =

∫ x

0
f(z, s)ds, then limx→±∞

F (z,x)
|x|p = +∞ uniformly for a.a. z ∈ Ω;

(iii) if η(z, x) = f(z, x)x− pF (z, x), then there exists e ∈ L1(Ω) such that

η(z, x) � η(z, y) + e(z) for a.a. z ∈ Ω and all 0 � x � y or y � x � 0;

(iv) there exist δ > 0, θ ∈ L∞(Ω) and λ̂ > 0 such that

0 � θ(z) for a.a. z ∈ Ω, θ 	≡ 0, λ̂ � λ̂2(q),

θ(z)|x|q � qF (z, x) � λ̂|x|q for a.a. z ∈ Ω and all |x| � δ.

Remark 3. Evidently, hypotheses H1(ii) and (iii) imply that for a.a. z ∈ Ω, the function
f(z, ·) is superlinear. However, to express this superlinearity, we do not invoke the usual
AR-condition. We recall that the AR-condition says that there exist τ > p and M > 0 such
that

0 < τF (z, x) � f(z, x)x for a.a. z ∈ Ω and all |x| � M ; and (5)

0 < essinfΩ F (·,±M). (6)

Integrating (5) and using (6), we obtain a weaker condition, namely

c2|x|τ � F (z, x) for a.a. z ∈ Ω, all |x| � M and some c2 > 0,
⇒ c3|x|τ � f(z, x)x for a.a. z ∈ Ω, all |x| � M and with c3 = τc2 > 0.

Therefore, the AR-condition implies that, eventually, f(z, ·) has at least (τ − 1)-
polynomial growth.

In the present work, instead of the AR-condition, we use the quasimonotonicity hypothesis
H1(iii), which is less restrictive and incorporates in our framework also (p− 1)-superlinear
nonlinearities with slower growth near ±∞ (see the examples below). Hypothesis H1(iii) is a
slight generalization of a condition which can be found in Li and Yang [11]. There are very
natural ways to verify the quasimonotonicity condition. So, if there exists M > 0 such that for
a.a. z ∈ Ω, either the function

x �→ f(z, x)
|x|q−2x

is increasing on x � M and decreasing on x � −M

or the mapping

x �→ η(z, x) is increasing on x � M and decreasing on x � −M ,

then hypothesis H1(iii) holds.
Hypothesis H1(iv) implies that for a.a. z ∈ Ω, the primitive F (z, ·) is q-linear near 0.
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Examples. The following functions satisfy hypotheses H1. For the sake of simplicity, we drop
the z-dependence:

f1(x) =

{
μ|x|q−2x if |x| � 1

μ|x|r−2x if |x| > 1 (with 0 < μ � λ̂2(q) and p < r < q∗)

f2(x) =

{
μ|x|q−2x if |x| � 1

μ|x|p−2x lnx + μ|x|τ−2x if |x| > 1 (with 0 < μ � λ̂2(q) and 1 < τ < p).

Note that only f1 satisfies the AR-condition, whereas the function f2 does not satisfy this
growth condition.

The energy functional for problem (1) is the C1-functional ϕ : W 1,θ(Ω) → R defined by

ϕ(u) =
1
p
γp(u) +

1
q
‖Du‖qq −

∫
Ω

F (z, u)dz for all u ∈ W 1,θ(Ω).

Next, we show that ϕ(·) satisfies the C-condition.

Proposition 4. If hypotheses H0, H1 hold, then the functional ϕ(·) satisfies the
C-condition.

Proof. We consider a sequence {un}n�1 ⊆ W 1,θ(Ω) such that

|ϕ(un)| � c4 for some c4 > 0 and all n ∈ N, (7)

(1 + ‖un‖)ϕ′(un) → 0 in W 1,θ(Ω)∗ as n → ∞. (8)

From (8), we have∣∣∣〈Aa0
p (un), h〉 +〈Aq(un), h〉 +

∫
Ω

ξ(z)|un|p−2unhdz +
∫
∂Ω

β(z)|un|p−2unhdσ

−
∫

Ω

f(z, un)hdz
∣∣∣ � εn‖h‖

1 + ‖un‖ ,
(9)

for all h ∈ W 1,θ(Ω), with εn → 0.
In (9), we choose h = un ∈ W 1,θ(Ω) and obtain for all n ∈ N

−
∫

Ω

a0(z)|Dun|pdz − ‖Dun‖qq −
∫

Ω

ξ(z)|un|pdz −
∫
∂Ω

β(z)|un|pdσ +
∫

Ω

f(z, un)undz � εn.

(10)

Also, by (7) we have for all n ∈ N,∫
Ω

a0(z)|Dun|pdz +
p

q
‖Dun‖qq +

p

q

∫
Ω

ξ(z)|un|pdz

+
p

q

∫
∂Ω

β(z)|un|pdσ−
∫

Ω

pF (z, un)dz � pc4. (11)

We add relations (10) and (11). Since q < p, we obtain∫
Ω

η(z, un)dz � c5 for some c5 > 0 and all n ∈ N. (12)

Claim. The sequence {un}n�1 ⊆ W 1,θ(Ω) is bounded.
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We argue by contradiction. Suppose that the claim is not true. We may assume that

‖un‖ → ∞ as n → ∞. (13)

We set yn = un/‖un‖ for all n ∈ N. Then ‖yn‖ = 1 and so we may assume that

yn
w−→ y in W 1,θ(Ω) and yn → y in Lr(Ω) and in Lp(∂Ω), (14)

see hypotheses H0, Proposition 1, and Remark 1.
We first assume that y 	≡ 0. Let

Ω+ = {z ∈ Ω : y(z) > 0} and Ω− = {z ∈ Ω : y(z) < 0}.
Then at least one of these measurable sets has positive Lebesgue measure on R

N . We have

un(z) → +∞ for a.a. z ∈ Ω+ and un(z) → −∞ for a.a. z ∈ Ω−.

Let Ω̂ = Ω+ ∪ Ω− and let | · |N denote the Lebesgue measure on R
N . We see that |Ω̂|N > 0

and on account of hypothesis H1(ii), we have

F (z, un(z))
‖un‖p =

F (z, un(z))
|un(z)|p |yn(z)|p → +∞ for a.a. z ∈ Ω̂,

⇒
∫

Ω̂

F (z, un(z))
‖un‖p dz → +∞ by Fatou’s lemma.

(15)

Hypotheses H1(i) and (ii) imply

F (z, x) � −c6 for a.a. z ∈ Ω, all x ∈ R and some c6 > 0. (16)

Thus we obtain∫
Ω

F (z, un)
‖un‖p dz =

∫
Ω̂

F (z, un)
‖un‖p dz +

∫
Ω\Ω̂

F (z, un)
‖un‖p dz

�
∫

Ω̂

F (z, un)
‖un‖p dz − c6|Ω|N

‖un‖p (see (16)),

⇒ lim
n→∞

∫
Ω

F (z, un)
‖un‖p dz = +∞ (see (15) and (13)).

(17)

By (7), we have∫
Ω

pF (z, un)
‖un‖p dz � γp(yn) +

p

q

1
‖un‖p−q

‖Dyn‖qq +
c4

‖un‖p � c7, (18)

for some c7 > 0 and all n ∈ N (see (13) and recall that ‖yn‖ = 1).
We compare relations (15) and (18) and arrive at a contradiction.
Next, we assume that y = 0. Let μ > 0 and set vn = (pμ)1/pyn for all n ∈ N. Evidently, we

have
vn → 0 in Lr(Ω) (see (14)),

⇒
∫

Ω

F (z, vn)dz → 0 as n → ∞.
(19)

Consider the functional ψ : W 1,θ(Ω) → R defined by

ψ(u) =
1
p
γp(u) −

∫
Ω

F (z, u)dz for all u ∈ W 1,θ(Ω).

Clearly, ψ ∈ C1(W 1,θ(Ω),R) and

ψ � ϕ. (20)
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We can find tn ∈ [0, 1] such that

ψ(tnun) = min{ψ(tun) : 0 � t � 1} for all n ∈ N. (21)

Because of (13), we can find n0 ∈ N such that

0 <
(pμ)1/p

‖un‖ � 1 for all n � n0. (22)

Therefore

ψ(tnun) � ψ(vn) (see (21), (22))

� μγp(yn) −
∫

Ω

F (z, vn)dz

� μc1 −
∫

Ω

F (z, vn)dz (see (2) and recall that ‖yn‖ = 1)

� μ

2
c1 for all n � n1 � n0 (see (19)).

Since μ > 0 is arbitrary, it follows that

ψ(tnun) → +∞ as n → ∞. (23)

Note that

ψ(0) = 0 and ψ(un) � c4 for all n ∈ N (see (7), (20)). (24)

By (23) and (24), we can infer that

tn ∈ (0, 1) for all n � n2. (25)

From (21) and (25), we can see that for all n � n2 we have

0 = tn
d

dt
ψ(tun)|t=tn

= 〈ψ′(tnun), tnun〉 (by the chain rule)

= γp(tnun) −
∫

Ω

f(z, tnun)(tnun)dz.

(26)

It follows that

0 � tnu
+
n � u+

n and − u−
n � −tnu

−
n � 0 for all n ∈ N

(recall that u+
n = max{un, 0} and u−

n = max{−un, 0}).
By hypothesis H1(iii), we have

η(z, tnu+
n ) � η(z, u+

n ) + e(z) for a.a. z ∈ Ω and all n ∈ N,

η(z,−tnu
−
n ) � η(z,−u−

n ) + e(z) for a.a. z ∈ Ω and all n ∈ N.

From these two inequalities and since un = u+
n − u−

n , we obtain

η(z, tnun) � η(z, un) + e(z) for a.a. z ∈ Ω and all n ∈ N,

⇒ f(z, tnun)(tnun) � η(z, un) + e(z) + pF (z, tnun) for a.a. z ∈ Ω and all n ∈ N.
(27)

We return to (26) and apply (27). Then

γp(tnun) − p

∫
Ω

F (z, tnun)dz �
∫

Ω

η(z, un)dz + ‖e‖1 for all n ∈ N,

⇒ pψ(tnun) � c8 for some c8 > 0 and all n ∈ N (see (12).
(28)
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We compare (23) and (28) and arrive at a contradiction.
This proves the Claim.
On account of this claim, we may assume that

un
w−→ u in W 1,θ(Ω) and un → u in Lr(Ω) and in Lp(∂Ω) (29)

(see hypotheses H0).
From (29), we have

Dun → Du in Lp
a0

(Ω,RN ) and Dun(z) → Du(z) a.a. z ∈ Ω. (30)

In (9), we choose h = un − u ∈ W 1,θ(Ω), pass to the limit as n → ∞ and use (30) and the
monotonicity of Ap(·)a0 . We obtain

lim sup
n→∞

〈Aa0
p (un), un − u〉 � 0,

⇒ lim sup
n→∞

‖Dun‖Lp
a0 (Ω,RN ) � ‖Du‖Lp

a0 (Ω,RN ).

On the other hand, from (30), we have

lim inf
n→∞ ‖Dun‖Lp

a0 (Ω,RN ) � ‖Du‖Lp
a0 (Ω,RN ).

Therefore, we conclude that

‖Dun‖Lp
a0 (Ω,RN ) → ‖Du‖Lp

a0 (Ω,RN ). (31)

The space Lp
a0

(Ω,RN ) is uniformly convex, hence it has the Kadec–Klee property (see s [18,
Remark 2.7.30, p. 127]). So, it follows from (30) and (31) that

Dun → Du in Lp
a0

(Ω,RN ),
⇒ Dun → Du in Lq(Ω,RN ) since Lp

a0
(Ω,RN ) ↪→ Lq(Ω,RN ) continuously,

⇒ ρθ(|Dun −Du|) → 0 (see Proposition 2),
⇒ ‖un − u‖ → 0 (see (29) and Proposition 2),
⇒ ϕ satisfies the C-condition.

The proof is now complete. �

Proposition 5. If hypotheses H0, H1 hold, then the functional ϕ(·) has a local (1,1)-linking
at 0.

Proof. Since the critical points of ϕ are solutions of problem (1), we may assume that Kϕ

is finite or otherwise we already have infinitely many nontrivial solutions of (1) and so we
are done.

Choose ρ ∈ (0, 1) so small that Kϕ ∩ B̄ρ = {0} (here, Bρ = {u ∈ W 1,θ(Ω) : ‖u‖ < ρ}). Let
V = R and let δ > 0 as postulated by hypothesis H1(iv). Recall that on a finite-dimensional
normed space all norms are equivalent. So, by taking ρ ∈ (0, 1) even smaller as necessary, we
have

‖u‖ � ρ ⇒ |u| � δ for all u ∈ V = R. (32)

Then for u ∈ V ∩ B̄ρ, we have

ϕ(u) � 1
p
γp(u) − |u|q

q

∫
Ω

θ(z)dz (see (32) and Hypothesis H1(iv))

=
|u|p
p

(∫
Ω

ξ(z)dz +
∫
∂Ω

β(z)dσ
)
− |u|q

q

∫
Ω

θ(z)dz

� c9‖u‖p − c10‖u‖q for some c9, c10 > 0 (see hypotheses H0 and H1(iv)).
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Since q < p, choosing ρ ∈ (0, 1) small, we conclude that

ϕ|V ∩B̄ρ
� 0. (33)

Let

D = {u ∈ W 1,θ(Ω) : ‖Du‖qq � λ̂2(q)‖u‖qq}.
For all u ∈ D, we have

ϕ(u) =
1
p
γp(u) +

1
q
‖Du‖qq −

∫
{|u|�δ}

F (z, u)dz −
∫
{|u|>δ}

F (z, u)dz

� 1
p
γp(u) +

1
q

(
‖Du‖qq −

∫
Ω

λ̂|u|qdz
)
−
∫

Ω

F (z, u)dz

(see hypotheses H1(iv))

� 1
p
γp(u) +

1
q

∫
Ω

(λ̂2(q) − λ̂)|u|qdz − c11‖u‖r
for some c11 > 0 (since u ∈ D and see hypothesis H1(iv))

� c11
p

‖u‖p − c11 ‖u‖r (see (22)).

Since p < r, for sufficiently small ρ ∈ (0, 1), we have

ϕ|D∩B̄ρ\{0} > 0. (34)

Let U = B̄ρ, E0 = V ∩ ∂Bρ, E = V ∩ B̄ρ and D as above. We have 0 /∈ E0, E0 ⊆ E ⊆ U = B̄ρ

and E0 ∩D = ∅ (see Definition 3).
Let Y be the topological complement of V . We have that

W 1,θ(Ω) = V ⊕ Y (see [18, pp. 73, 74]).

So, every u ∈ W 1,θ(Ω) can be written in a unique way as

u = v + y with v ∈ V, y ∈ Y.

We consider the deformation h : [0, 1] × (W 1,θ(Ω) \D) → W 1,θ(Ω) \D defined by

h(t, u) = (1 − t)u + tρ
v

‖v‖ for all t ∈ [0, 1] , u ∈ W 1,θ(Ω) \D.

We have

h(0, u) = u and h(1, u) = ρ
v

‖v‖ ∈ V ∩ ∂Bρ = E0.

It follows that E0 is a deformation retract of W 1,θ(Ω) \D (see [17, Definition 5.3.10, p.
385]). Hence,

i∗ : H0(E0) → H0(W 1,θ(Ω) \ {0})
is an isomorphism (see [8, Theorem 11.5, p.30] and [18, Remark 6.1.6, p. 460]).

The set E = V ∩Bρ is contractible (it is an interval). Hence H0(E,E0) = 0 (see [8, Theorem
11.5, p. 30]). Therefore, if j∗ : H0(E0) → H0(E), then dim im j∗ = 1 (see [8, Remark 6.1.26, p.
468]). So, finally we have

dim im i∗ − dim im j∗ = 2 − 1 = 1,
⇒ ϕ(·) has a local (1,1)-linking at 0, see Definition 3.

The proof is now complete. �
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By Proposition 5 and Theorem 6.6.17 of Papageorgiou, Rădulescu and Repovš [18, p. 538],
we have

dimC1(ϕ, 0) � 1. (35)

Moreover, Proposition 3.9 of Papageorgiou, Rădulescu and Repovš [17] leads to the following
result.

Proposition 6. If hypotheses H0, H1 hold, then Ck(ϕ,∞) = 0 for all k ∈ N0.

We are now ready for the existence theorem concerning the superlinear case.

Theorem 7. If hypotheses H0, H1 hold, then problem (1) has a nontrivial solution u0 ∈
W 1,θ(Ω) ∩ L∞(Ω).

Proof. On account of (35) and Proposition 6, we can apply Proposition 6.2.42 of
Papageorgiou, Rădulescu and Repovš [18, p. 499]. So, we can find u0 ∈ W 1,θ(Ω) such that

u0 ∈ Kϕ \ {0},
⇒ u0 ∈ W 1,θ(Ω) ∩ L∞(Ω) is a solution of problem (1), see [18, Section 3.2].

The proof is now complete. �

4. The resonant case

In this section, we are concerned with the resonant case (p-linear case). Our hypotheses allow
resonance at ±∞ with respect to the principal eigenvalue λ̂1(p) > 0.

The new conditions on the reaction f(z, x) are the following.
H2: f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω and

(i) |f(z, x)| � â(z)(1 + |x|r−1) for a.a. z ∈ Ω, all x ∈ R, with â ∈ L∞(Ω), p < r < q∗;
(ii) if F (z, x) =

∫ x

0
f(z, s)ds, then limx→±∞ pF (z, x)/|x|p � λ̂1(p) uniformly for a.a. z ∈ Ω;

(iii) we have

f(z, x)x− pF (z, x) → +∞ uniformly for a.a. z ∈ Ω, as x → ±∞;

(iv) there exist δ > 0, θ ∈ L∞(Ω) and λ̂ > 0 such that

0 � θ(z) for a.a. z ∈ Ω, θ 	≡ 0, λ̂ � λ̂2(q),

θ(z)|x|q � qF (z, x) � λ̂|x|q for a.a. z ∈ Ω and all |x| � δ.

Remark 4. Hypothesis H2(ii) implies that at ±∞, we can have resonance with respect
to the principal eigenvalue of the operator u �→ −div (a0(z)|Du|p−2Du) with Robin bound-
ary condition.

Proposition 8. If hypotheses H0, H2 hold, then the energy functional ϕ(·) is coercive.

Proof. We have

d

dx

(
F (z, x)
|x|p

)
=

f(z, x)|x|p − p|x|p−2xF (z, x)
|x|2p

=
|x|p−2x[f(z, x)x− pF (z, x)]

|x|2p .
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On account of hypothesis H2(iii), given any γ > 0, we can find M1 = M1(γ) > 0 such that

f(z, x)x− pF (z, x) � γ for a.a. z ∈ Ω and all |x| � M1.

Hence, we obtain

d

dx

(
F (z, x)
|x|p

)⎧⎪⎨
⎪⎩
� γ

xp+1
if x � M1

� − γ

|x|p+1
if x � −M1.

Integrating, we obtain

F (z, x)
|x|p − F (z, x)

|u|p � −γ

p

(
1

|x|p − 1
|u|p

)
for a.a. z ∈ Ω and all |x| � |u| � M1. (36)

On account of hypothesis H2(ii), given ε > 0, we can find M2 = M2(ε) > 0 such that

F (z, x) � 1
p

(λ̂1(p) + ε)|x|p for a.a. z ∈ Ω and all |x| � M2.

Using this inequality in (36) and letting |x| → ∞, we obtain

1
p

(λ̂1(p) + ε) − F (z, u)
|u|p � γ

p

1
|u|p for a.a. z ∈ Ω and all |u| � M = max{M1,M2},

⇒ (λ̂1(p) + ε)|u|p − pF (z, u) � γ for a.a. z ∈ Ω and all |u| � M .

(37)

Arguing by contradiction, suppose that ϕ(·) is not coercive. Then we can find {un}n�1 ⊆
W 1,θ(Ω) such that

‖un‖ → ∞ and ϕ(un) � M0 for some M0 > 0 and all n ∈ N. (38)

Let yn = un/‖un‖ for all n ∈ N. Then ‖yn‖ = 1, hence we may assume that

yn
w−→ y in W 1,θ(Ω) and yn → y in Lp(Ω) and in Lp(∂Ω). (39)

From (38), we have

1
p
γp(yn) +

1
q

1
‖un‖p−q

∫
Ω

|Dyn|qdz −
∫

Ω

F (z, un)
‖un‖p dz � M0

‖un‖p ,

⇒ γp(yn) +
p

q

1
‖un‖p−q

∫
Ω

|Dyn|qdz � τn + (λ̂1(p) + ε) ‖yn‖pp with τn → 0, see (37),

⇒ γp(y) � (λ̂1(p) + ε) ‖y‖p (see (39)),

⇒ γp(y) � λ̂1(p)‖y‖pp (since ε > 0 is arbitrary),
⇒ y = μû1(p) for some μ ∈ R (see (4)).

If μ = 0, then y = 0 and so γp(yn) → 0. Hence, as in the proof of Proposition 4, we have
yn → 0 in W 1,θ(Ω), contradicting the fact that ‖yn‖ = 1 for all n ∈ N.

So, μ 	= 0 and since û1(p)(z) > 0 for a.a. z ∈ Ω, we have |un(z)| → +∞ for a.a. z ∈ Ω. By
(38) and (4), we have∫

Ω

[
1
p
λ̂1(p)|un|p − F (z, un)

]
dz � M0 for all n ∈ N. (40)

However, from (37) and since γ > 0 is arbitrary, we can infer that
1
p
λ̂1(p)|un|p − F (z, un) → +∞ for a.a. z ∈ Ω, as n → ∞,

⇒
∫

Ω

[
1
p
λ̂1(p)|un|p − F (z, un)

]
dz → +∞ by Fatou’s lemma.

(41)
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Comparing (40) and (41), we arrive at a contradiction. Therefore, we can conclude that ϕ(·)
is coercive. �

Using Proposition 8 and Proposition 5.1.15 of Papageorgiou, Rădulescu and Repovš [18, p.
369], we obtain the following result.

Corollary 9. If hypotheses H0, H2 hold, then the energy functional ϕ(·) is bounded below
and satisfies the C-condition.

Now we are ready for the multiplicity theorem in the resonant case.

Theorem 10. If hypotheses H0, H2 hold, then problem (1) has at least two nontrivial
solutions u0, û ∈ W 1,θ(Ω) ∩ L∞(Ω).

Proof. By Proposition 5, we know that ϕ(·) has a local (1,1)-linking at the origin. Note that
for that result mattered only the behavior of f(z, ·) near zero and this is common in hypotheses
H1 and H2. Also, we know that ϕ(·) is sequentially weakly lower semicontinuous. This fact in
conjunction with Proposition 8, permit the use of the Weierstrass–Tonelli theorem. So, we can
find u0 ∈ W 1,θ(Ω) such that

ϕ(u0) = min{ϕ(u) : u ∈ W 1,θ(Ω)}. (42)

On account of hypothesis H2(iv) and since q < p, we have

ϕ(u0) < 0 = ϕ(0),
⇒ u0 	= 0 and u0 ∈ Kϕ,

⇒ u0 ∈ Kϕ ∩ L∞(Ω) is a nontrivial solution of (1).

Moreover, by Corollary 6.7.10 of Papageorgiou, Rădulescu and Repovš [18, p. 552], we can find
û ∈ Kϕ, û 	∈ {0, u0}. Then û ∈ W 1,θ(Ω) ∩ L∞(Ω) is the second nontrivial solution of problem
(1). �
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Faculty of Applied Mathematics
AGH University of Science and Technology
al. Mickiewicza 30
Kraków 30-059
Poland

Department of Mathematics
University of Craiova
Craiova 200585
Romania

and

Institute of Mathematics, Physics and
Mechanics

Ljubljana 1000
Slovenia

radulescu@inf.ucv.ro
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Faculty of Education and Faculty of

Mathematics and Physics
University of Ljubljana
Ljubljana 1000
Slovenia

and

Institute of Mathematics, Physics and
Mechanics

Ljubljana 1000
Slovenia

dusan.repovs@guest.arnes.si

The Bulletin of the London Mathematical Society is wholly owned and managed by the London Mathematical
Society, a not-for-profit Charity registered with the UK Charity Commission. All surplus income from its
publishing programme is used to support mathematicians and mathematics research in the form of research
grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.

https://doi.org/10.1142/S0219199720500066
mailto:npapg@math.ntua.gr
mailto:radulescu@inf.ucv.ro
mailto:dusan.repovs@guest.arnes.si

	1. Introduction
	2. Mathematical background
	3. The superlinear case
	4. The resonant case
	References

