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Spectrum in an unbounded interval for a class of nonhomogeneous
differential operators

Mihai Mihăilescu and Vicenţiu Rădulescu

Abstract

The present paper deals with the spectrum of a nonhomogeneous problem involving variable
exponents on an exterior domain in R

N . The existence of two positive real numbers λ0 and λ1,
is established satisfying the condition λ0 � λ1, such that the problem has no eigenvalue in the
interval (0, λ0) while any number in the interval [λ1,∞) is an eigenvalue.

1. Introduction

Let Ω be a smooth domain (bounded or unbounded) in R
N (N � 1). Consider the eigenvalue

problem

− div(|∇u|p(x)−2∇u) = λ g(x) |u|p(x)−2u in Ω,

u = 0 on ∂Ω, (1)
u �≡ 0 in Ω.

If g ≡ 1 and p ≡ 2, problem 1 is related to the Riesz–Fredholm theory of self-adjoint and
compact operators. The linear case corresponding to p ≡ 2 but for a non-constant potential
g has been first considered in the pioneering papers of Bocher [4], Hess and Kato [18],
Minakshisundaran and Pleijel [26] and Pleijel [28]. For instance, Minakshisundaran and
Pleijel [26, 28] studied the case where Ω is bounded, g ∈ L∞(Ω), g � 0 in Ω and g > 0 in
Ω0 ⊂ Ω with |Ω0| > 0. An important contribution in the study of 1 if Ω is not necessarily
bounded has been given by Szulkin and Willem [33].

Let Λ denote the set of eigenvalues of 1, that is,

Λ = Λp(x) = {λ ∈ R; λ is an eigenvalue of problem 1}.
In [16] Garcia and Peral established that if p(x) ≡ p > 1, then problem 1 has a sequence of
eigenvalues, sup Λ = +∞ and inf Λ = λ1 = λ1,p > 0, where λ1,p is the first eigenvalue of (−Δp)
in W 1,p

0 (Ω) and

λ1 = λ1,p = inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω

|∇u|pdx
∫
Ω

|u|pdx

.

In Fan, Zhang and Zhao [13] it is shown that for general functions p(·) the set Λ is infinite and
sup Λ = +∞. Moreover, it may arise that inf Λ = 0. Set

λ∗ = λ∗
p(x) = inf Λ.

Received 6 December 2007; revised 20 March 2008; published online 29 August 2008.

2000 Mathematics Subject Classification 35D05, 35J60, 35J70, 58E05.

The authors have been supported by Grant CNCSIS PNII–79/2007 ‘Degenerate and Singular Nonlinear
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In Fan, Zhang and Zhao [13] it is argued that if N = 1 then λ∗ > 0 if and only if the function
p(x) is monotone. In arbitrary dimension, λ∗ = 0 provided that there exist an open set U ⊂ Ω
and a point x0 ∈ U such that p(x0) < (or >) p(x) for all x ∈ ∂U .

The existence of a principal positive eigenvalue and of a corresponding unique (up to a
multiplicative constant) positive eigenfunction both for the linear Laplace operator and for
the nonlinear p–Laplace operator (see [3]) follows by the Krein–Rutman theorem [20]. Using
variational techniques, Sreenadh [31] has extended this study to the Hardy–Sobolev operator
−Δpu − μw(x)|u|p−2u (assuming that 0 ∈ Ω), where μ is smaller than the best Hardy–Sobolev
constant (N − p)pp−p and w denotes the weight function

w(x) =

⎧⎪⎨
⎪⎩
|x|−p if 1 < p < N,(
|x| log

1
|x|

)−N

if p = N.

The case of fully nonlinear elliptic operators has been considered by Felmer and Quaas [14],
in the framework of the Pucci maximal operators. In all these cases, the existence part is
guaranteed as long as the differential operator is positively homogeneous and is monotone with
respect to a convex cone. The uniqueness part in such arguments based on the Krein–Rutman
theorem requires that the operator is strictly increasing and strongly positive. In some recent
papers we have considered nonlinear eigenvalue problems with a nonhomogeneous structure.
In such nonstandard cases we have pointed out that some strange phenomena may occur. For
instance, in [22, 24] we have proved that, under some appropriate conditions, some classes of
such eigenvalue problems admit solutions for any λ ∈ (0, λ0), where λ0 is a positive real number.
Taking into account the ‘competition’ between several variable exponents, we establish in the
present work that the eigenvalues may concentrate in a neighborhood of infinity and that this
phenomenon strongly depends on the decay rate of exponents in relationship with the variable
potential g.

In this paper we are concerned with the study of the eigenvalue problem

−div(|∇u|p(x)−2∇u) + |u|p(x)−2u + |u|q(x)−2u = λg(x)|u|r(x)−2u for x ∈ Ω,

u = 0 for x ∈ ∂Ω,
(2)

where Ω is a smooth exterior domain in R
N (N � 3), that is, Ω is the complement of a bounded

domain with Lipschitz boundary. We notice that this smoothness assumption is needed only to
ensure the existence of Sobolev embeddings; see Edmunds and Rákosńık [10]. The mappings
p, q, r : Ω → [2,∞) are Lipschitz continuous functions, while g : Ω → [0,∞) is a measurable
function for which there exists a nonempty set Ω0 ⊂ Ω such that g(x) > 0 for any x ∈ Ω0, and
λ � 0 is a real number.

The study of problems of type 2 has a strong motivation, and important research efforts
have been made with the aim of understanding anisotropic phenomena described by nonho-
mogeneous differential operators. We remember that equations of this type can be regarded as
models for phenomena arising in the study of electrorheological fluids [1, 2, 6, 17, 29], elasticity
[35] or image processing and restoration [5, 11]. A survey of the history of this research field
with a comprehensive bibliography is provided by Diening, Hästö and Nekvinda [7].

Next, we point out that this paper extends to the case of unbounded domains some recent
results on eigenvalue problems involving variable exponent conditions (see [24, 25]).

Finally, the present paper carries on some recent results obtained on some problems related
with 2 but studied in the case when p, q and r are positive constants (see [15, 34]).
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2. A brief review on variable exponent Lebesgue-Sobolev spaces

In order to study problem 2 we introduce a variable exponent Lebesgue–Sobolev setting. For
more details we refer to the book by Musielak [27] and the papers by Edmunds and co-
workers [8–10], Kovacik and Rákosńık [19], Mihăilescu and Rădulescu [23] and Samko and
Vakulov [30].

Throughout this paper, for any Lipschitz continuous function h : Ω → (1,∞) we denote

h− = ess inf
x∈Ω

h(x) and h+ = ess sup
x∈Ω

h(x).

Usually it is assumed that h+ < +∞, since this condition is known to imply many desirable
features for the associated variable exponent Lebesgue space Lh(x)(Ω). This function space is
defined by

Lh(x)(Ω) =
{

u; u is a measurable real-valued function such that
∫
Ω

|u(x)|h(x) dx < ∞
}

.

On this space we define a norm, the so-called Luxemburg norm, by the formula

|u|h(x) = inf

{
μ > 0;

∫
Ω

∣∣∣∣u(x)
μ

∣∣∣∣
h(x)

dx � 1

}
.

The variable exponent Lebesgue space is a special case of an Orlicz–Musielak space. For
a constant function h the variable exponent Lebesgue space coincides with the standard
Lebesgue space.

We recall that the variable exponent Lebesgue spaces are separable and reflexive Banach
spaces. If 0 < |Ω| < ∞ and h1, h2 are variable exponents so that h1(x) � h2(x) almost
everywhere in Ω, then there exists the continuous embedding Lh2(x)(Ω) ↪→ Lh1(x)(Ω).

We denote by Lh
′
(x)(Ω) the conjugate space of Lh(x)(Ω), where 1/h(x) + 1/h

′
(x) = 1. For

any u ∈ Lh(x)(Ω) and v ∈ Lh
′
(x)(Ω) the Hölder-type inequality∣∣∣∣

∫
Ω

uv dx

∣∣∣∣ �
(

1
h− +

1
h′−

)
|u|h(x)|v|h′ (x) (3)

holds true.
Moreover, if h1, h2, h3 : Ω → (1,∞) are three Lipschitz continuous functions such that

1/h1(x) + 1/h2(x) + 1/h3(x) = 1, then for any u ∈ Lh1(x)(Ω), v ∈ Lh2(x)(Ω) and w ∈ Lh3(x)(Ω)
the following inequality holds (see [12, Proposition 2.5]):∣∣∣∣

∫
Ω

uvw dx

∣∣∣∣ �
(

1
h−

1

+
1

h−
2

+
1

h−
3

)
|u|h1(x) |v|h2(x) |w|h3(x) . (4)

An important role in manipulating the generalized Lebesgue–Sobolev spaces is played by the
modular of the Lh(x)(Ω) space, which is the mapping ρh(x) : Lh(x)(Ω) → R defined by

ρh(x)(u) =
∫
Ω

|u(x)|h(x) dx.

Lebesgue–Sobolev spaces with h+ = +∞ have been investigated in [8, 19]. In such a case
we denote Ω∞ = {x ∈ Ω; h(x) = +∞} and define the modular by setting

ρh(x)(u) =
∫
Ω\Ω∞

|u(x)|h(x) dx + ess sup
x∈Ω∞

|h(x)|.
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If (un), u ∈ Lh(x)(Ω) then the following relations hold true:

|u|h(x) > 1 =⇒ |u|h−
h(x) � ρh(x)(u) � |u|h+

h(x), (5)

|u|h(x) < 1 =⇒ |u|h+

h(x) � ρh(x)(u) � |u|h−
h(x), (6)

|un − u|h(x) → 0 ⇐⇒ ρh(x)(un − u) → 0. (7)

Next, we define the variable exponent Sobolev space

W 1,h(x)(Ω) = {u ∈ Lh(x)(Ω) : |∇u| ∈ Lh(x)(Ω)}.
On W 1,h(x)(Ω) we may consider one of the following equivalent norms:

‖u‖h(x) = |u|h(x) + |∇u|h(x)

or

‖u‖ = inf

{
μ > 0;

∫
Ω

(∣∣∣∣∇u(x)
μ

∣∣∣∣
h(x)

+
∣∣∣∣u(x)

μ

∣∣∣∣
h(x)

)
dx � 1

}
.

We also define W
1,h(x)
0 (Ω) as the closure of C∞

0 (Ω) in W 1,h(x)(Ω). Assuming that h− > 1, the
function spaces W 1,h(x)(Ω) and W

1,h(x)
0 (Ω) are separable and reflexive Banach spaces. Set

�h(x)(u) =
∫
Ω

(|∇u(x)|h(x) + |u(x)|h(x)
)

dx.

For all (un), u ∈ W
1,h(x)
0 (Ω) the following relations hold:

‖u‖ > 1 =⇒ ‖u‖h− � �h(x)(u) � ‖u‖h+
, (8)

‖u‖ < 1 =⇒ ‖u‖h+ � �h(x)(u) � ‖u‖h−
, (9)

‖un − u‖ → 0 ⇐⇒ �h(x)(un − u) → 0. (10)

Finally, we remember some embedding results regarding variable exponent Lebesgue–Sobolev
spaces. If h, θ : Ω → (1,∞) are Lipschitz continuous and h+ < N and h(x) � θ(x) � h�(x)
for any x ∈ Ω where h�(x) = Nh(x)/(N − h(x)), then there exists a continuous embedding
W

1,h(x)
0 (Ω) ↪→ Lθ(x)(Ω). Furthermore, assuming that Ω0 is a bounded subset of Ω, the

embedding W
1,h(x)
0 (Ω0) ↪→ Lθ(x)(Ω0) is continuous and compact.

3. The main result

In this paper we study problem 2 assuming that the functions p, q and r satisfy the hypotheses

2 � p− � p+ < N, (11)

p+ < r− � r+ < q− � q+ <
Np−

N − p−
. (12)

Furthermore, we assume that the function g(x) satisfies the hypothesis

g ∈ L∞(Ω) ∩ Lp0(x)(Ω) , (13)

where p0(x) = p�(x)/(p�(x) − r−) for any x ∈ Ω.
Obviously, the natural space where we should seek solutions for problem 2 is the space

W
1,p(x)
0 (Ω).
We say that λ ∈ R is an eigenvalue of problem 2 if there exists a u ∈ W

1,p(x)
0 (Ω) \ {0} such

that ∫
Ω

(|∇u|p(x)−2∇u∇v + |u|p(x)−2uv + |u|q(x)−2uv) dx − λ

∫
Ω

g(x)|u|r(x)−2uv dx = 0,
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for all v ∈ W
1,p(x)
0 (Ω). We point out that if λ is an eigenvalue of the problem 2 then the

corresponding u ∈ W
1,p(x)
0 (Ω) \ {0} is a weak solution of 2.

Define

λ1 := inf
u∈W

1,p(x)
0 (Ω)\{0}

∫
Ω

(1/p(x))(|∇u|p(x) + |u|p(x)) dx +
∫
Ω

(1/q(x))|u|q(x) dx
∫
Ω

(g(x)/r(x))|u|r(x) dx

and

λ0 := inf
u∈W

1,p(x)
0 (Ω)\{0}

∫
Ω

(|∇u|p(x) + |u|p(x)) dx +
∫
Ω

|u|q(x) dx
∫
Ω

g(x)|u|r(x) dx

.

Our main result is given by the following theorem.

Theorem 1. Let Ω be an exterior domain with Lipschitz boundary in R
N , where N � 3.

Suppose that p, q, r : Ω → [2,∞) are Lipschitz continuous functions and that g : Ω → [0,∞)
is a measurable function for which there exists a nonempty set Ω0 ⊂ Ω such that g > 0 in Ω0.
Assume that conditions 11–13 are fulfilled.

Then

0 < λ0 � λ1.

Furthermore, each λ ∈ [λ1,∞) is an eigenvalue of problem 2 while any λ ∈ (0, λ0) is not an
eigenvalue of problem 2.

At this stage we are not able to deduce whether λ0 = λ1 or λ0 < λ1. In the latter case an
interesting open problem concerns the existence of eigenvalues of problem 2 in the interval
[λ0, λ1).

Remark. We notice that a similar result as Theorem 1 can be proved (with similar
arguments as those used in the case of problem 2) for the problem

−Δu + u + |u|q(x)−2u = λg(x)|u|r(x)−2u for x ∈ Ω,

u = 0 for x ∈ ∂Ω,

where Ω is a smooth exterior domain in R
2. The mappings q and r : Ω → [2,∞) are still

Lipschitz continuous functions, while g : Ω → [0,∞) is a function for which there exists a
nonempty set Ω0 ⊂ Ω such that g(x) > 0 for any x ∈ Ω0, and λ � 0 is a real number. This
time, conditions 11–13 should be replaced by the following conditions:

2 < r− � r+ < q− � q+ < ∞
and

g ∈ L∞(Ω) ∩ L1(Ω).

4. Proof of the main result

Let E denote the generalized Sobolev space W
1,p(x)
0 (Ω).
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Define the functionals J1, I1, J0, I0 : E → R by

J1(u) =
∫
Ω

1
p(x)

(|∇u|p(x) + |u|p(x)) dx +
∫
Ω

1
q(x)

|u|q(x) dx,

I1(u) =
∫
Ω

g(x)
r(x)

|u|r(x) dx,

J0(u) =
∫
Ω

(|∇u|p(x) + |u|p(x)) dx +
∫
Ω

|u|q(x) dx,

I0(u) =
∫
Ω

g(x)|u|r(x) dx.

Standard arguments imply that J1, I1 ∈ C1(E, R) and for all u, v ∈ E,

〈J ′
1(u), v〉 =

∫
Ω

(|∇u|p(x)−2∇u∇v + |u|p(x)−2uv + |u|q(x)−2uv) dx,

〈I ′
1(u), v〉 =

∫
Ω

g(x)|u|r(x)−2uv dx.

For any λ > 0 we also define the functional Tλ : E → R by

Tλ(u) = J1(u) − λ · I1(u) ∀ u ∈ E.

It is clear that λ is an eigenvalue for problem 2 if and only if there exists a uλ ∈ E \ {0}, a
critical point of the functional Tλ.

We split the proof of Theorem 1 into four steps.

Step 1. We show that λ0, λ1 > 0.
Indeed, since by relation 12 we have p(x) < r(x) < q(x) for any x ∈ Ω, we deduce that

|u(x)|p(x) + |u(x)|q(x) � |u(x)|r(x) ∀u ∈ E and ∀x ∈ Ω.

The above relation shows that∫
Ω

(|u|p(x) + |u|q(x)) dx � 1
|g|∞ ·

∫
Ω

g(x)|u|r(x) dx ∀u ∈ E, (14)

or

J0(u) � 1
|g|∞ · I0(u) ∀u ∈ E.

We deduce that λ0 > 0.
On the other hand, by 14 we have∫

Ω

1
p(x)

|u|p(x) dx +
∫
Ω

1
q(x)

|u|q(x) dx � r−

q+ · |g|∞ ·
∫
Ω

g(x)
r(x)

|u|r(x) dx, ∀u ∈ E,

and thus

J1(u) � r−

q+ · |g|∞ · I1(u) ∀u ∈ E.

Consequently, λ1 > 0 and Step 1 is verified.

Step 2. We show that any λ ∈ (0, λ0) is not an eigenvalue of problem 2.
Indeed, assuming by contradiction that there exists a λ ∈ (0, λ0) that is an eigenvalue of

problem 2, we deduce that there exists a uλ ∈ E \ {0} such that

〈J ′
1(uλ), v〉 = λ · 〈I ′

1(uλ), v〉 ∀ v ∈ E.

Taking v = uλ in the above equality we find that

〈J ′
1(uλ), uλ〉 = λ · 〈I ′

1(uλ), uλ〉
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or
J0(uλ) = λ · I0(uλ).

Since uλ ∈ E \ {0} it follows that J0(uλ) > 0 and I0(uλ) > 0. This information combined with
the above inequality, the definition of λ0 and the fact that λ ∈ (0, λ0) yield

J0(uλ) � λ0 · I0(uλ) > λ · I0(uλ) = J0(uλ),

and this is a contradiction. Thus Step 2 is verified.

Step 3. We show that any λ ∈ (λ1,∞) is an eigenvalue for problem 2.
In order to verify that the conclusion of Step 3 holds true, we first prove two auxiliary results.

Lemma 1. Assume that the hypotheses of Theorem 1 are satisfied and s is a real number
such that

r+ < s < (p−)�,

where (p−)� = Np−/(N − p−). Then g ∈ Ls/(s−r−)(Ω) ∩ Ls/(s−r+)(Ω) and∫
Ω

g(x)|u|r(x) � |g|s/(s−r−)|u|r
−

s + |g|s/(s−r+)|u|r
+

s ∀u ∈ E. (15)

Proof. First we remark that the following inequalities hold true:

s

s − r+
� s

s − r−
>

(p−)�

(p−)� − r−
� p�(x)

p�(x) − r−
= p0(x), ∀x ∈ Ω

and

p+
0 =

(p−)�

(p−)� − r−
.

On the other hand, taking into account the above information and the fact that relation 13
holds true, we have∫

Ω

[g(x)]s/(s−r−) dx =
∫
Ω

[g(x)]p0(x) · [g(x)]s/(s−r−)−p0(x) dx

�
∫
Ω

[g(x)]p0(x) · |g|s/(s−r−)−p0(x)
∞ dx

� [|g|s/(s−r−)−p+
0∞ + |g|s/(s−r−)−p−

0∞ ] ·
∫
Ω

[g(x)]p0(x) dx < ∞.

Thus we have found that g ∈ Ls/(s−r−)(Ω). Similar arguments show that g ∈ Ls/(s−r+)(Ω).
Inequality 15 follows from the remark that

|u(x)|r(x) � |u(x)|r−
+ |u(x)|r+ ∀ u ∈ E and∀x ∈ Ω

or ∫
Ω

g(x)|u|r(x) dx �
∫
Ω

g(x)|u|r−
dx +

∫
Ω

g(x)|u|r+
dx

� |g|s/(s−r−)|u|r
−

s + |g|s/(s−r+)|u|r
+

s ∀u ∈ E.

The proof of Lemma 1 is complete.

Lemma 2. For any λ > 0 we have

lim
‖u‖→∞

Tλ(u) = ∞.
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Proof. We fix λ > 0 and s such that

r+ < s < q− < (p−)�.

Then using 15 we deduce that the following inequalities hold true for any u ∈ E with ‖u‖ > 1:

Tλ(u) =
∫
Ω

1
p(x)

(|∇u|p(x) + |u|p(x)) dx +
∫
Ω

1
q(x)

|u|q(x) dx − λ

∫
Ω

g(x)
r(x)

|u|r(x) dx

� 1
2p+

∫
Ω

(|∇u|p(x) + |u|p(x)) dx +
1

max{2p+, q+}
∫
Ω

(|u|p(x) + |u|q(x)) dx

− λ

r−

∫
Ω

g(x)(|u|r+
+ |u|r−

) dx

� 1
2p+

∫
Ω

(|∇u|p(x) + |u|p(x)) dx +
1

max{2p+, q+}
∫
Ω

|u|s dx − C1 · |u|r−
s − C2 · |u|r+

s

� C0 · ‖u‖p−
+

(
1

2max{2p+, q+}
∫
Ω

|u|s dx − C1 · |u|r−
s

)

+
(

1
2max{2p+, q+}

∫
Ω

|u|s dx − C2 · |u|r+

s

)
,

where C0, C1 and C2 are positive constants.
Actually, by the above inequality we found that there exist four positive constants C0, C1,

C2 and C3 (with C3 = 1/2max{2p+, q+}) such that

Tλ(u) � C0 · ‖u‖p−
+

(
C3 · |u|ss − C1 · |u|r−

s

)
+

(
C3 · |u|ss − C2 · |u|r+

s

)
, (16)

for any u ∈ E with ‖u‖ > 1.
Next, we show that for any u ∈ E there exist two positive constants M1 = M1(r−, s, C1, C3)

and M2 = M2(r+, s, C2, C3) such that

C3 · |u|ss − C1 · |u|r−
s � −M1 (17)

and
C3 · |u|ss − C2 · |u|r+

s � −M2. (18)

In order to prove this, we point out that the functional Φ : (0,∞) → ∞ defined by

Φ(t) = α · ta − β · tb,
where α, β, a, b are positive constants with a < b, achieves its positive global maximum

Φ(t0) =
b − a

a
·
(a

b

)a/(b−a)

· αb/(b−a) · βa/(a−b) > 0,

where t0 = ((α · a)/(β · b))1/(b−a) > 0. Thus we deduce that

α · ta − β · tb � C(a, b) · αb/(b−a) · βa/(a−b) ∀ t > 0, (19)

where C(a, b) = (b − a) · (aa/bb)1/(b−a).
Finally, we notice that taking in 19 a = r−, b = s, α = C1 and β = C3 we deduce that 17

holds true with M1 = C(r−, s) · Cs/(s−r−)
1 · Cr−/(r−−s)

3 . Similarly, taking in 19 a = r+, b = s,
α = C2 and β = C3 we deduce that 18 is valid with M2 = C(r+, s) · Cs/(s−r+)

2 · Cr+/(r+−s)
3 .

Combining relations 16–18 we deduce that Lemma 2 holds true.

Now, we return to the proof of Step 3. First, we fix λ ∈ (λ1,∞). By Lemma 2 we deduce
that lim‖u‖→∞ Tλ(u) = ∞, that is, Tλ is coercive. On the other hand, similar arguments as
those used in the proof of [23, Lemma 3.4] show that the functional Tλ is weakly lower semi-
continuous. These two facts enable us to apply [32, Theorem 1.2] in order to prove that there
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exists a uλ ∈ E, a global minimum point of Tλ and thus a critical point of Tλ. In order to
conclude that Step 3 holds true it is enough to show that uλ is not trivial. Indeed, since
λ1 = infu∈E\{0} J1(u)/I1(u) and λ > λ1 it follows that there exists a vλ ∈ E such that

J1(vλ) < λI1(vλ)

or

Tλ(vλ) < 0.

Thus

inf
E

Tλ < 0,

and we conclude that uλ is a nontrivial critical point of Tλ or λ is an eigenvalue of problem 2.
Thus Step 3 is verified.

Step 4. We show that λ1 is an eigenvalue of problem 2.
We begin by proving two auxiliary results.

Lemma 3. The following relation holds true:

lim
‖u‖→0

J0(u)
I0(u)

= +∞.

Proof. Let s be a real number satisfying the following inequality:

r+ < s < q− < (p−)�.

Thus we deduce that E is continuously embedded in Ls(Ω). It follows that there exists a
positive constant C such that

|u|s � C · ‖u‖ ∀u ∈ E.

Using the above inequality and relation 15 from Lemma 1 we find that for any u ∈ E with
‖u‖ < 1, we have

J0(u)
I0(u)

=

∫
Ω

(|∇u|p(x) + |u|p(x)) dx +
∫
Ω

|u|q(x) dx
∫
Ω

g(x)|u|r(x) dx

�

∫
Ω

(|∇u|p(x) + |u|p(x)) dx(∫
Ω

g(x)|u|r−
dx +

∫
Ω

g(x)|u|r+
dx

)

� ‖u‖p+

|g|s/(s−r−)|u|r−
s + |g|s/(s−r+)|u|r+

s

� ‖u‖p+

|g|s/(s−r−) · Cr− · ‖u‖r− + |g|s/(s−r+) · Cr+ · ‖u‖r+ .

Since r+ � r− > p+, passing to the limit in the above inequality we deduce that
lim‖u‖→0 J0(u)/I0(u) = +∞, and thus Lemma 3 holds true.
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Lemma 4. Assume that {un} converges weakly to u in E. Then the following relations
hold true:

lim
n→∞ I0(un) = I0(u), (20)

lim
n→∞〈I ′

1(un), un − u〉 = 0. (21)

Proof. We shall prove just relation 20. Relation 21 can be obtained by using similar
arguments.

Since {un} converges weakly to u in E and since E is continuously embedded in Lp�(x)(Ω),
it follows that the sequence {|un|p�(x)} is bounded. Using this fact we deduce that there exists
a positive constant M such that

max
n

{∣∣∣|un|r+
∣∣∣
p�(x)/ r+

,
∣∣∣|u|r+

∣∣∣
p�(x)/r+

,
∣∣∣|un|r−

∣∣∣
p�(x)/r−

,
∣∣∣|u|r−

∣∣∣
p�(x)/r−

}
� M. (22)

On the other hand, let k be a positive integer such that

R
N \ Ω ⊂ Bk(0),

where Bk(0) = {x ∈ R
N ; |x| < k} is the ball centered in the origin with the radius k.

Let ε > 0 be fixed. Since by relation 13 we have g ∈ Lp0(x)(Ω), we can consider k defined
above to be sufficiently large such that

|g|Lp0(x)(Ω\Bk(0)) <
ε

8M
. (23)

Relations 3, 22 and 23 imply that∫
Ω\Bk(0)

g(x)||un|r(x) − |u|r(x)| dx

�
∫
Ω\Bk(0)

g(x)(|un|r+
+ |un|r−

+ |u|r+
+ |u|r−

) dx

� |g|Lp0(x)(Ω\Bk(0))

(∣∣∣|un|r+
∣∣∣
p�(x)/r+

,
∣∣∣|u|r+

∣∣∣
p�(x)/r+

,
∣∣∣|un|r−

∣∣∣
p�(x)/r−

,
∣∣∣|u|r−

∣∣∣
p�(x)/r−

)

� ε

2
.

On the other hand, since W
1,p(x)
0 (Bk(0) ∩ Ω) is compactly embedded in Lr(x)(Bk(0) ∩ Ω) and

g ∈ L∞(Ω), we find that

lim
n→∞

∫
Bk(0)∩Ω

g(x)|un|r(x) dx =
∫
Bk(0)∩Ω

g(x)|u|r(x) dx

or ∣∣∣∣∣
∫
Bk(0)∩Ω

g(x)|un|r(x) dx −
∫
Bk(0)∩Ω

g(x)|u|r(x) dx

∣∣∣∣∣ <
ε

2
,

for n large enough.
The above piece of information assures that relation 20 holds true. Thus the proof of Lemma 4

is complete.

We return now to the proof of Step 4. Let λn ↘ λ1. By Step 3 we deduce that for each n
there exists a un ∈ E \ {0} such that

〈J ′
1(un), v〉 = λn · 〈I ′

1(un), v〉 ∀ v ∈ E. (24)

Taking v = un we find that
J0(un) = λn · I0(un). (25)
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Passing to the limit as n → ∞ in relation 25 and we deduce that

lim
n→∞(J0(un) − λnI0(un)) = 0 .

The above equality and a similar argument as those used in the proof of Lemma 2 show that
the sequence {un} is bounded in E. Since E is a reflexive Banach space it follows that there
exists a u ∈ E such that, up to a subsequence, {un} converges weakly to u in E. Then by
relations 20 and 21 it follows that

lim
n→∞ I0(un) = I0(u)

and

lim
n→∞〈I ′

1(un), un − u〉 = 0.

On the other hand, by [21, Lemma 4.2] we find that for any θ � 2 and any ξ, η ∈ R
N

2
2θ−1 − 1

|ξ − η|θ � θ(|ξ|θ−2ξ − |η|θ−2η) · (ξ − η) . (26)

Using inequality 26 and the above relations we deduce that there exist two positive constants
L1 and L2 such that

L1

∫
Ω

(|∇(un − u)|p(x) + |un − u|p(x)) dx

�
∫
Ω

(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u) · (∇un −∇u) dx

+
∫
Ω

(|un|p(x)−2un − |u|p(x)−2u) · (un − u) dx

and

L2

∫
Ω

|un − u|q(x) dx �
∫
Ω

(|un|q(x)−2un − |u|q(x)−2u) · (un − u) dx.

Adding the two relations above, using relations 21 and 24 and the fact that {un} converges
weakly to u in E we deduce that

L1

∫
Ω

(|∇(un − u)|p(x) + |un − u|p(x)) dx � 〈J ′
1(un) − J

′
1(u), un − u〉

= |〈J ′
1(un), un − u〉| + |〈J ′

1(u), un − u〉|
= |λn · 〈I ′

1(un), un − u〉| + |〈J ′
1(u), un − u〉| → 0,

as n → ∞.
The above inequalities and relations 7 and 10 show that un converges strongly to u in E.

Then passing to the limit as n → ∞ in 24, it follows that

〈J ′
1(u), v〉 = λ1 · 〈I ′

1(u), v〉 ∀ v ∈ E.

Thus u is a critical point for Tλ1 . In order to prove that λ1 is an eigenvalue for problem 2 it
remains to show that u �= 0. Indeed, passing to the limit as n → ∞ in 25 we find that

lim
n→∞

J0(un)
I0(un)

= λ1.

On the other hand, if we assume by contradiction that u = 0 then we have un → 0 in E or
‖un‖ → 0. However, by Lemma 3 we deduce that

lim
n→∞

J0(un)
I0(un)

= ∞,
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which represents a contradiction. Consequently, u �= 0 and thus λ1 is an eigenvalue for
problem 2.

By Steps 2–4 we deduce that λ0 � λ1. The proof of Theorem 1 is now complete.
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