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Abstract In our paper, we consider a combination of two sub-cylinders coupled by an interface in a semi-
infinite cylinder. Both sub-cylinders are made of dipolar elastic materials. For one of the two sub-cylinders, we
will consider the elastostatic problem, and for the other the elastodynamic problem. Thus, the spatial behaviors
of the sub-cylinders are of different kind and the question arises whether the evolution of this combination can
be controlled. By using a polynomial way, we prove that the decay of solutions for the two problems can be
controlled.

Keywords Dipolar bodies · Elastostatics · Elastodynamics · Spatial estimates · Upper bound · Polynomial
decay

1 Introduction

In the last decades, many studies have been published in which various spatial estimates on decay or growth
of solutions were made. But these estimates refer to the solutions of some elliptical, parabolic or hyperbolic
equations. However, some specific situations have forced the combination of different materials and the cor-
responding mathematical models must be based on combinations of different types of equations. Fortunately,
research has proven that some combinations of two types of equations do not create any difficulty. Thus, in
the case of a mixture of a parabolic equation and an elliptic equations, it was found that the spatial decay of
solutions can be described by means of estimations specific to elliptical equations, see [1,2]. Analogously,
in the case of the combination of hyperbolic equations with parabolic equations, it has been shown that the
behavior of solutions is very similar to the behavior of solutions of parabolic equations. But, until now, there
are not well-clarified the questions regarding the behavior of solutions when combining some elliptic equations
with some hyperbolic equations [3,4]. In the case of an equation with delay, a spatial decay can be found in the
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paper of [5] Quintanilla. It has been shown in [6] that for the mixture of a parabolic and an elliptic equation,
the spatial behavior is similar to those for elliptic equations. For other estimates on the decay of solutions see
[7–10]. In this regard, our study can be considered as a first try to clarify some similar issues in the case of other
combinations. Using a technique of [7], we will consider two functionals and a certain energy argument in
order to control the decay of solution. Thus, we will obtain some estimates regarding the behavior of solutions
for a mixed problem in the context of a semi-infinite cylinder composed of two sub-cylinders with an interface
at the common boundary. Both semi-cylinders are in motion and contain a dipolar elastic material. We will
consider that the mass densities of the material in the two sub-cylinders are different. As such, we can not use
the known techniques, specific for the analysis of hyperbolic problems.We have approached the dipolar bodies
in our study because the dipolar structures occupy a privileged place between the theories that are dedicated to
the microstructure (see [11,12]). The motivation for considering these new structures is to eliminate the known
contradictions: the equation of energy is a parabolic equation and the energy equation does not contain any
elastic term. Therefore, the heat waves, under these conditions, will propagate at an infinite speed. To see the
importance of the dipolar structure of materials, it is enough to analyze the importance given to this structure
by some of the well-known researchers. For example, the studies of Mindlin [13], Green and Rivlin [14], and
Fried and Gurtin [15] are very significant from this point of view. Using the Fitzpatricks method, the authors
of the paper [16] elaborated new variational principles.

Other approaches to different aspects of generalized bodies can be found in [17–26].
Our work has the following structure. In Sect. 2, we define the two problems for the two sub-cylinders.

Section 3 is devoted to the main results.

2 Preliminaries

Let us consider a semi-infinite cylinder�×(0, ∞), the domain� being from the three-dimensional Euclidean
space R3 and assume that this regular region is occupied by a dipolar elastic body. Also, the content of two
sub-cylinders is a dipolar elastic body. We will denote by B a two-dimensional domain obtained by a cross
section in the cylinder, by a plane perpendicular to the generator of the cylinder. The boundary of B will be
denoted by ∂B. Also, the plane domains, corresponding to the two sub-cylinders, will be denoted by B1 and
B2 and their boundaries by ∂B1 and ∂B2, respectively. The components of the unit outward normal of ∂B will
be denoted by ni . Suppose that the boundaries ∂B, ∂B1 and ∂B2 are piecewise smooth curves to allow the
application of the divergence theorem.

As such, synthesizing, we will use three cylinders:

D = B × (0, ∞), D1 = B1 × (0,∞), D2 = B2 × (0, ∞),

and the interface surface:

S = (∂B1 ∩ ∂B2) × (0,∞).

All points P from B will be characterized by three rectangular coordinates x1, x2, x3, represented in a
fixed system of rectangular Cartesian axes Oxi , i = 1, 2, 3. For simplicity of writing, instead of the triplet
(x1, x2, x3), we will use the notation x . Except for expressly specified cases, the functions used below are
dependent on (t, x), where t is the time variable and the spatial variable x is used for the position. When there
is no risk of confusion, in specific cases, the time variable or/and the spatial variables of the functions are
omitted. The Cartesian vector and tensor notations are also used. In the case of repeating subscripts, we will
use the known rule of summation.

For the differentiation with respect to the time variable t , we will use the notation ḟ = ∂ f/∂t , that is, a
point placed overhead. Also, the notation f, j = ∂ f/∂x j , that is, a subscript preceded by a comma, designates
the partial differentiation of the respective function relative to the Cartesian coordinate x j .

The behavior of the dipolar body will be characterized by a displacement vector having the components
ui and a dipolar displacement tensor of components ϕi j .

Regarding the boundary ∂B of the section in the cylinder and the boundaries ∂B1 and ∂B2 of the section
in the sub-cylinders, we will take into account the following three situations:

(i) ∂B ∩ ∂B1 �= ∅, and ∂B ∩ ∂B2 �= ∅,
(ii) ∂B ∩ ∂B1 = ∅,
(iii) ∂B ∩ ∂B2 = ∅.
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As strain measures, we will use the tensors εi j , γi j and χi jk which are defined by means of the strain–
displacement relations (see Eringen [12]):

εi j (u) = 1

2

(
ui, j + u j,i

)
, γi j (u) = u j,i − ϕi j , χi jk(u) = ϕ jk,i . (1)

In previous equations, which are also called the geometric equations, u represents the displacement, that
is, u = (

ui , ϕi j
)
.

Because we restrict our considerations only to the linear theory, it is normal to consider the density of the
internal energy as being a quadratic form in relation to its constitutive variables, denoted by �. With the help
of the principle of conservation of energy, we can develop in series, relative to the initial reference, the internal
energy density.

As such, the internal energy density corresponding to the displacement u can be written in the following
form:

�(u) = 1

2
Ai jmnεi j (u)εmn(u) + Gi jmnεi j (u)γmn(u) + Fi jmnrεi j (u)χmnr (u)

+ 1

2
Bi jmnγi j (u)γmn(u) + Di jmnrγi j (u)χmnr (u) + 1

2
Ci jkmnrχi jk(u)χmnr (u). (2)

In this way, the tensors of the stress, τi j , σi j and μi jk are obtained with the help of the internal energy
density � by meas of the following relations

τi j = ∂�

∂εi j
, σi j = ∂�

∂γi j
, μi jk = ∂�

∂χi jk
.

Having the measures of strain, we can introduce the constitutive equations. As is known, these equations
express the tensors of the stress, namely, τi j , σi j and μi jk , in terms of the tensors of the deformation:

τi j (u) = Ai jmnεmn(u) + Gmni jγmn(u) + Fmnri jχmnr (u),

σi j (u) = Gi jmnεmn(u) + Bi jmnγmn(u) + Di jmnrχmnr (u),

μi jk(u) = Fi jkmnεmn(u) + Dmni jkγmn(u) + Ci jkmnrχmnr (u). (3)

In order to achieve the results, wemust impose to the strain energy density to be a positive definite quadratic
form with regard to the strain tensors εi j , γi j and χi jk .

As usual, the elastic coefficients Ai jmn , Bi jmn , Ci jkmnr , Di jmn , Fi jkmn , and Gi jkmn from Eqs. (2) and (3)
are characteristics of the material and are assumed to be bounded functions on �, which depend only on the
material points.

Furthermore, it is assumed that the above mentioned elasticity tensors satisfy the following relations of
symmetry in the domain �:

Ai jmn = Amni j = A jimn, Bi jmn = Bmni j , Ci jkmnr = Cmnri jk . (4)

We can consider that the form (2) of the internal energy density and the elastic coefficients Ai jmn , Bi jmn ,
Ci jkmnr , Di jmn , Fi jkmn , and Gi jkmn are for the cylinder B1 and the mass density of the dipolar elastic material
of B1 is �. In the cylinder B2, the mass density of the dipolar elastic material is μ and the elastic coefficients
can be denoted by Ai jmn , Bi jmn , Ci jkmnr , Di jmn , Fi jkmn , and Gi jkmn .

We will need the following restrictions imposed on the mass density � of the cylinder B1 and on the density
μ of the cylinder B2:

0 < c1 ≤ � ≤ c2 < ∞, −∞ < μ ≤ c3 < ∞, (5)

where c1, c2 and c3 are positive numbers.
In the absence of body forces and dipolar body forces, the basic equations in the sub-cylinder B1 receive

the following form
[(
Ai jmn + Gi jmn

)
εmn + (

Gmni j + Bi jmn
)
γmn + (

Fmnri j + Di jmnr
)
χmnr

]
, j = �üi ,

(
Fi jkmnεmn + Dmni jkγmn + Ci jkmnrχmnr

)
,i + G jkmnεmn+Bjkmnγmn + Djkmnrχmnr = Ikr ϕ̈ jr . (6)
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At the same time, in the sub-cylinder B2, we have the equations:
[(Ai jmn + Gi jmn

)
εmn + (Gmni j + Bi jmn

)
γmn + (Fmnri j + Di jmnr

)
χmnr

]
, j = μüi ,

(Fi jkmnεmn + Dmni jkγmn + Ci jkmnrχmnr
)
,i + G jkmnεmn + B jkmnγmn + D jkmnrχmnr = Jkr ϕ̈ jr . (7)

In order to simplify writing, in what follows, we will assume that there is a real and positive number α so
that

Ai jmn = αAi jmn, Bi jmn = αBi jmn, Ci jkmnr = αCi jkmnr ,

Di jmn = αDi jmn, Fi jkmn = αFi jkmn, Gi jkmn = αGi jkmn, Jmn = α Imn. (8)

By a convenient choice of α, we can ensure that at the interface between cylinder B and sub-cylinders B1
and B2, the solutions are smooth. For instance, if α = 1, we deduce the continuity of the traction across the
interface surfaces.

In view of convention (8), the static problem in the cylinder B2 is based on the following system of
equations:

[(
Ai jmn + Gi jmn

)
εmn + (

Gmni j + Bi jmn
)
γmn + (

Fmnri j + Di jmnr
)
χmnr

]
, j = 0,

(
Fi jkmnεmn + Dmni jkγmn + Ci jkmnrχmnr

)
,i + G jkmnεmn+Bjkmnγmn + Djkmnrχmnr = 0. (9)

By using the stress tensors, the dynamic problem in the cylinder B1 can be written in the short form
(
τi j + σi j

)
, j = �üi ,

μi jk,i + σ jk = Ikr ϕ̈ jr , (10)

and the dynamic problem in the cylinder B2:
(
τi j + σi j

)
, j = 0,

μi jk,i + σ jk = 0. (11)

We will be able to get the anticipated results if we impose certain conditions on the elastic coefficients.
Thus, we assume that there are positive constants C1, C2 and C3, so that

Ai jmnεi jεmn ≥ C1εi jεmn,

Bi jmnγi jγmn ≥ C2γi jγmn,

Ci jkmnrχi jkχmnr ≥ C3χi jkχmnr . (12)

Then, we suppose that there are positive constants C4, C5 and C6, so that from now on toward we have

Ai3mn Ai3rsεmnεrs ≤ C4Ai jmnεi jεmn,

Bi3mnBi3rsγmnγrs ≤ C5Bi jmnγi jγmn,

Ci3kmnrCi3klrsχmnrχlrs ≤ C6Ci jkmnrχi jkχmnr . (13)

Also, we will need to have the following conditions of asymptotic behavior

lim
t→∞ ui, j = lim

t→∞ u̇i, j = lim
t→∞ üi = 0,

lim
t→∞ ϕi j,k = lim

t→∞ ϕ̇i j,k = lim
t→∞ ϕ̈i j = 0, for every (x1, x2) ∈ B, (14)

all of these limits taking place uniformly with respect to x3.
In order to complete themixed initial boundary value problem in our context, wewill consider the following

homogeneous initial conditions

ui (x, 0) = u̇i (x, 0) = 0,

ϕi j (x, 0) = ϕ̇i j (x, 0) = 0, x ∈ B, (15)

and introduce the two kinds of boundary conditions, namely

ui (x, t) = 0, ϕi j (x, t) = 0, (x, t) ∈ ∂B × (0,∞), (16)

and

ui (x1, x2, 0, t) = u0 (x1, x2, t) , (x1, x2) ∈ B × {0}, t ∈ (0,∞). (17)

In the following we will study the behavior of the solutions of the system of Eqs. (10) and (11) which
satisfy the initial conditions (15) and the boundary conditions (16) and (17).
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3 Main results

First of all, we aim to obtain a decay evaluation regarding the solutions of the problem which consists of (10),
(11) and (15)–(17). For the sub-cylinder B2 in which the problem is static, we must consider some dynamical
deformations. Therefore, the kinetic energy is not null. Potential difficulties that arise from a mathematical
point of view will be avoided if we use the procedure proposed in the papers [12,13].

Let us introduce the notation

B(h) = {(x1, x2, x3) ∈ B : x3 > h} . (18)

In order to facility obtaining the decay estimate for the solutions, we will use the following functions

f (h, t) = −
∫ t

0

∫

B(h)

(t − s)
[
τi3εi3 + σi3γi3 + μi j3χi j3

]
dAds,

g(h, t) = −
∫ t

0

∫

B(h)

(t − s)
[
τi3,kεi3,k + σi3,kγi3,k + μi j3,kχi j3,k

]
dAds. (19)

Now, we extend the notation from (18):

D1(h) = {(x1, x2, x3) ∈ D1 : x3 > h} , D2(h) = {(x1, x2, x3) ∈ D2 : x3 > h} ,

S(h) = {(x1, x2, x3) ∈ S : x3 > h} .

Theunit normal vector to the surface S, oriented outward of sub-cylinder Bi , will be denoted byni , i = 1, 2.
Taking into account the initial conditions (15), the boundary conditions (16) and (17) and the asymptotic

conditions (14), we are led to the following four identities:

−
∫ t

0

∫

B1(h)

(t − s)
[
τi3εi3 + σi3γi3 + μi j3χi j3

]
dAds

= 1

2

∫ t

0

∫

D1(h)

[(
Ai jmnεmn + Gmni jγmn + Fmnri jχmnr

)
εi j

+ (
Gi jmnεmn + Bmni jγmn + Dmnri jχmnr

)
γi j

+ (
Fi jkmnεmn + Dmni jkγmn + Ci jkmnrχmnr

)
χi jk

]
dV ds

+ 1

2

∫ t

0

∫

D1(h)

[
�ui,3ui,3 + Ii jϕik,3ϕ jk,3

]
dV ds

+ 1

2

∫ t

0

∫

S(h)

[(
Ai jmnεmn + Gmni jγmn + Fmnri jχmnr

)
εi3 n1, j

+ (
Gi jmnεmn + Bmni jγmn + Dmnri jχmnr

)
γi3 n1, j

+ (
Fi jkmnεmn + Dmni jkγmn + Ci jkmnrχmnr

)
χi j3 n1,k

]
dAds; (20)

−
∫ t

0

∫

B2(h)

(t − s)
[
τi3εi3 + σi3γi3 + μi j3χi j3

]
dAds

= 1

2

∫ t

0

∫

D2(h)

[(
Ai jmnεmn + Gmni jγmn + Fmnri jχmnr

)
εi j

+ (
Gi jmnεmn + Bmni jγmn + Dmnri jχmnr

)
γi j

+ (
Fi jkmnεmn + Dmni jkγmn + Ci jkmnrχmnr

)
χi jk

]
dV ds

+ 1

2

∫ t

0

∫

S(h)

[(
Ai jmnεmn + Gmni jγmn + Fmnri jχmnr

)
εi3 n2, j

+ (
Gi jmnεmn + Bmni jγmn + Dmnri jχmnr

)
γi3 n2, j

+ (
Fi jkmnεmn + Dmni jkγmn + Ci jkmnrχmnr

)
χi j3 n2,k

]
dAds; (21)
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−
∫ t

0

∫

B1(h)

(t − s)
[
τi3,kεi3,k + σi3,kγi3,k + μi j3,kχi j3,k

]
dAds

= 1

2

∫ t

0

∫

D1(h)

[(
Ai jmnεmn,k + Gmni jγmn,k + Fmnri jχmnr,k

)
εi j,k

+ (
Gi jmnεmn,k + Bmni jγmn,k + Dmnri jχmnr,k

)
γi j,k

+ (
Fi jkmnεmn,l + Dmni jkγmn,l + Ci jkmnrχmnr,l

)
χi jk,l

]
dV ds

+ 1

2

∫ t

0

∫

D1(h)

[
�ui,kkui,kk + Ii jϕir,kkϕ jr,kk

]
dV ds

+ 1

2

∫ t

0

∫

S(h)

[(
Ai jmnεmn,k + Gmni jγmn,k + Fmnri jχmnr,k

)
εi3,k n1, j

+ (
Gi jmnεmn,k + Bmni jγmn,k + Dmnri jχmnr,k

)
γi3,k n1, j

+ (
Fi jkmnεmn,l + Dmni jkγmn,l + Ci jkmnrχmnr,l

)
χi j3,l n1,k

]
dAds; (22)

−
∫ t

0

∫

B1(h)

(t − s)
[
τi3,kεi3,k + σi3,kγi3,k + μi j3,kχi j3,k

]
dAds

= 1

2

∫ t

0

∫

D1(h)

[(
Ai jmnεmn,k + Gmni jγmn,k + Fmnri jχmnr,k

)
εi j,k

+ (
Gi jmnεmn,k + Bmni jγmn,k + Dmnri jχmnr,k

)
γi j,k

+ (
Fi jkmnεmn,l + Dmni jkγmn,l + Ci jkmnrχmnr,l

)
χi jk,l

]
dV ds

+ 1

2

∫ t

0

∫

S(h)

[(
Ai jmnεmn,k + Gmni jγmn,k + Fmnri jχmnr,k

)
εi3,k n1, j

+ (
Gi jmnεmn,k + Bmni jγmn,k + Dmnri jχmnr,k

)
γi3,k n1, j

+ (
Fi jkmnεmn,l + Dmni jkγmn,l + Ci jkmnrχmnr,l

)
χi j3,l n1,k

]
dAds. (23)

Taking into account Eqs. (20) and (21), the function f (h, t) from (19)1 becomes

f (h, t) = 1

2

∫ t

0

∫

D(h)

[(
Ai jmnεmn + Gmni jγmn + Fmnri jχmnr

)
εi j

+ (
Gi jmnεmn + Bmni jγmn + Dmnri jχmnr

)
γi j

+ (
Fi jkmnεmn + Dmni jkγmn + Ci jkmnrχmnr

)
χi jk

]
dV ds

+ 1

2

∫ t

0

∫

D1(h)

[
�ui,kui,k + Ii jϕir,kϕ jr,k

]
dV ds. (24)

Also, from (19)1 and (24) we deduce

f (h, t) ≤ t

(∫ t

0

∫

B

[
τi3τi3 + σi3σi3 + μi j3μi j3

]
dAds

)1/2

×
(∫ t

0

∫

B

[
εi3εi3 + γi3γi3 + χi j3χi j3

]
dAds

)1/2

≤ t

(∫ t

0

∫

B

(
C4Ai jmnεi jεmn+C5Bi jmnγi jγmn+C6Ci jkmnrχi jkχmnr

)
dAds

)1/2

×
(
CP(B)

∫ t

0

∫

B

[
ui,kui,k + ϕi j,kϕi j,k

]
dAds

)1/2

, (25)

where the constants C4, C5 and C6 are defined in (13) and CP(B) is the Poincare’s constant (see [4]) corre-
sponding to the domain B, defined by

1

CP(B)
= min

h∈C∞
0

∫
B |∇h|2dA
∫
B h2dA

.
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By using Eqs. (22) and (23), the function g(h, t) from (19)2 becomes

g(h, t) = 1

2

∫ t

0

∫

D(h)

[(
Ai jmnεmn,k + Gmni jγmn,k + Fmnri jχmnr,k

)
εi j,k

+ (
Gi jmnεmn,k + Bmni jγmn,k + Dmnri jχmnr,k

)
γi j,k

+ (
Fi jkmnεmn,l + Dmni jkγmn,l + Ci jkmnrχmnr,l

)
χi jk,l

]
dV ds

+ 1

2

∫ t

0

∫

D1(h)

[
�ui,kkui,kk + Ii jϕir,kkϕ jr,kk

]
dV ds. (26)

From (24) and (26), by direct calculations, we can obtain the partial derivatives with respect to h, which
will be useful in the following:

∂ f (h, t)

∂h
= −1

2

∫ t

0

∫

B(h)

[(
Ai jmnεmn + Gmni jγmn + Fmnri jχmnr

)
εi j

+ (
Gi jmnεmn + Bmni jγmn + Dmnri jχmnr

)
γi j

+ (
Fi jkmnεmn + Dmni jkγmn + Ci jkmnrχmnr

)
χi jk

]
dAds

− 1

2

∫ t

0

∫

B1(h)

[
�ui,kui,k + Ii jϕir,kϕ jr,k

]
dAds,

∂g(h, t)

∂h
= −1

2

∫ t

0

∫

B(h)

[(
Ai jmnεmn,k + Gmni jγmn,k + Fmnri jχmnr,k

)
εi j,k

+ (
Gi jmnεmn,k + Bmni jγmn,k + Dmnri jχmnr,k

)
γi j,k

+ (
Fi jkmnεmn,l + Dmni jkγmn,l + Ci jkmnrχmnr,l

)
χi jk,l

]
dAds

− 1

2

∫ t

0

∫

B1(h)

[
�ui,kkui,kk + Ii jϕir,kkϕ jr,kk

]
dAds. (27)

From (25) and (27), for every arbitrary positive ε, we obtain

f (h, t) ≤ 2t

(
− C1 ∂ f (h, t)

∂h

)1/2 (
− C2CP(B)

∂g(h, t)

∂h

)1/2

≤ − tεδ

(
∂ f (h, t)

∂h
+ 1

ε2

∂g(h, t)

∂h

)
, (28)

where C1 is determined by C1,C2 and C3 from (12), C2 is determined by C4,C5 and C6 from (13) and

δ = √
C1C2CP(B). (29)

Theorem 1 If
{
ui , ϕi j

}
is a solution of the systems of Eqs. (10) and (11) which satisfies the initial conditions

(15) in its homogeneous form, the boundary conditions (16) and the asymptotic conditions (14), then there is
a positive constant δ of the form (29) so that for every arbitrary positive ε we have the following estimate

f (h, t) ≤ tδε

h
F(0, t), (30)

where we used the notation

F(h, t) = f (h, t) + 1

ε2
g(h, t). (31)
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Proof From (28), taking into account expression of F(h, t) from (31), we deduce

F(h, t) + 1

tδε

∫ h

0
f (ξ, t)dξ ≤ F(0, t). (32)

Based on the elemental rule of product derivation, we deduce

∂

∂h
(h f (h, t)) = f (h, t) + h

∂ f

∂h
,

so that, taking into account that the spatial derivative of f (h, t) is not positive, we are led to

∂

∂h
(h f (h, t)) ≤ f (h, t).

If we integrate this inequality on the interval [0, h], we get the following inequality

h f (h, t) ≤
∫ h

0
f (ξ, t)dξ ≤ tδεF(0, t),

and this implies the desired inequality (30), which ends the proof of the theorem. ��
Remark Clearly, the function f (h, t) can be considered as a measure of the deformation, so that the estimate
from (30) is in fact a polynomial decay of solution. The statement becomes more convincing if we take the
particular case tδε = 1. In this situation, the estimation (30) gets the form

f (h, t) ≤ 1

h

[
f (0, t) + δ2t2g(0, t)

]
. (33)

At the end of our study, we want to obtain an upper bound for the amplitude term.
This will be expressed using the functions f (h, t) and g(h, t) of (19) and will be obtained by using the

boundary conditions (16) and (17).
To this aim, we will use a vector field having the components νi (x, t), and a tensor field having the

components η jk(x, t) defined on cylinder D × (0, t).

Theorem 2 Suppose that the vector field νi (x, t) and the tensor field η jk(x, t) satisfy the boundary conditions
(16) and (17). Assume that the vector together with its time derivatives and also the tensor and its time
derivative tend to zero, as x3 tends to ∞, uniformly with respect to x1, x2 and t. Then, these is an upper bound
for the amplitude term.

Proof From (10) we deduce that on B1 we have
(
τi j + σi j

)
ν̇i, j = [(

τi j + σi j
)
ν̇i

]
, j − �üi ν̇i ,

μi jk η̇ jk,i + σ jk η̇ jk = (
μi jk η̇ jk

)
,i − Ikr ϕ̈ jr η̇ jk, (34)

and from the dynamic problem (11) in the cylinder B2 we deduce:
(
τi j + σi j

)
ν̇i, j = [(

τi j + σi j
)
ν̇i

]
, j ,

μi jk η̇ jk,i + σ jk η̇ jk = (
μi jk η̇ jk

)
,i . (35)

In view of the relations (34), (35), the function f (h, t) from (19)1 receives the form

f (0, t) = −
∫ t

0

∫

B(0)
(t − s)

[
(τi3 + σi3) ν̇i + μi j3η̇i j

]
dAds

=
∫ t

0

∫

B
(t − s)

[(
τi j + σi j

)
ν̇i, j + μi jk η̇ jk,i

]
dV ds

−
∫ t

0

∫

B1
(t − s)

[
�u̇i ν̈i + Ikr ϕ̇ jr η̈ jk

]
dV ds +

∫ t

0

∫

B1

[
�u̇i ν̇i + Ikr ϕ̇ jr η̇ jk

]
dV ds. (36)
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Using the inequality between arithmetic and geometric mean, we obtain

1

2
f (0, t) ≤ m(t)

∫ t

0

∫

B

[
ν̇i, j ν̇i, j + η̇ jk,i η̇ jk,i + ν̈i ν̈i + η̈ jk η̈ jk

]
dV ds, (37)

where m(t) is a conveniently chosen positive function.
In view of the relations (34) and (35), by using the function g(h, t) from (19)2, we can obtain, in a similar

manner, the following estimation

1

2
g(0, t) ≤ m(t)

∫ t

0

∫

B

[
ν̈i, j ν̈i, j + η̈ jk,i η̈ jk,i + ...

ν i
...
ν i + ...

η jk
...
η jk

]
dV ds. (38)

In the following, we will use a particular form for the vector field (νi ) and, also, for the tensor field (η jk),
namely,

νi (x, t) = αi (x1, x2, t) e
−ax1 , η jk(x, t) = βi (x1, x2, t) e

−bx1, (39)

where a and b are arbitrary positive constants.
By direct calculations, we deduce that

∫ t

0

∫

B
ν̇i, j ν̇i, jdV ds = 1

2a

∫ t

0

∫

D

(
α̇i,m α̇i,m + a2α̇i α̇i

)
dAds, m = 1, 2,

∫ t

0

∫

B
η̇ jk,i η̇ jk,idV ds = 1

2b

∫ t

0

∫

D

(
β̇ jk,m β̇ jk,m + b2β̇ jk β̇ jk

)
dAds, m = 1, 2. (40)

Taking into account the inequalities (40), the estimate (37) becomes

f (0, t) ≤ m(t)

[∫ t

0

∫

B

(
1

a
α̇i,m α̇i,m + 1

b
β̇ jk,m β̇ jk,m

)
dAds

+ a
∫ t

0

∫

D
α̇i α̇idAds + b

∫ t

0

∫

D
β̇ jk β̇ jkdAds

+
∫ t

0

∫

D

(
1

a
α̈i α̈i + 1

b
β̈ jk β̈ jk

)
dAds

]
. (41)

Analogously, if we consider inequalities (40), then the estimate (38) receives the form

g(0, t) ≤ m(t)

[∫ t

0

∫

B

(
1

a
α̈i,m α̈i,m + 1

b
β̈ jk,m β̈ jk,m

)
dAds

+ a
∫ t

0

∫

D
α̈i α̈idAds + b

∫ t

0

∫

D
β̈ jk β̈ jkdAds

+
∫ t

0

∫

D

(
1

a
...
α i

...
α i + 1

b

...
β jk

...
β jk

)
dAds

]
. (42)

In view of (33), we obtain the following estimate for the amplitude term

f (0, t) + Cg(0, t) ≤ m(t)

[∫ t

0

∫

B

(
1

a
α̇i,m α̇i,m + 1

b
β̇ jk,m β̇ jk,m

)
dAds

+ a
∫ t

0

∫

D
α̇i α̇idAds + b

∫ t

0

∫

D
β̇ jk β̇ jkdAds +

∫ t

0

∫

D

(
1

a
α̈i α̈i + 1

b
β̈ jk β̈ jk

)
dAds

]

+Cm(t)

[∫ t

0

∫

B

(
1

a
α̈i,m α̈i,m + 1

b
β̈ jk,m β̈ jk,m

)
dAds

+ a
∫ t

0

∫

D
α̈i α̈idAds+b

∫ t

0

∫

D
β̈ jk β̈ jkdAds+

∫ t

0

∫

D

(
1

a
...
α i

...
α i+ 1

b

...
β jk

...
β jk

)
dAds

]
,

where the positive constants a and b are arbitrary, and the function m(t) is computable.
Clearly, if we give two particular values for constants a and b, we will get an upper bound for the amplitude

term. ��
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4 Conclusions

Weconsidered a semi-infinite cylinder occupied by amaterialwith a dipolar structure. The cylinder is composed
by two sub-cylinders, one of them is a dynamic cylinder and the other is static, as their spatial behaviors are
of different kind. However, we proved that the decay of solutions can be controlled. Also, we showed how it
can be obtained an upper bound for the amplitude term, by using the boundary conditions.
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