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Abstract. We consider perturbations of nonlinear eigenvalue problems driven

by a nonhomogeneous differential operator plus an indefinite potential. We con-

sider both sublinear and superlinear perturbations and we determine how the
set of positive solutions changes as the real parameter λ varies. We also show

that there exists a minimal positive solution uλ and determine the monotonic-

ity and continuity properties of the map λ 7→ uλ. Special attention is given to
the particular case of the p-Laplacian.

1. Introduction. The aim of this paper is to study the following nonlinear non-
homogeneous parametric Robin problem −div a(Du(z)) + ξ(z)u(z)p−1 = λu(z)p−1 + f(z, u(z)) in Ω,

∂u

∂na
+ β(z)up−1 = 0 on ∂Ω, u > 0, λ ∈ R, 1 < p <∞.

 (Pλ)

In this problem, Ω ⊆ RN is a bounded domain with a C2-boundary ∂Ω. The map
a : RN → RN involved in the differential operator, is continuous, strictly monotone
(hence maximal monotone, too) and satisfies some other regularity and growth con-
ditions listed in hypotheses H(a) below (see Section 2). These extra-conditions on
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a(·) are not restrictive and so our framework incorporates many differential opera-
tors of interest such as the p-Laplacian and the (p, q)-Laplacian (that is, the sum of
a p-Laplacian and a q-Laplacian). The potential function ξ ∈ L∞(Ω) is indefinite
(that is, sign changing). In the reaction (right-hand side of the equation), we have
a parametric term u 7→ λup−1 and a perturbation f(z, x) which is a Carathéodory
function (that is, for all x ∈ R the mapping z 7→ f(z, x) is measurable and for
almost all z ∈ Ω the mapping x 7→ f(z, x) is continuous).

We consider two distinct cases. In the first one, f(z, ·) is (p − 1)-sublinear near
+∞, while in the second we assume that f(z, ·) is (p − 1)-superlinear. In the
boundary condition, ∂u

∂na
denotes the conormal derivative of u, defined by extension

of the map

L1(Ω) 3 u 7→ (a(Du), n)RN ,

with n(·) being the outward unit normal on ∂Ω. The boundary coefficient β(·) is
non-negative and the case β ≡ 0 is also included and corresponds to the Neumann
problem.

We look for positive solutions of (Pλ) and we want to determine how the set
of positive solutions changes as the parameter λ moves on the real line R. More
precisely, we show that there is a critical parameter value λ∗ ∈ R such that for
λ < λ∗ problem (Pλ) has

• at least one positive smooth solutions, when f(z, ·) is (p− 1)-sublinear;
• at least two positive smooth solutions, when f(z, ·) is (p− 1)-superlinear.

For λ ≥ λ∗, problem (Pλ) has no positive solutions.
In the particular case of the p-Laplace differential operator (that is, a(y) =

|y|p−2y for all y ∈ RN ), problem (Pλ) can be viewed as a perturbation of the
classical eigenvalue problem for the p-Laplacian. In this particular case, we can

identify λ∗ as the principal eigenvalue λ̂1 of the differential operator u 7→ −∆pu+
ξ(z)|u|p−2u with the Robin boundary condition. This was already observed by
these authors for the semilinear problem (that is, p = 2 hence a(y) = y for all y ∈
RN ), see Papageorgiou, Rădulescu & Repovš [21]. Also, for both cases (sublinear
and superlinear), we establish the existence of a smallest positive solution uλ and
determine the monotonicity and continuity properties of the map λ 7→ uλ. Finally
in the sublinear case we address the question of uniqueness of the solution.

Nonlinear, nonhomogeneous parametric Robin problems were also studied by Au-
tuori & Pucci [2], Colasuonno, Pucci & Varga [5], Fragnelli, Mugnai & Papageorgiou
[7], Papageorgiou, Rădulescu & Repovš [22, 23], and Perera, Pucci & Varga [24].

Our approach is variational, using results from the critical point theory and also
truncation, perturbation and comparison techniques.

2. Mathematical background and hypotheses. Let X be a Banach space and
X∗ its topological dual. We denote by 〈·, ·〉 the duality brackets for the pair (X∗, X).
Given ϕ ∈ C1(X,R), we say that ϕ satisfies the “Cerami condition” (the “C-
condition” for short), if the following property holds:

“Every sequence {un}n≥1 ⊆ X such that

{ϕ(un)}n≥1 ⊆ R is bounded and (1 + ||un||)ϕ′(un)→ 0 in X∗ as n→∞,

admits a strongly convergent subsequence.”

In what follows, we denote by Kϕ the critical set of ϕ, that is,

Kϕ = {u ∈ X : ϕ′(u) = 0}.
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Also, if c ∈ R, then
Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c}.

Using the notion of the C-condition, we have the following minimax theorem,
known in the literature as the “mountain pass theorem”.

Theorem 2.1. If ϕ ∈ C1(X,R) satisfies the C-condition, u0, u1 ∈ X, ||u1− u0|| >
ρ > 0,

max{ϕ(u0), ϕ(u1)} < inf{ϕ(u) : ||u− u0|| = ρ} = mρ

and c = inf
γ∈Γ

max
0≤t≤1

ϕ(γ(t)) with Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}, then

c ≥ mρ and c is a critical value of ϕ (that is, we can find û ∈ X such that ϕ′(û) = 0
and ϕ(û) = c).

In the analysis of problem (Pλ), we will use the Sobolev space W 1,p(Ω), the
Banach space C1(Ω) and the “boundary” Lebesgue spaces Lr(∂Ω), 1 ≤ r ≤ ∞. We
denote by || · || the norm of W 1,p(Ω) defined by

||u|| =
(
||u||pp + ||Du||pp

)1/p
for all u ∈W 1,p(Ω).

The Banach space C1(Ω) is an ordered Banach space with positive (order) cone
C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}. This cone has a nonempty interior
given by

intC+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣∣∣
∂Ω∩u−1(0)

< 0

}
.

Evidently, intC+ contains the open set D+ defined by

D+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.
In fact, D+ is the interior of C+ when C1(Ω) is furnished with the C(Ω)-norm

topology.
On ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·).

Using this measure on ∂Ω, we can define in the usual way the “boundary” Lebesgue
spaces Lr(∂Ω). From the theory of Sobolev spaces, we know that there exists a
unique continuous linear map γ0 : W 1,p(Ω) → Lp(∂Ω), known as the “trace map”,
such that

γ0(u) = u|∂Ω for all u ∈W 1,p(Ω) ∩ C(Ω).

So, the trace map extends the notion of boundary value to all Sobolev functions.
The map γ0(·) is compact into Lr(∂Ω) for all r ∈ [1, (N − 1)p/(N − p)) when p < N ,
and into Lr(∂Ω) for all 1 ≤ r <∞ when p ≥ N. Also, we have

im γ0 = W
1
p ,p(∂Ω)

(
1

p
+

1

p′
= 1

)
and ker γ0 = W 1,p

0 (Ω).

In what follows, for the sake of notational simplicity, we drop the use of the trace
map γ0(·). All restrictions of Sobolev functions on ∂Ω, are understood in the sense
of traces.

Let ϑ ∈ C1(0,∞) and assume that it satisfies the following growth conditions:

0 < ĉ ≤ ϑ′(t)t

ϑ(t)
≤ c0 and c1t

p−1 ≤ ϑ(t) ≤ c2(tτ−1 + tp−1) for all t > 0, (1)

with 0 < c1, c2 and 1 ≤ τ < p.
The hypotheses on the map a(·) involved in the differential operator of (Pλ), are

as follows:
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H(a) : a(y) = a0(|y|)y for all y ∈ RN with a0(t) > 0 for all t > 0 and

(i) a0 ∈ C1(0,∞), t 7→ a0(t)t is strictly increasing on (0,∞), a0(t)t → 0+ as

t→ 0+ and limt→0+
a′0(t)t
a0(t) > −1;

(ii) |∇a(y)| ≤ c3 ϑ(|y|)
|y| for all y ∈ RN\{0}, and for some c3 > 0;

(iii) (∇a(y)ξ, ξ)RN ≥ ϑ(|y|)
|y| |ξ|

2 for all y ∈ RN\{0}, ξ ∈ RN ;

(iv) if G0(t) =
∫ t

0
a0(s)sds then there exists q ∈ (1, p] such that t 7→ G0(t1/q) is

convex, limt→0+
qG0(t)
tq = c̃ > 0 and 0 ≤ pG0(t)− a0(t)t2 for all t ≥ 0.

Remark 1. Hypotheses H(a)(i)(ii)(iii) permit the use of the nonlinear regularity
theory of Lieberman [13] and of the nonlinear maximum principle of Pucci & Serrin
[25]. Hypothesis H(a)(iv) serves the needs of our problem. It is a mild condition
which is satisfied in all cases of interest (see the examples below). These hypotheses
imply that G0(·) is strictly increasing and strictly convex. We set G(y) = G0(|y|)
for all y ∈ RN . We have

∇G(y) = G′0(|y|) y
|y|

= a0(|y|)y = a(y) for all y ∈ RN ,∇G(0) = 0.

So, G0(·) is the primitive of a(·) and G(·) is convex, G(0) = 0. Therefore

G(y) ≤ (a(y), y)RN for all y ∈ RN . (2)

The next lemma summarizes the main properties of the map a(·). It is an easy
consequence of hypotheses H(a)(i), (ii), (iii).

Lemma 2.2. If hypotheses H(a)(i)(ii)(iii) hold, then

(a) y 7→ a(y) is continuous and strictly monotone (thus, maximal monotone, too);
(b) |a(y)| ≤ c4

(
1 + |y|p−1

)
for all y ∈ RN , and for some c4 > 0;

(c) (a(y), y)RN ≥ c1
p−1 |y|

p for all y ∈ RN .

Using this lemma and relation (2), we obtain the following growth properties for
the primitive G(·)
Corollary 1. If hypotheses H(a)(i), (ii), (iii) hold, then c1

p(p−1) |y|
p ≤ G(y) ≤

c5(1 + |y|p) for all y ∈ RN , and for some c5 > 0.

Examples. The following maps a(·) satisfy hypotheses H(a) (see also Papageor-
giou & Rădulescu [18, 19]):

(a) a(y) = |y|p−2y, 1 < p <∞.
This map corresponds to the p-Laplace differential operator defined by

∆pu = div
[
|Du|p−2Du

]
for all u ∈W 1,p(Ω).

(b) a(y) = |y|p−2y + |y|q−2y, 1 < q < p <∞.
This map corresponds to the (p, q)-Laplace differential operator defined by

∆pu+ ∆qu for all u ∈W 1,p(Ω).

Such operators arise in problems of mathematical physics (see Cherfils &
Ilyasov [4]). A survey of some recent results on such equations with several
relevant references, can be found in Marano & Mosconi [14].

(c) a(y) = [1 + |y|2]
p−2
2 y, 1 < p <∞.

This map corresponds to the generalized p-mean curvature differential opera-
tor defined by

div [(1 + |Du|2)
p−2
2 Du] for all u ∈W 1,p(Ω).
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(d) a(y) : |y|p−2y
(

1 + 1
1+|y|p

)
, 1 < p <∞

Let A : W 1,p(Ω)→W 1,p(Ω)∗ be the nonlinear map defined by

〈A(u), h〉 =

∫
Ω

(a(Du), Dh)RNdz for all u, h ∈W 1,p(Ω).

The next proposition establishes the properties of A(·) and is a special case of a
more general result of Gasinski & Papageorgiou [9] (see also Gasinski & Papageor-
giou [10, Problem 2.192]).

Proposition 1. If hypotheses H(a) hold, then A(·) is bounded (that is, maps
bounded sets to bounded sets), continuous, monotone (thus maximal monotone, too)

and of type (S)+, that is, if un
w−→ u in W 1,p(Ω) and lim supn→∞〈A(un), un−u〉 ≤ 0,

then un → u in W 1,p(Ω).

We will also need the following strong comparison principle due to Papageorgiou,
Rădulescu & Repovš [21].

Proposition 2. If hypotheses H(a) hold, k ∈ L∞(Ω) with k(z) ≥ 0 for almost all
z ∈ Ω, h1, h2 ∈ L∞(Ω)

0 < γ̃ ≤ h2(z)− h1(z) for almost all z ∈ Ω

and u, v ∈ C1,α(Ω) with α ∈ (0, 1], u ≤ v and

−div a(Du) + k(z)|u|p−2u = h1(z) for almost all z ∈ Ω,

−div a(Dv) + k(z)|v|p−2v = h2(z) for almost all z ∈ Ω,

then v − u ∈ intC+.

We introduce the hypotheses on the potential function ξ(·) and the boundary
coefficient β(·)
H(ξ) : ξ ∈ L∞(Ω);

H(β) : β ∈ C0,α(∂Ω) with α ∈ (0, 1) and β(z) ≥ 0 for all z ∈ ∂Ω.

Remark 2. The case β ≡ 0 corresponds to the Neumann problem.

Let µ : W 1,p(Ω)→ R be the C1-functional defined by

µ(u) =

∫
Ω

pG(Du)dz +

∫
Ω

ξ(z)|u|pdz +

∫
∂Ω

β(z)|u|pdσ for all u ∈W 1,p(Ω).

Consider a Carathéodory function f0 : Ω× R→ R satisfying

|f0(z, x)| ≤ a0(z)(1 + |x|r−1) for almost all z ∈ Ω, and for all x ∈ R,

with a0 ∈ L∞(Ω) and 1 ≤ r ≤ p∗ =

{ Np
N−p if p < N

+∞ if N ≤ p
(the critical Sobolev

exponent).
We set F0(z, x) =

∫ x
0
f0(z, s)ds and consider the C1-functional ϕ0 : W 1,p(Ω)→ R

defined by

ϕ0(v) =
1

p
µ(u)−

∫
Ω

F0(z, u)dz for all u ∈W 1,p(Ω).

From Papageorgiou & Rădulescu [20] we have the following proposition. The
result is essentially an outgrowth of the nonlinear regularity theory of Lieberman
[13].
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Proposition 3. Assume that hypotheses H(a) hold and u0 ∈ W 1,p(Ω) is a local
C1(Ω)-minimizer of ϕ0(·), that is, there exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1(Ω) with ||h||C1(Ω) ≤ ρ1.

Then u0 ∈ C1,α(Ω) for some α ∈ (0, 1) and u0 is a local W 1,p(Ω)-minimizer of ϕ0,
that is, there exists ρ2 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈W 1,p(Ω) with ||h|| ≤ ρ2.

We will also use some facts about the spectrum of the following nonlinear eigen-
value problem: −∆ru(z) + ξ(z)|u(z)|r−2u(z) = λ̂|u(z)|r−2u(z) in Ω,

∂u

∂nr
+ β(z)|u|r−2u = 0 on ∂Ω, 1 < r <∞.

 (3)

In this case, the conormal derivative ∂u
∂nr

is defined by

∂u

∂nr
= |Du|r−2 ∂u

∂n
for all u ∈W 1,r(Ω).

As before, n(·) denotes the outward unit normal on ∂Ω. We say that λ̂ ∈ R is an
“eigenvalue”, if problem (3) admits a nontrivial solution û ∈W 1,r(Ω), known as an

“eigenfunction” corresponding to the eigenvalue λ̂. The nonlinear regularity theory
of Lieberman [13] (see also Gasinski & Papageorgiou [8, pp. 737-738]), implies
that û ∈ C1(Ω). From Fragnelli, Mugnai & Papageorgiou [7] (see also Mugnai &
Papageorgiou [16] and Papageorgiou & Rădulescu [17], where special cases of (3)
are discussed), we have the following property.

Proposition 4. If hypotheses H(ξ), H(β) hold, then problem (3) admits a smallest

eigenvalue λ̂1 = λ̂1(r, ξ, β) ∈ R such that

(a) λ̂1 is isolated (that is, if σ̂(r) denotes the spectrum of (3), then we can find

ε > 0 such that (λ̂1, λ̂1 + ε) ∩ σ̂(r) = ∅);

(b) λ̂1 is simple (that is, if û, v̂ ∈ C1(Ω) are eigenfunctions corresponding to λ̂1,

then û = ξ̂v̂ for some ξ̂ ∈ R\{0});
(c) we have

λ̂1 = inf

{
µr(u)

||u||rr
: u ∈W 1,r(Ω), u 6= 0

}
, (4)

with

µr(u) = ‖Du‖rr +

∫
Ω

ξ(z)|u|rdz +

∫
∂Ω

β(z)|u|rdσ.

In (4), the infimum is realized on the corresponding one-dimensional eigenspace.
The above properties imply that the elements of this eigenspace have fixed sign.
We denote by û1 = û1(r, ξ, β) the positive, Lr-normalized (that is, ||û1||r = 1)

eigenfunction corresponding to λ̂1 = λ̂(r, ξ, β). The nonlinear Hopf lemma (see
Pucci & Serrin [25, pp. 111, 120] and Gasinski & Papageorgiou [8, p. 738]) implies
that û1 ∈ D+. Moreover, if û is an eigenfunction corresponding to an eigenvalue

λ̂ 6= λ̂1, then û is nodal (that is, sign-changing).
For every x ∈ R, let x± = max{±x, 0}. Then given u ∈ W 1,p(Ω), we set

u±(·) = u(·)±. We know that

u± ∈W 1,p(Ω), |u| = u+ + u−, u = u+ − u−.
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Given a measurable function k : Ω × R → R (for example, a Carathéodory
function), we denote by Nk(·) the Nemytskii map corresponding to k(·, ·), that is,

Nk(u)(·) = k(·, u(·)) for all u ∈W 1,p(Ω).

If v, u ∈W 1,p(Ω) and v ≤ u, then we set

[v, u] = {y ∈W 1,p(Ω) : v(z) ≤ y(z) ≤ u(z) for almost all z ∈ Ω}
[u) = {y ∈W 1,p(Ω) : u(z) ≤ y(z) for almost all z ∈ Ω}.

3. (p−1)-sublinear perturbation. In this section, we examine the case where the
perturbation f(z, x) in problem (Pλ) is (p− 1)-sublinear near +∞. More precisely,
the hypotheses on f(z, x) are the following:

H(f)1: f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for
almost all z ∈ Ω and

(i) for every ρ > 0, there exists aρ ∈ L∞(Ω) such that

|f(z, x)| ≤ aρ(z) for almost all z ∈ Ω, and for all 0 ≤ x ≤ ρ;

(ii) limx→+∞
f(z,x)
xp−1 = 0 uniformly for almost all z ∈ Ω;

(iii) with q ∈ (1, p] as in hypothesis H(a)(iv) we have

lim
x→0+

f(z, x)

xq−1
= +∞ uniformly for almost all z ∈ Ω;

(iv) for every ρ > 0, there exists ξ̂ρ > 0 such that for almost all z ∈ Ω, then
function

x 7→ f(z, x) + ξ̂ρx
p−1

is nondecreasing on [0, ρ].

Remark 3. Since we are looking for positive solutions and all the above hypotheses
concern the positive semi-axis R+ = [0,+∞), we may assume without any loss of
generality that f(z, x) = 0 for almost all z ∈ Ω, and for all x ≤ 0. Hypothesis
H(f)1(ii) implies that f(z, ·) is (p−1)-superlinear near +∞. Hypothesis H(f)1(iii)
implies that f(z, ·) is (q − 1)-superlinear near 0+ (that is, f(z, ·) exhibits a q-
concave term near 0+). Hypothesis H(f)1(iv) is satisfied if for example f(z, ·) is
differentiable and for every ρ > 0, there exists ηρ > 0 such that f ′x(z, x)x ≥ −ηρxp−1

for almost all z ∈ Ω, and for all 0 ≤ x ≤ ρ. We stress that no global sign condition
is imposed on f(z, ·).

Example. The following function satisfies hypotheses H(f)1. For the sake of
simplicity we drop the z-dependence:

f(z) =

 0 if x < 0
xτ−1 − 2xq−1 if 0 ≤ x ≤ 1
xr−1 − 2xs−1 if 1 < x

with τ < q ≤ p and 1 < s < r < p. Note that f(·) changes sign.
Let

L = {λ ∈ R : problem (Pλ) has a positive solution},
Sλ = the set of all positive solutions of problem (Pλ).

Proposition 5. If hypotheses H(a), H(ξ), H(β), H(f)1 hold, then L 6= ∅ and Sλ ⊆
D+.
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Proof. Let η > ||ξ||∞ and consider the following Carathéodory function

eλ(z, x) =

{
0 if x ≤ 0
(λ+ η)xp−1 + f(z, x) if 0 < x,

(5)

for all λ ∈ R.
We set Eλ(z, x) =

∫ x
0
eλ(z, s)ds and consider the C1-functional ϕλ : W 1,p(Ω)→

R defined by

ϕλ(u) =
1

p
µ(u) +

η

p
||u||pp −

∫
Ω

Eλ(z, u)dz for all u ∈W 1,p(Ω).

Let F (z, x) =
∫ x

0
f(z, s)ds. Hypotheses H(f)1(i), (ii) imply that given ε > 0, we

can find c6 = c6(ε) > 0 such that

F (z, x) ≤ ε

p
xp + c6 for almost all z ∈ Ω, and for all x ≥ 0. (6)

Using (5), (6), Corollary 1 and hypothesis H(β), we have

ϕλ(u) ≥ c1
p(p− 1)

||Du||pp +
1

p

∫
Ω

[ξ(z) + η − (λ+ ξ)] |u|pdz − c7 for some c7 > 0.

Choosing λ ∈ R such that λ+ ε < η − ||ξ||∞, we can write

ϕλ(u) ≥ c1
p(p− 1)

||Du||pp + c8||u||pp − c7 for some c8 > 0,

⇒ ϕλ(·) is coercive.

By the Sobolev embedding theorem and the compactness of the trace map we
deduce that ϕ(·) is sequentially weak lower semicontinuous. So, by the Weierstrass-
Tonelli theorem, we can find uλ ∈W 1,p(Ω) such that

ϕλ(uλ) = inf
{
ϕλ(u) : u ∈W 1,p(Ω)

}
. (7)

Hypothesis H(a)(iv) implies that given c̃0 > c̃, we can find δ ∈ (0, 1) such that

G(y) ≤ c̃0
q
|y|q for all |y| ≤ δ. (8)

Hypothesis H(f)(iii) implies that given any ϑ > 0, by choosing δ > 0 even
smaller if necessary, we can also have

F (z, x) ≥ ϑ

q
xq for almost all z ∈ Ω, and for all 0 ≤ x ≤ δ. (9)

Let λ̂1 = λ̂1(q, ξ0, β0) and û1 = û1(q, ξ0, β0) ∈ D+ with ξ0 = 1
c̃0
ξ, β0 = 1

c̃0
β. We

choose small t ∈ (0, 1) such that

0 ≤ tû1(z) ≤ δ and |D(tû1)(z)| ≤ δ for all z ∈ Ω. (10)

Using (5), (8), (9), (10), we have

ϕλ(tû1) ≤ c̃0t
q

q
||Dû1||qq +

1

p

∫
Ω

ξ(z)|tû1|pdz +
1

p

∫
∂Ω

β(z)|tû1|pdσ

−λt
p

p
||û1||pp −

ϑtq

q
(recall that ||û1||q = 1)

≤ c̃0t
q

q

(
||Dû1||qq +

∫
Ω

ξ0|û1|qdz +

∫
∂Ω

β0(z)|û1|qdσ
)
− ϑ

q
tq

(since 0 < δ < 1 and q ≤ p)
≤ tq

q

(
c̃0λ̂1 − ϑ

)
.
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But ϑ > 0 is arbitrary. So, choosing ϑ > c̃0λ̂1, we see that

ϕλ(tû1) < 0,
⇒ ϕλ(uλ) < 0 = ϕλ(0) (see (7)),
⇒ uλ 6= 0.

From (7) we have for all h ∈W 1,p(Ω)

ϕ′λ(uλ) = 0

⇒ 〈A(uλ), h〉+

∫
Ω

(ξ + η)|uλ|p−2uλhdz +

∫
∂Ω

βλ|uλ|p−2uλhdσ

=

∫
Ω

eλ(z, uλ)hdz. (11)

In (11) we choose h = −u−λ ∈W 1,p(Ω). Then

c1
p− 1

||Du−λ ||pp + 1
p

∫
Ω

[ξ(z) + η](u−λ )pdz ≤ 0

(see Lemma 2.2, hypothesis H(β) and (5))
⇒ uλ ≥ 0, uλ 6= 0 (recall that η > ||ξ||∞).

It follows from (5) and (11) that

−div a(Duλ(z)) + ξ(z)uλ(z)p−1 = λuλ(z)p−1 + f(z, uλ(z)) for almost all z ∈ Ω
∂u

∂na
+ β(z)up−1

λ = 0 on ∂Ω (see Papageorgiou & Rădulescu [17]).

(12)
From (12) and Papageorgiou & Rădulescu [20], we have uλ ∈ L∞(Ω). Then the

nonlinear regularity theory of Lieberman [13] implies that uλ ∈ C+\{0}.
Let ρ = ||uλ||∞ and let ξ̂ρ > 0 be as postulated by hypothesis H(f)(iv). Then

from (35) we have

div a(Duλ(z)) ≤
(
||ξ||∞ + ξ̂ρ

)
uλ(z)p−1 for almost all z ∈ Ω,

⇒ uλ ∈ D+ (see Pucci & Serrin [25, pp. 111, 120]).

Therefore we conclude that λ ∈ L and so L 6= ∅ and also Sλ ⊆ D+.

Next, we show that L is a half-line.

Proposition 6. If hypotheses H(a), H(ξ), H(β), H(f)1 hold, λ ∈ L and ϑ < λ,
then ϑ ∈ L.

Proof. By hypothesis, λ ∈ L. So, we can find uλ ∈ Sλ ⊆ D+. With η > ||ξ||∞
as before, we introduce the following truncation-perturbation of the reaction in
problem (Pλ):

kϑ(z, x) =

 0 if x < 0
(ϑ+ η)xp−1 + f(z, x) if 0 ≤ x ≤ uλ(z)
(ϑ+ η)uλ(z)p−1 + f(z, uλ(z)) if uλ(z) < x.

(13)

This is a Carathéodory function. We set Kϑ(z, x) =
∫ x

0
kϑ(z, s)ds and consider

the C1-functional ϕ̂ϑ : W 1,p(Ω)→ R defined by

ϕ̂ϑ(u) =
1

p
µ(u) +

η

p
||u||pp −

∫
Ω

Kϑ(z, u)dz for all u ∈W 1,p(Ω).
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Clearly, ϕ̂ϑ(·) is coercive (see (13)) and sequentially weakly lower semicontinuous.
So, we can find uϑ ∈W 1,p(Ω) such that

ϕ̂ϑ(uϑ) = inf
{
ϕ̂ϑ(u) : u ∈W 1,p(Ω)

}
. (14)

As in the proof of Proposition 5, using hypotheses H(a)(iv) and H(f)(iii), we
show that ϕ̂ϑ(uϑ) < 0 = ϕ̂ϑ(0), hence uϑ 6= 0. From (14) we have

ϕ̂′ϑ(uϕ) = 0,

⇒ 〈A(uϑ), h〉+

∫
Ω

(ξ(z) + η) |uϑ|p−2uϑhdz +

∫
∂Ω

β(z)|uϑ|p−2uϑhdσ (15)

=

∫
Ω

kϑ(z, uϑ)hdz for all h ∈W 1,p(Ω)

In (15) we first choose h = −u−ϑ ∈ W 1,p(Ω). Then using Lemma 2 and (13) we
obtain

c1
p− 1

||Du−ϑ ||
p
p +

∫
Ω

[ξ(z) + η] (u−ϑ )pdz ≤ 0 (see hypothesis H(β)),

⇒ uϑ ≥ 0, uϑ 6= 0.

Next, in (15) we choose h = (uϑ − uλ)+ ∈W 1,p(Ω). Then

〈A(uϑ), (uϑ − uλ)+〉+

∫
Ω

(ξ(z) + η)up−1
ϑ (uϑ − uλ)+dz

+

∫
∂Ω

β(z)up−1
ϑ (uϑ − uλ)+dσ

=

∫
Ω

((ϑ+ η)up−1
λ + f(z, uλ))(uϑ − uλ)+dz (see (13))

≤
∫

Ω

((λ+ η)up−1
λ + f(z, uλ)(uϑ − uλ)+dz (recall that ϑ < λ)

= 〈A(uλ), (uϑ − uλ)+)〉+

∫
Ω

(ξ(z) + η)up−1
λ (uϑ − uλ)+dz

+

∫
∂Ω

β(z)up−1
λ (uϑ − uλ)+dσ

(recall that uλ ∈ Sλ)
⇒ uϑ ≤ uλ.

We have proved that

uϑ ∈ [0, uλ], uϑ 6= 0. (16)

It follows from (13), (15), (16) that ϑ ∈ L and uϑ ∈ Sϑ ⊆ D+.

Let λ∗ = supL.

Proposition 7. If hypotheses h(a), H(ξ), H(β), H(f)1 hold, then λ∗ < +∞.

Proof. Hypotheses H(ξ), H(f)1 imply that for large enough λ̃ > 0 we have

(λ̃− ξ(z))xp−1 + f(z, x) ≥ xp−1 for almost all z ∈ Ω, and for all x ≥ 0. (17)

Let λ > λ̃ and suppose that λ ∈ L. Then by Proposition 5 we can find u ∈ Sλ ⊆
D+. We set

m = min
Ω
u > 0 (since u ∈ D+). (18)

For δ > 0 we set mδ = m + δ > 0. Also, let ρ = ||u||∞ and let ξ̂ρ > 0 be

as postulated by hypothesis H(f)1(iv). We can always take ξ̂ρ > max{λ, ||ξ||∞}.
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We have that for almost all z ∈ Ω the function x 7→ (λ + ξ̂ρ)x
p−1 + f(z, x) is

nondecreasing on [0, ρ]. We have

−div a(Dmδ) + (ξ(z) + ξ̂ρ)m
p−1
δ

≤ (ξ(z) + ξ̂ρ)m
p−1 + γ(δ) with γ(δ)→ 0+ as δ → 0+

≤ (λ̃+ ξ̂ρ)m
p−1 + f(z,m) + γ(δ) (see (17))

= (λ+ ξ̂ρ)m
p−1 + f(z,m)− (λ− λ̃)mp−1 + γ(δ)

≤ (λ+ξ̂ρ)m
p−1+f(z,m) for small enough δ > 0 (so that γ(δ) < (λ−λ̃)mp−1)

≤ (λ+ ξ̂ρ)u
p−1 + f(z, u) (see (18))

= −div a(Du) + (ξ(z) + ξ̂ρ)u
p−1.

Let
h1(z) = (ξ(z) + ξ̂ρ)m

p−1 + γ(δ)

h2(z) = (λ+ ξ̂ρ)u
p−1 + f(z, u).

Evidently, h1, h2 ∈ L∞(Ω) and for δ > 0 small we have

0 < γ̃ ≤ h2(z)− h1(z) for almost all z ∈ Ω.

So, by Proposition 2 for small enough δ > 0 we have

u−mδ ∈ intC+,

a contradiction to (18). Therefore λ 6∈ L and so λ∗ ≤ λ̃ < +∞.

Fix λ < λ∗. Then by Proposition 6 we have λ ∈ L. We will show that Sλ ⊆ D+

admits a smallest element. Let r ∈ (p, p∗). On account of hypotheses H(f)1 we can
find c9 > 0 and c10 = c10(λ) > 0 both large enough such that

λxp−1 + f(z, x) ≥ c9xq−1 − c10x
r−1 for almost all z ∈ Ω, and for all x ≥ 0. (19)

Motivated by this one-sided growth condition on the reaction of problem (Pλ),
we consider the following auxiliary nonlinear nonhomogeneous Robin problem −div a(Du(z)) + |ξ(z)|up−1 = c9u(z)q−1 − c10u(z)r−1 in Ω,

∂u

∂na
+ β(z)up−1 = 0 on ∂Ω, u > 0.

 (20)

Proposition 8. If hypotheses H(a), H(ξ), H(β) hold and c9, c10 > 0 are both large
enough, then problem (20) admits a unique solution uλ∗ ∈ D+

Proof. Let Ψ : W 1,p(Ω)→ R be the C1-functional defined by

Ψ(u) =

∫
Ω

G(Du)dz +
1

p

∫
Ω

|ξ(z)||u|pdz +
1

p

∫
∂Ω

β(z)|u|pdσ +
1

p
||u−||pp

+
c10

r
||u+||rr −

c9
q
||u+||qq for all u ∈W 1,p(Ω).

By Corollary 1 and the fact that q ≤ p < r, by taking c10 > 0 large enough (see
(19)), we see that Ψλ(·) is coercive. Also, it is sequentially weakly lower semicon-
tinuous. So, we can find uλ∗ ∈W 1,p(Ω) such that

Ψ(uλ∗) = inf
{

Ψ(u) : u ∈W 1,p(Ω)
}
. (21)

On account of hypothesis H(f)(iii), we can choose c9 > 0 large enough so that

Ψ(uλ∗) < 0 = Ψ(0) (recall that q ≤ p < r)
⇒ uλ∗ 6= 0.
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From (21) we have

Ψ′(uλ∗) = 0,

⇒ 〈A(uλ∗), h〉+

∫
Ω

|ξ(z)||uλ∗ |p−2uλ∗hdz +

∫
∂Ω

β(z)|uλ∗ |p−2uλ∗hdσ

−
∫

Ω

((uλ∗)
−)p−1hdz

= c9

∫
Ω

((uλ∗)
+)q−1hdz − c10

∫
Ω

((uλ∗)
+)r−1hdz for all h ∈W 1,p(Ω).

(22)

In (22) we choose h = −(uλ∗)
− ∈W 1,p(Ω). Then

c1
p− 1

||D(uλ∗)
−||pp +

∫
Ω

(|ξ(z)|+ 1)((uλ∗)
−)pdz ≤ 0

(see Lemma 2.2 and hypothesis H(β))
⇒ uλ∗ ≥ 0, uλ∗ 6= 0.

It follows from (22) that uλ∗ is a positive solution of (20). The nonlinear regularity
theory implies that uλ∗ ∈ C+\{0}. Moreover, we have

div a(Duλ∗(z)) ≤
(
||ξ||∞ + c10||uλ∗ ||r−p∞

)
uλ∗(z) for almost all z ∈ Ω.

Next, we show that this positive solution of (20) is unique. For this purpose we
introduce the functional l : L1(Ω)→ R = R ∪ {+∞} defined by

l(u) =


∫

Ω

G(Du
1
q )dz +

1

p

∫
Ω

|ξ(z)|u
p
q dz +

1

p

∫
∂Ω

β(z)u
p
q dσ

if u ≥ 0, u
1
q ∈W 1,p(Ω)

+∞ otherwise.

Here, q ≤ p is as in hypothesis H(a)(iv). Let dom l = {u ∈ L1(Ω) : l(u) < +∞}
(the effective domain of l(·)). Let u1, u2 ∈ dom l and consider u = [(1− t)u1 + tu2]

1
q

with t ∈ [0, 1]. From Lemma 1 of Diaz & Saa [6], we have

|Du(z)| ≤ [(1− t)|Du1(z)
1
q |q + t|Du2(z)

1
q |q]

1
q for almost all z ∈ Ω

⇒ G0(|Du(z)|) ≤ G0([(1− t)|Du1(z)
1
q |p + t|Du2(z)

1
q |q]

1
q )

(since G0(·) is increasing)

≤ (1− t)G0(|Du1(z)
1
q |) + tG0(|Du2(z)

1
q |) for almost all z ∈ Ω

(see hypotheses H(a)(iv))

⇒ G(Du(z)) ≤ (1− t)G(Du1(z)
1
q ) + tG(Du2(z)

1
q ) for almost all z ∈ Ω,

⇒ dom l 3 u 7→
∫

Ω
G(Du

1
q )dz is convex.

Since q ≤ p and β ≥ 0 (see hypotheses H(β)), we deduce that the mapping

dom l 3 u 7→
∫

Ω

|ξ(z)|u
p
q dz +

∫
∂Ω

β(z)u
p
q dσ is convex.

Therefore, we conclude that l(·) is convex and by Fatou’s lemma it is also lower
semicontinuous.

Assume that vλ∗ is another positive solution for problem (20). Again, we can
show that vλ∗ ∈ D+. Let h ∈ C1(Ω). For |t| < 1 small enough we have

(uλ∗)
q + th ∈ dom l and (vλ∗ )q + th ∈ dom l.

It is easily seen that l(·) is Gâteaux differentiable at (uλ∗)
q and at (vλ∗ )q in the

direction h. Using the chain rule and the nonlinear Green identity (see Gasinski &
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Papageorgiou [8, p. 210]), we obtain

l′((uλ∗)
q)(h) =

1

q

∫
Ω

−div a(Duλ∗) + |ξ(z)|(uλ∗)p−1

(uλ∗)
q−1

hdz

l′((vλ∗ )q)(h) =
1

q

∫
Ω

−div a(Dvλ∗ ) + |ξ(z)|(vλ∗ )p−1

(vλ∗ )q−1
hdz.

The convexity of l(·) implies the monotonicity of l′(·). Therefore

0 ≤
∫

Ω

[
−div a(Duλ∗) + |ξ(z)|(uλ∗)p−1|

(uλ∗)
q−1

− −div a(Dvλ∗ ) + |ξ(z)|(vλ∗ )p−1|
(vλ∗ )q−1

]
((uλ∗)

q − (vλ∗ )q)dz

=

∫
Ω

c10[(uλ∗)
r−q − (vλ∗ )r−q](uλ∗)

q − (vλ∗ )q)dz (see (20))

⇒ uλ∗ = vλ∗ (recall that q ≤ p < r).

So, the positive solution uλ∗ ∈ D+ of problem (20) is unique.

Proposition 9. If hypotheses H(a), H(ξ), H(β), H(f)1 hold and λ < λ∗, then uλ∗ ≤
u for all u ∈ Sλ.

Proof. From Proposition 6 we know that λ ∈ L. Let u ∈ Sλ ⊆ D+ (see Proposition
5). Again we fix η > ||ξ||∞ and consider the Carathéodory function ϑ : Ω×R→ R
defined by

ϑ(z, x) =

 0 if x < 0
c9x

q−1 − c10x
r−1 + ηxp−1 if 0 ≤ x ≤ u(z)

k9u(z)q−1 − c10u(z)r−1 + ηu(z)p−1 if u(z) < x.
(23)

We set Θ(z, x) =
∫ x

0
ϑ(z, s)ds and consider the C1-functional ζ : W 1,p(Ω) → R

defined by

ζ(u) =
1

p
µ(u) +

η

p
||u||pp −

∫
Ω

Θ(z, u)dz for all u ∈W 1,p(Ω).

As before, ζ(·) is coercive and sequentially weakly lower semicontinuous. So, we
can find ũλ∗ ∈W 1,p(Ω) such that

ζ(ũλ∗) = inf{ζ(u) : u ∈W 1,p(Ω)}. (24)

Since q ≤ p < r, for c9, c10 > 0 large enough as in Proposition 7, we have

ζ(ũλ∗) < 0 = ζ(0),
⇒ ũλ∗ 6= 0.

From (24) we have

ζ ′(ũλ∗) = 0,

⇒ 〈A(ũλ∗), h〉+

∫
Ω

[ξ(z) + η]|ũλ∗ |p−2ũλ∗hdz +

∫
∂Ω

β(z)|ũλ∗ |p−2ũλ∗hdσ

=

∫
Ω

ϑ(z, ũλ∗)hdz for all h ∈W 1,p(Ω).

(25)

Let h = −(ũλ∗)
− ∈W 1,p(Ω) in (25). Then

c1
p− 1

||D(ũλ∗)
−||pp +

∫
Ω

[ξ(z) + η]((ũλ∗)
−)pdz ≤ 0

(see Lemma 2.2, hypothesis H(β), and (23))
⇒ ũλ∗ ≥ 0, ũλ∗ 6= 0.
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Also, let h = (ũλ∗ − u)+ ∈W 1,p(Ω) in (25). Then

〈A(ũλ∗), (ũ
λ
∗ − u)+〉+

∫
Ω

[ξ(z) + η](ũλ∗)
p−1(ũλ∗ − u)+dz

+

∫
∂Ω

β(z)(ũλ∗)
p−1(ũλ∗ − u)+dσ

=

∫
Ω

(c9u
q−1 − c10u

r−1 + ηup−1)(ũλ∗ − u)+dz (see (23))

≤
∫

Ω

[(λ+ η)up−1 + f(z, u)](ũλ∗ − u)+dz (see (19))

=〈A(u), (ũλ∗ − u)+〉+
∫

Ω

[ξ(z)+η]up−1(ũλ∗ − u)dz+

∫
∂Ω

β(z)up−1(ũλ∗ − u)+dσ

(since u ∈ Sλ)

⇒ũλ∗ ≤ u.
So, we have proved that

ũλ∗ ∈ [0, u], ũλ∗ 6= 0. (26)

Then from (23), (25), (26) we infer that

ũλ∗ is a positive solution of (20),
⇒ ũλ∗ = uλ∗ ∈ D+ (see Proposition 8),
⇒ uλ∗ ≤ u for all u ∈ Sλ (see (26)).

The proof is complete.

From Papageorgiou, Rădulescu & Repovš [21] (proof of Proposition 4), we know
that the set Sλ is downward directed (that is, if u1, u2 ∈ Sλ, then we can find u ∈ Sλ
such that u ≤ u1, u ≤ u2).

Proposition 10. If hypotheses H(a), H(ξ), H(β), H(f)1 hold and λ < λ∗, then Sλ
admits a smallest element uλ ∈ D+, that is,

uλ ≤ u for all u ∈ Sλ.
Proof. According to Lemma 3.10 of Hu & Papageorgiou [11, p. 178], we can find
{un}n≥1 ⊆ Sλ such that

inf Sλ = inf
n≥1

un.

Moreover, since Sλ is downward directed, we can choose {un}n≥1 ⊆ Sλ to be
decreasing. We have

〈A(un), h〉+

∫
Ω

ξ(z)up−1
n hdz +

∫
∂Ω

β(z)up−1
n hdσ = λ

∫
Ω

up−1
n hdz+∫

Ω

f(z, un)hdz for all h ∈W 1,p(Ω), all n ∈ N
(27)

0 ≤ un ≤ u1 for all n ∈ N. (28)

From (27), (28), we infer that {un}n≥1 ⊆ W 1,p(Ω) is bounded. So, we may
assume that

un
w−→ uλ in W 1,p(Ω) and un → uλ in Lp(Ω) and in Lp(∂Ω). (29)

In (27) we choose h = un − uλ ∈ W 1,p(Ω), pass to the limit as n → ∞ and use
(29). Then

limn→∞〈A(un), un − uλ〉 = 0,
⇒ un → uλ in W 1,p(Ω) (see Proposition 1).

(30)
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In (27) we pass to the limit as n→∞ and use (30). Then

〈A(uλ), h〉+

∫
Ω

ξ(z)up−1
λ hdz +

∫
∂Ω

β(z)up−1
λ hdσ = λ

∫
Ω

up−1
λ hdz

+

∫
Ω

f(z, uλ)hdz for all h ∈ W 1,p(Ω).
(31)

Moreover, from Proposition 8 we have

uλ∗ ≤ un for all n ∈ N,
⇒ uλ∗ ≤ uλ,hence uλ 6= 0,
⇒ uλ ∈ Sλ (see (31)) and uλ = inf Sλ.

The proof is now complete.

In the next proposition we establish the monotonicity and continuity properties
of the map L 3 λ 7→ uλ ∈ C1(Ω).

Proposition 11. If hypotheses H(a), H(ξ), H(β), H(f)1 hold, then the map λ 7→ uλ
from L into C1(Ω) is:

(a) strictly increasing in the sense that

ϑ < λ⇒ uλ − uϑ ∈ intC+;

(b) left continuous, that is, if λn → λ− with λ ∈ L, then ūλn → ūλ in C1(Ω).

Proof. (a) Let ϑ < λ ∈ L. Let ūλn ∈ Sλ ⊆ D+ be the minimal solution of (Pλ) (see
Proposition 9). From Proposition 6 and its proof we know that ϑ ∈ L and we can
find uϑ ∈ Sϑ ⊆ D+ such that uϑ ≤ ūλ (see (16)). Therefore ūϑ ≤ ūλ.

Let ρ = ||ūλ||∞ and let ξ̂ρ > 0 be as postulated by hypothesis H(f)1(iv). We

can always take ξ̂ρ > ||ξ||∞. Then

−div a(Dūϑ) + [ξ(z) + ξ̂ρ]ū
p−1
ϑ

= ϑūp−1
ϑ + f(z, ūϑ) + ξ̂ρū

p−1
ϑ

= λūp−1
ϑ + f(z, ūϑ) + ξ̂ρū

p−1
ϑ − (λ− ϑ)ūp−1

ϑ

≤ λūp−1
ϑ + f(z, ūϑ) + ξ̂ρū

p−1
ϑ − (λ− ϑ)mp−1

ϑ with mϑ = min
Ω
ūϑ > 0

(recall that ūϑ ∈ D+)

< λūp−1
λ + f(z, ūλ) + ξ̂ρū

p−1
λ (since ūϑ ≤ ūλ)

= −div a(Dūλ) + [ξ(z) + ξ̂ρ]ū
p−1
λ for almost all z ∈ Ω.

Let

h1(z) = ϑūp−1
λ + f(z, ūϑ) + ξ̂ρū

p−1
ϑ

and

h2(z) = λūp−1
λ + f(z, λ̄) + ξ̂ρū

p−1
λ .

Evidently, h1, h2 ∈ L∞(Ω) (see hypothesis H(f)1(i)) and

0 < (λ− ϑ)mp−1
ϑ ≤ h2(z)− h1(z) for almost all z ∈ Ω.

So, we can apply Proposition 2 and conclude that ūλ− ūϑ ∈ intC+. This proves
that the mapping λ 7→ ūλ is strictly increasing.

(b) Let λn → λ− with λ ∈ L. We set ūn = ūλn ∈ Sλn ⊆ D+ for all n ∈ N.
Evidently, {ūn}n≥1 ⊆W 1,p(Ω) is bounded. So, we may assume that

ūn
w→ uλ in W 1,p(Ω) and ūn → uλ in Lp(Ω) and in Lp(∂Ω). (32)
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We have

〈A(ūn), h〉+

∫
Ω

ξ(z)ūp−1
n hdz +

∫
∂Ω

β(z)ūp−1
n hdσ =

∫
Ω

[λnū
p−1
n + f(z, ūn)]hdz

(33)

for all h ∈W 1,p(Ω), n ∈ N.

In (33) we choose h = ūn − uλ ∈ W 1,p(Ω), pass to the limit as n → ∞ and use
(32). Then

lim
n→∞

〈A(ūn), ūn − uλ〉 = 0,

⇒ ūn → uλ in W 1,p(Ω) (see Proposition 1). (34)

So, if in (32) we pass to the limit as n→∞ and use (34), then we can infer that
uλ ∈ Sλ ⊆ D+. On account of (34) and Proposition 7 of Papageorgiou & Rădulescu
[20], we can find c11 > 0 such that

||ūn||∞ ≤ c11 for all n ∈ N.

Then the nonlinear regularity theory of Lieberman [13] implies that there exist
τ ∈ (0, 1) and c12 > 0 such that

ūn ∈ C1,τ (Ω) and ||ūn||C1,τ (Ω) ≤ c12 for all n ∈ N.

The existence of a compact embedding of C1,τ (Ω) into C1(Ω) and (34), imply
that

ūn → uλ in C1(Ω) as n→∞. (35)

We show that uλ = ūλ. Arguing by contradiction, suppose that uλ 6= ūλ. Then
we can find z0 ∈ Ω such that

ūλ(z0) < uλ(z0),

⇒ ūλ(z0) < ūn(z0) for all n ≥ n0 (see (35)),

which contradicts (a). Therefore the mapping λ 7→ ūλ is left continuous.

Now we ready to show the non-admissibility of λ∗.

Proposition 12. If hypotheses H(a), H(ξ), H(β), H(f)1 hold, then λ∗ /∈ L.

Proof. Arguing by contradiction, suppose that λ∗ ∈ L. According to Proposition
10, problem (Pλ) admits a smallest positive solution ū∗ = ūλ∗ ∈ D+. Let λ >
λ∗, η > ||ξ||∞ and consider the Carathéodory function

γλ(z, x) =

{
(λ+ η)ū∗(z)

p−1 + f(z, ū∗(z)) if x ≤ ū∗(z)
(λ+ η)xp−1 + f(z, x) if ū∗(z) < x.

(36)

We set Γλ(z, x) =
∫ x

0
γλ(z, s)ds and consider the C1-functional ϕ̃λ : W 1,p(Ω)→

R defined by

ϕ̃λ(u) =
1

p
µ(u) +

η

p
||u||pp −

∫
Ω

Γλ(z, u)dz for all u ∈W 1,p(Ω).

As in the proof of Proposition 5, using hypothesis H(f)1(ii), we show that ϕ̃λ(·)
is coercive. Moreover, ϕ̃λ(·) is sequentially weakly lower semicontinuous. So, we
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can find uλ ∈W 1,p(Ω) such that

ϕ̃λ(uλ) = inf{ϕ̃λ(u) : u ∈W 1,p(Ω)},
⇒ ϕ̃′λ(uλ) = 0,

⇒ 〈A(uλ), h〉+

∫
Ω

[ξ(z) + η]|uλ|p−2uλhdz +

∫
∂Ω

β(z)|uλ|p−2uλhdσ

=

∫
Ω

γλ(z, uλ)hdz (37)

for all h ∈W 1,p(Ω).

In (37) we choose h = (ū∗ − uλ)+ ∈W 1,p(Ω). Then〈
A(uλ), (ū∗ − uλ)+

〉
+

∫
Ω

[ξ(z) + η]|uλ|p−2uλ(ū∗ − uλ)+dz

+

∫
∂Ω

β(z)|uλ|p−2uλ(ū∗ − uλ)+dσ

=

∫
Ω

[(λ+ η)ūp−1
∗ + f(z, ū∗)](ū∗ − uλ)+dz (see (36))

≥
∫

Ω

[(λ∗ + η)ūp−1
∗ + f(z, ū∗)](ū∗ − uλ)+dz (since λ > λ∗)

=
〈
A(ū∗), (ū∗ − uλ)+

〉
+

∫
Ω

[ξ(z) + η]ūp−1
∗ (ū∗ − uλ)+dz

+

∫
∂Ω

β(z)ūp−1
∗ (ū∗ − uλ)+dσ

(since ū∗ ∈ Sλ∗),
⇒ ū∗ ≤ uλ.

Then from (36) and (37) it follows that ūλ ∈ Sλ and so λ ∈ L, a contradiction.
This proves that λ∗ /∈ L.

So, summarizing the situation for problem (Pλ) when the perturbation f(z, ·) is
(p− 1)-sublinear, we can state the following theorem.

Theorem 3.1. If hypotheses H(a), H(ξ), H(β), H(f)1 hold, then there exists λ∗ <
+∞ such that

(a) for every λ ≥ λ∗, problem (Pλ) has no positive solutions;
(b) for every λ < λ∗, problem (Pλ) has at least one positive solution uλ ∈ D+;
(c) for every λ < λ∗, problem (Pλ) has a smallest positive solution ūλ ∈ D+ and

the map λ 7→ ūλ from (−∞, λ∗) into C1(Ω) is
• strictly increasing, that is, if ϑ < λ < λ∗, then

ūλ − ūϑ ∈ intC+;

• left continuous, that is, if λn → λ− and λ < λ∗, then ūλn → ūλ in C1(Ω).

In the special case of the p-Laplacian (that is, a(y) = |y|p−2y for all y ∈ RN with

1 < p <∞), we can identify λ∗ as λ̂1(p, ξ, β), when f(z, x) > 0 for almost all z ∈ Ω,
and for all x > 0.

So, we consider the following nonlinear Robin problem: −∆pu(z) + ξ(z)u(z)p−1 = λu(z)p−1 + f(z, u(z)) in Ω,
∂u

∂np
+ β(z)up−1 = 0 on ∂Ω, u > 0, λ ∈ R, 1 < p <∞.

 (PLλ)
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Proposition 13. Assume that hypotheses H(ξ), H(β) hold and let f : Ω× R→ R
be a Carathéodory function such that

• for almost all z ∈ Ω, f(z, 0) = 0 and f(z, x) > 0 for all x > 0;
• f(z, x) ≤ a(z)(1 + xp

∗−1) for almost all z ∈ Ω, and for all x ≥ 0, with
a ∈ L∞(Ω).

Then for all λ ≥ λ̂1(p, ξ, β), Sλ = ∅.

Proof. Arguing by contradiction, suppose that Sλ 6= ∅ and let u ∈ Sλ. The nonlinear
regularity theory implies that u ∈ D+. Let û1 = û1(p, ξ, β) ∈ D+ (see Proposition
4). We consider the function

R(û1, u)(z) = |Dû1(z)|p − |Du(z)|p−2(Du(z), D

(
ûp1
up−1

)
(z))RN .

The nonlinear Picone identity of Allegretto & Huang [2] implies that

0 ≤ R(û1, u)(z) for almost all z ∈ Ω,

⇒ 0 ≤
∫

Ω

R(û1, u)dz

= ||Dû1||pp −
∫

Ω

|Du|p−2

(
Du,D

(
ûp1
up−1

))
RN

dz

= ||Dû1||pp −
∫

Ω

(−∆pu)
ûp1
up−1

dz +

∫
∂Ω

β(z)up−1 ûp1
up−1

dσ

(using the nonlinear Green identity, see Gasinski & Papageorgiou [8, p. 211])

= ||Dû1||pp +

∫
Ω

ξ(z)ûp−1
1 dz +

∫
∂Ω

β(z)ûp1dσ − λ−
∫

Ω

f(z, u)
ûp1
up−1

(see (PLλ) and recall that ||û1||p = 1)

< µ(û1)− λ (recall that f(z, x) > 0 for almost all z ∈ Ω, and for all x > 0)

= λ̂1 − λ < 0,

a contradiction. Therefore Sλ = ∅ and so λ /∈ L for all λ ≥ λ̂1(p, ξ, β).

Moreover, reasoning as in the proof of Proposition 5, via the direct method of the
calculus of variations, we obtain the following result. Note that now in hypothesis
H(a)(iv) we take q = p.

Proposition 14. If hypotheses H(ξ), H(β), H(f)1 hold and λ < λ̂1 = λ̂1(p, ξ, β),
then λ ∈ L.

We introduce the following stronger version of hypotheses H(f)1.

H(f)′1 : f : Ω×R→ R is a Carathéodory function such that for almost all z ∈ Ω,
f(z, 0) = 0, f(z, x) > 0 for all x > 0 and hypotheses H(f)′1(i), (ii), (iii), (iv) are
the same as the corresponding hypotheses H(f)1(i), (ii), (iii), (iv).

Using this stronger version of H(f)1 and combining Propositions 13 and 14 we
have the following theorem concerning the positive solutions of (PLλ) as the pa-
rameter λ ∈ R varies.

Theorem 3.2. If hypotheses H(ξ), H(β), H(f)′1 hold, then

(a) for every λ ≥ λ̂1 = λ̂1(p, ξ, β), problem (PLλ) has no positive solutions;

(b) for every λ < λ̂, problem (PLλ) has at least one positive solution uλ ∈ D+;
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(c) for every λ < λ̂, problem (PLλ) has a smallest positive solution ūλ ∈ D+ and

the map λ 7→ ūλ from (−∞, λ̂1) into C1(Ω) is

• strictly increasing (that is, ϑ < λ < λ̂1 ⇒ ūλ − ūϑ ∈ intC+);
• left continuous.

If we further restrict the conditions on the perturbation f(z, x), we can have
uniqueness for the positive solution.

The new hypotheses on f(z, x) are the following:

H(f)1
′′ : f : Ω × R → R is a Carathéodory function such that for almost all

z ∈ Ω, f(z, 0) = 0, f(z, x) > 0 for all x > 0, hypotheses H(f)1
′′(i), (ii), (iii), (iv)

are the same as the corresponding hypotheses H(f)1(i), (ii), (iii), (iv) and

(v) if x− y ≥ m > 0, then f(z,y)
yp−1 − f(z,x)

xp−1 ≥ cm > 0 for almost all z ∈ Ω.

Proposition 15. If hypotheses H(ξ), H(β), H(f)′′1 hold and λ < λ̂1, then problem
(Pλ) admits a unique solution ūλ ∈ D+.

Proof. By Theorem 3.2 we already have a positive solution ūλ ∈ D+. Suppose
that ūλ is another positive solution of (Pλ). Again we have that v̄λ ∈ D+. By
Proposition 2.1 of Marano & Papageorgiou [15], we can find t > 0 such that

tv̄λ ≤ ūλ. (38)

Let t > 0 be the biggest real for which (38) holds. Suppose that t < 1. Also,

let ρ = ||ūλ||∞ and let ξ̂ρ > 0 be as postulated by hypothesis H(f)
′′

1 (iv). We can

always assume that ξ̂ρ > ||ξ||∞. Also let m̄λ = min
Ω
v̄λ > 0. We have

−∆p(tv̄λ) + [ξ(z) + ξ̂ρ](tv̄λ)p−1

= tp−1(−∆pv̄λ + [ξ(z) + ξ̂ρ]v̄
p−1
λ )

= tp−1(λv̄p−1
λ + f(z, v̄λ) + ξ̂ρv̄

p−1
λ ) (since v̄λ ∈ Sλ)

≤ λ(tv̄λ)p−1 + f(z, tv̄λ) + ξ̂ρ(tv̄λ)p−1 − (1− t)m̄p−1
λ

(see hypothesis H(f)
′′

1 (v) and recall that t < 1)

< λūp−1
λ + f(z, ūλ) + ξ̂ρū

p−1
λ (see (38) and hypothesis H(f)

′′

1 (iv))

= −∆pūλ + [ξ(z) + ξ̂ρ]ū
p−1
λ for almost all z ∈ Ω (since ūλ ∈ Sλ),

⇒ ūλ − tv̄λ ∈ intC+ (see Proposition 2),

which contradicts the maximality of t > 0. Therefore t ≥ 1 and we have

v̄λ ≤ ūλ (see (38)).

Interchanging the roles of ūλ and v̄λ in the above argument, we obtain

ūλ ≤ v̄λ,
⇒ ūλ = v̄λ.

This proves the uniqueness of the positive solution of problem (PLλ).

So, we can state the following existence and uniqueness theorem for problem
(PLλ).

Theorem 3.3. If hypotheses H(ξ), H(β), H(f)
′′

1 hold, then

(a) for every λ ≥ λ̂1 = λ̂1(p, ξ, β), problem (PLλ) has no positive solutions;
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(b) for every λ < λ̂1, problem (PLλ) has a unique positive solution ūλ ∈ D+ and

the map λ 7→ ūλ from (−∞, λ̂1) into C1(Ω) is

• strictly increasing (that is, ϑ < λ < λ̂1 ⇒ ūλ − ūϑ ∈ intC+);
• left continuous.

For the general nonhomogeneous problem, to have uniqueness, we need to set
ξ ≡ 0. So, we consider the problem: −div a(Du(z)) = λu(z)p−1 + f(z, u(z)) in Ω,

∂u

∂na
+ β(z)up−1 = 0 on ∂Ω, u > 0, λ ∈ R, 1 < p <∞.

 (P ′λ)

Then reasoning as in the proof of Proposition 8 (see also Fragnelli, Mugnai &
Papageorgiou [7, Theorem 7]), we have uniqueness of the positive solution and we
can formulate the following theorem.

Theorem 3.4. If hypotheses H(a), H(β), H(f)
′′

1 hold, then there exists λ∗ ∈ R such
that

(a) for every λ ≥ λ∗, problem (P ′λ) has no positive solutions;
(b) for every λ < λ∗, problem (P ′λ) has a unique positive solution ūλ ∈ D+ and

the map λ 7→ ūλ from (−∞, λ∗) into C1(Ω) is
• strictly increasing (that is, ϑ < λ < λ∗ ⇒ ūλ − ūϑ ∈ intC+);
• left continuous;

4. (p − 1)-superlinear perturbation. In this section we examine what happens
in problem (Pλ) when the perturbation f(z, ·) is (p − 1)-superlinear. We do not
assume that f(z, ·) satisfies the usual (for “superlinear” problems) “Ambrosetti-
Rabinowitz condition” (the “AR-condition” for short). Instead, we employ a less
restrictive condition involving the function

d(z, x) = f(z, x)x− pF (z, x) for all (z, x) ∈ Ω× R.

In this way we incorporate in our framework (p − 1)-superlinear functions with
“slower” growth near +∞, which fail to satisfy the AR-condition.

So, we introduce the following condition on the perturbation f(z, x).

H(f)2 : f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for
almost all z ∈ Ω and

(i) |f(z, x)| ≤ a(z)(1 + xr−1) for almost all z ∈ Ω, and for all x ≥ 0, with
a ∈ L∞(Ω), p < r < p∗;

(ii) if F (z, x) =
∫ x

0
f(z, s)ds, then lim

x→+∞
F (z,x)
xp = +∞ uniformly for almost all

z ∈ Ω;
(iii) if d(z, x) = f(z, x)x − pF (z, x), then d(z, x) ≤ d(z, y) + ν(z) for almost all

z ∈ Ω, and for all 0 ≤ x ≤ y with ν(·) ∈ L1(Ω);

(iv) lim
x→0+

f(z,x)
xτ−1 = 0 uniformly for almost all z ∈ Ω, with 1 < τ < q, q ≤ p as

in H(a)(iv) and there exist s ∈ (τ, q), δ0 > 0 such that c̃0x
s−1 ≤ f(z, x) for

almost all z ∈ Ω, x ∈ [0, δ0] with c̃0 > 0;

(v) for every ρ > 0, there exists ξ̂ρ > 0 such that for almost all z ∈ Ω the mapping

x 7→ f(z, x) + ξ̂ρx
p−1 is nondecreasing on [0, ρ].

Remark 4. Since we are looking for positive solutions and the above hypotheses
concern the positive semiaxis R+ = [0,+∞), we may assume without any loss of
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generality, as we did in the sublinear case, that f(z, x) = 0 for almost all z ∈ Ω, all
x ≤ 0. Hypotheses H(f)2(ii), (iii) imply that

lim
x→+∞

f(z, x)

xp−1
= +∞ uniformly for almost all z ∈ Ω. (39)

So, the perturbation f(z, ·) is (p−1)-superlinear. Usually for such problems, the
superlinerity is expressed through the AR-condition, which says that there exist
τ > p and M > 0 such that

0 < τF (z, x) ≤ f(z, x)x for almost all z ∈ Ω,

and for all x ≥M whereess inf
Ω
F (·,M) > 0. (40)

Here we have a unilateral version of the AR-condition, since f(z, ·)(−∞,0] = 0.
Integrating (39) we obtain the more general condition

c13x
τ ≤ F (z, x) for almost all z ∈ Ω, for all x ≥M, and for some c13 > 0. (41)

Evidently, (40) and (41) imply that (39) holds. Using the AR-condition (40) we
can easily verify the C-condition for the energy functional. However, from (41) we
see that the AR-condition is rather restrictive. It excludes from consideration su-
perlinear functions with slower growth near +∞ (see the examples below). We have
replaced the AR-condition by hypotheses H(f)2(ii), (iii), which incorporate in our
framework such functions. Hypothesis H(f)2(iii) is a quasi-monotonicity condition
on d(z, ·) on R+. This hypothesis is a slightly more general version of a condition
used by Li & Yang [12], who compared this condition with other superlinearity
conditions that can be found in the literature.

Examples. The following functions satisfy hypotheses H(f)2. For the sake of
simplicity we drop the z-dependence.

f1(x) =

 0 if x < 0
xτ−1 − 2xϑ−1 if 0 ≤ x ≤ 1
xr−1 − 2xp−1 if 1 < x

with 1 < τ < ϑ < p < r

f2(x) =

 0 if x < 0
xτ−1 − 2xϑ−1 if 0 ≤ x ≤ 1
xp−1(lnx− 1) if 1 < x

with 1 < τ < ϑ < p. Note that f1 satisfies the AR-condition, whereas f2 does not.
Also, both functions may be sign-changing.

As before, we denote

L = {λ > 0 : problem (Pλ) has a positive solution},
Sλ = the set of all positive solutions of problem (Pλ).

Proposition 16. If hypotheses H(a), H(ξ), H(β), H(f)2 hold, then L 6= ∅ and
Sλ ⊆ D+.

Proof. Let η > ||ξ||∞ and consider the functional ψλ : W 1,p(Ω)→ R defined by

ψλ(u) =
1

p
µ(u) +

η

p
||u−||pp −

λ

p
||u+||pp −

∫
Ω

F (z, u+)dz for all u ∈W 1,p(Ω).

Hypotheses H(f)2(i), (iv) imply that given ε > 0, we can find c14 = c14(ε) > 0
such that

F (z, x) ≤ ε

p
xτ + c14x

r for almost all z ∈ Ω, and for all x ≥ 0. (42)



1424 N. S. PAPAGEORGIOU, V. D. RĂDULESCU AND D. D. REPOVŠ

Then for λ < 0, with |λ| > ||ξ||∞, we have

ψλ(u) ≥ 1

p
µ(u−) +

η

p
||u−||pp +

1

p
µ(u+) +

|λ|
p
||u+||pp − εc15||u||τ − c16||u||τ

with c15, c16 > 0 (see (42))

≥
[
c17 − (εc15||u||τ−p + c16||u||r−p)

]
||u||p for some c17 > 0. (43)

Let k0(t) = εc15t
τ−p + c16t

r−p t ≥ 0. Since 1 < τ < p < r, we see that
k0(t) → +∞ as t → 0+ and as t → +∞. So, we can find t0 > 0 such that
k0(t0) = min

t>0
k0. We have

k′0(t0) = 0, ⇒ t0 =

[
εc15(p− τ)

c16(r − p)

] 1
r−τ

.

Then k0(t0) → 0+ as ε → 0+. So, it follows from (43) that we can find small
enough ρ ∈ (0, 1) such that

0 < inf{ψλ(u) : ||u|| = ρ} = mλ
ρ . (44)

Hypothesis H(f)2(ii) implies that if u ∈ D+, then

ψλ(tu)→ −∞ as t→ +∞. (45)

Claim 1. For every λ ∈ R, ψλ(·) satisfies the C-condition.

Consider a sequence {un}n≥1 ⊆W 1,p(Ω) such that

|ψλ(un)| ≤M1 for some M1 > 0, and for all n ∈ N, (46)

(1 + ||un||)ψ′λ(un)→ 0 in W 1,p(Ω)∗ as n→∞. (47)

From (47) we have

| 〈A(un), h〉+

∫
Ω

ξ(z)|un|p−2unhdz +

∫
∂Ω

β(z)|un|p−2hdσ − η
∫

Ω

(u−n )p−1hdz

−
∫

Ω

λ(u+
n )p−1hdz −

∫
Ω

f(z, u+
n )hdz| ≤ εn||h||

1 + ||un||
(48)

for all h ∈W 1,p(Ω), with εn → 0+.

In (48) we choose h = −u−n ∈W 1,p(Ω). Then

µ(u−n ) + η||u−n ||pp ≤ εn for all n ∈ N,
⇒ c18||u−n ||p ≤ εn for some c18 > 0, and for all n ∈ N (recall that η > ||ξ||∞),

⇒ u−n → 0 in W 1,p(Ω) as n→∞. (49)

Next, in (48) we choose h = u+
n ∈W 1,p(Ω). Then

− µ(u+
n ) + λ||u+

n ||pp +

∫
Ω

f(z, u+
n )u+

n dz ≤ εn for all n ∈ N. (50)

From (46) and (49) we have

µ(u+
n )−λ||u+

n ||pp−
∫

Ω

pF (z, u+
n )dz ≤M2 for some M2 > 0, and for all n ∈ N. (51)

We add (50), (51) and obtain∫
Ω

d(z, u+
n )dz ≤M3 for some M3 > 0, and for all n ∈ N. (52)
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We will use (52) to show that {u+
n }n≥1 ⊆ W 1,p(Ω) is bounded. Arguing by

contradiction, suppose that ||u+
n || → ∞. We set yn =

u+
n

||u+
n ||

for all n ∈ N. We have

||yn|| = 1 for all n ∈ N and so we may assume that

yn
w→ y in W 1,p(Ω) and yn → y in Lp(Ω) and in Lp(∂Ω) as n→∞. (53)

First, we assume that y 6= 0. Let Ω0 = {z ∈ Ω : y(z) = 0}. Then |Ω\Ω0|N > 0
(by | · |N we denote the Lebesgue measure on RN ) and u+

n (z)→ +∞ for almost all
z ∈ Ω\Ω0 as n→∞. Hence hypothesis H(f)2(ii) implies that

F (z, u+
n (z))

||u+
n ||p

=
F (z, u+

n (z))

u+
n (z)p

yn(z)p → +∞ for almost all z ∈ Ω\Ω0 as n→∞,

⇒
∫

Ω

F (z, u+
n )

||u+
n ||p

dz → +∞ as n→ +∞ (by Fatou’s lemma). (54)

Corollary 1 and hypothesis H(a)(iv) imply that

G(y) ≤ c19(|y|q + |y|p) for some c19 > 0, and for all y ∈ RN . (55)

From (46) and (49), we have

−
∫

Ω

G(Du+
n )dz − 1

p

∫
Ω

ξ(z)(u+
n )pdz − 1

p

∫
∂Ω

β(z)(u+
n )pdσ +

λ

p
||u+

n ||pp +∫
Ω

F (z, u+
n )dz ≤M4 for some M4 > 0, and for all n ∈ N

⇒
∫

Ω

F (z, u+
n )

||u+
n ||p

dz ≤M5 for some M5 > 0, and for all n ∈ N (56)

(see (53), (55) and hypotheses H(ξ), H(β)).

Comparing (54) and (56), we get a contradiction.

So, we assume that y = 0. We consider the C1-functional ψ̂λ : W 1,p(Ω) → R
defined by

ψ̂λ(u) =
c1

p(p− 1)
||Du||pp +

1

p

∫
Ω

ξ(z)|u|pdz +
1

p

∫
∂Ω

β(z)|u|pdσ +
η

p
||u−||pp

−λ
p
||u+||pp −

∫
Ω

F (z, u+)dz for all u ∈W 1,p(Ω).

Evidently, ψ̂λ ≤ ψλ (see Corollary 1).

We define ϑn(t) = ψ̂λ(tu+
n ) for all t ∈ [0, 1], and for all n ∈ N. Let tn ∈ [0, 1] be

such that

ϑn(tn) = max
0≤t≤1

ϑn(t) = max
0≤t≤1

ψ̂λ(tu+
n ) for all n ∈ N. (57)

For γ > 0, let vn = (2γ)1/pyn ∈ W 1,p(Ω). Evidently, vn → 0 in Lr(Ω) (see (53)
and recall that we have assumed that y = 0). Then∫

Ω

F (z, vn)dz → 0 as n→∞. (58)

Since ||u+
n || → ∞, we can find n0 ∈ N such that

(2γ)1/p 1

||u+
n ||
∈ (0, 1) for all n ≥ n0. (59)
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Then (57) and (59) imply that

ϑn(tn) ≥ ϑn

(
(2γ)1/p

||u+
n ||

)
for all n ≥ n0

⇒ ψ̂λ(tnu
+
n ) ≥ ψ̂λ((2γ)1/pyn) = ψ̂λ(vn) for all n ≥ n0

≥ 2γc1
p(p− 1)

(
||Dyn||pp +

p− 1

c1

∫
Ω

[ξ(z) + η − λ]ypndz

)
−
(∫

Ω

F (z, vn)dz +
η

p
||vn||pp

)
≥ 2γc20

p(p− 1)
−
(∫

Ω

F (z, vn)dz +
η

p
||vn||pp

)
for some c20 > 0, and for all n ≥ n0. (60)

Recall that vn → 0 in Lp(Ω). Using this fact and (58) in (60), we see that

ψ̂λ(tnu
+
n ) ≥ γc20

p(p− 1)
for some n ≥ n1 ≥ n0.

But recall that γ > 0 is arbitrary. So, it follows that

ψ̂λ(tnu
+
n )→ +∞ as n→∞. (61)

We have 0 ≤ tnu
+
n ≤ u+

n for all n ∈ N. So, on account of hypothesis H(f)2(iii),
we have ∫

Ω

d(z, tnu
+
n )dz ≤

∫
Ω

d(z, u+
n )dz + ||ν||1 ≤M6 (62)

for some M6 > 0, and for all n ∈ N (see (52)).

We know that

ψ̂λ(0) = 0 and ψ̂λ(u+
n ) ≤M7 for some M7 > 0 (63)

(see (46), (52) and recall that ψ̂λ ≤ ψλ).

From (61) and (63) we infer that tn ∈ (0, 1) for all n ≥ n2. Hence we have

0 = tn
d

dt
ψ̂λ(tu+

n )|t=tn =
〈
ψ′λ(tnu

+
n ), tnu

+
n

〉
for all n ≥ n2 (see (57)). (64)

Combining (62) and (64) we see that

pψ̂λ(tnu
+
n ) ≤M6 for all n ≥ n2. (65)

Comparing (61) and (65) we have a contradiction. Therefore

{u+
n }n≥1 ⊆W 1,p(Ω) is bounded,

⇒ {un}n≥1 ⊆W 1,p(Ω) is bounded (see (49)).

So, we may assume that

un
w→ u in W 1,p(Ω) and un → u in Lr(Ω) and in Lp(∂Ω). (66)

We return to (48) and choose h = un−u ∈W 1,p(Ω), pass to the limit as n→∞
and use (66). Then

lim
n→∞

〈A(un), un − u〉 = 0,

⇒ un → u in W 1,p(Ω) (see Proposition 1).

Therefore ψλ satisfies the C-condition and this proves the claim.
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Then (44), (45) and the claim, permit the use of Theorem 2.1 (the mountain
pass theorem). So, we can find uλ ∈W 1,p(Ω) (λ < 0, |λ| > ||ξ||∞) such that

uλ ∈ Kψλ and mλ
ρ ≤ ψλ(uλ). (67)

It follows from (67) that uλ 6= 0 (see (44)) and

〈A(uλ), h〉+

∫
Ω

ξ(z)|uλ|p−2uλhdz +

∫
∂Ω

β(z)|uλ|p−2uλhdσ

− η
∫

Ω

(u−λ )p−1hdz = λ

∫
Ω

(u+
λ )p−1hdz +

∫
Ω

f(z, u+
λ )hdz for all h ∈W 1,p(Ω). (68)

In (68) we choose h = −u−λ ∈W 1,p(Ω). Then

c1
p− 1

||Du−λ ||
p
p +

∫
Ω

[ξ(z) + η]|u−λ |
pdz ≤ 0 (see Lemma 2.2),

⇒ uλ ≥ 0, uλ 6= 0.

It follows from (68) that uλ is a positive solution of (Pλ), hence λ ∈ L and so
L 6= ∅. Moreover, from the nonlinear regularity theory (see [13]) and the nonlinear
maximum principle (see [25]), we can deduce that Sλ ⊆ D+.

In the present setting, on account of hypotheses H(f)2(i), (iv), we have that

λxp−1 + f(z, x) ≥ c̃0xs−1 − c21x
r−1 for almost all z ∈ Ω, and for all x ≥ 0, (69)

for some big enough c21 = c21(λ) > 0. An inspection of the proofs of Propositions
6−−11 reveals that their conclusions remain valid in the present setting. Now,
instead of (19) we use (69). So, we can state the following proposition summarizing
these conclusions.

Proposition 17. If hypotheses H(a), H(ξ), H(β), H(f)2 hold, then

(a) if λ ∈ L and ϑ < λ, then ϑ ∈ L;
(b) λ∗ = supL < +∞;
(c) for every λ ∈ L, problem (Pλ) admits a smallest element ūλ ∈ D+ and the

map λ 7→ ūλ from L into C1(Ω) is
• strictly increasing (that is, ϑ < λ ∈ L ⇒ ūλ − ūϑ ∈ intC+);
• left continuous.

Again we show that the critical parameter λ∗ is not admissible, hence

L = (−∞, λ∗).

Proposition 18. If hypotheses H(a), H(ξ), H(β), H(f)2 hold, then λ∗ /∈ L.

Proof. Arguing by contradiction, suppose that λ∗ ∈ L. Then according to Proposi-
tion 17 problem (Pλ) admits a smallest positive solution ū∗ = ūλ∗ ∈ D+.

Consider λ > λ∗ and, as always, let η > ||ξ||∞. We introduce the Carathéodory
function γ̂λ(z, x) define by

γ̂λ(z, x) =

{
(λ+ η)ū∗(z)

p−1 + f(z, ū∗(z)) if x ≤ ū∗(z)
(λ+ η)xp−1 + f(z, x) if ū∗(z) < x.

(70)

We set Γ̂λ(z, x) =
∫ x

0
γ̂λ(z, s)ds and consider the C1-functional ψ̃λ : W 1,p(Ω)→

R defined by

ψ̃λ(u) =
1

p
µ(u) +

η

p
||u|pp −

∫
Ω

Γλ(z, u)dz for all u ∈W 1,p(Ω).
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Using (70) we can easily verify that

Kψ̃λ
⊆ [ū∗) ∩ C1(Ω). (71)

As in the proof of Proposition 17 of [21] (see the Claim), we may assume that

ū∗ is a local minimizer of ψ̃λ( · ). (72)

Without any loss of generality, we assume that Kψλ is finite (see (70), (71)).
Then on account of (??) we can find small enough ρ1 ∈ (0, 1) such that

inf{ψ̃λ(u) : ||u− ū∗|| = ρ1} = m̃1 > ψ̃λ(ū∗) (see [1]). (73)

Also, hypothesis H(f)2(ii) implies that if u ∈ D+, then

ψ̃λ(tu)→ −∞ as t→ +∞. (74)

Moreover, on account of (70), reasoning as in the proof of Proposition 16 (see
the claim), we can show that

ψ̃λ(·) satisfies the C-condition. (75)

Then (73), (74), (75) permit the use of Theorem 2.1 (the mountain pass theorem).
Hence we can find uλ ∈W 1,p(Ω) such that

uλ ∈ Kψ̃λ
⊆ [ū∗) ∩ C1(Ω) (see (71)), ψ̃λ(uλ) ≥ m̃1.

It follows that uλ ∈ Sλ and so λ ∈ L, a contradiction. Therefore λ∗ 6∈ L. The
proof is now complete.

In this case for λ ∈ L = (−∞, λ∗) we have a multiplicity result for problem (Pλ).

Proposition 19. If hypotheses H(a), H(ξ), H(β), H(f)2 hold and
λ ∈ L = (−∞, λ∗), then problem (Pλ) admits at least two positive solutions

uλ, ûλ ∈ D+, uλ ≤ ûλ, uλ 6= ûλ.

Proof. Since λ ∈ L we can find uλ ∈ Sλ ⊆ D+ (see Proposition 16). We may
assume that uλ is the minimal positive solution of (Pλ) produced in Proposition
17 (that is, uλ = ūλ). With η > ||ξ||∞, we introduce the Carathéodory function
kλ(z, x) defined by

kλ(z, x) =

{
(λ+ η)uλ(z)p−1 + f(z, uλ(z)) if x ≤ uλ(z)
(λ+ η)xp−1 + f(z, x) if uλ(z) < x.

(76)

Let Kλ(z, x) =
∫ x

0
kλ(z, s)ds and consider the C1-functional jλ : W 1,p(Ω) → R

defined by

jλ(u) =
1

p
µ(u) +

η

p
||u||pp −

∫
Ω

Kλ(z, u)dz.

Working with jλ(·) as in the proof of Proposition 18 and using (76), we produce
ûλ ∈W 1,p(Ω) such that

ûλ ∈ Kjλ ⊆ [uλ) ∩ C1(Ω), ûλ /∈ {0, uλ}. (77)

It follows from (76) and (77) that ûλ ∈ D+ is the second positive solution of
(Pλ).

Summarizing the situation for the “superlinear” case, we can state the following
result.

Theorem 4.1. If hypotheses H(a), H(ξ), H(β), H(f)2 hold, then there exists λ∗ <
+∞ such that
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(a) for every λ ≥ λ∗, problem (Pλ) has no positive solutions;
(b) for every λ < λ∗, problem (Pλ) has at least two positive solutions uλ, ûλ ∈ D+,

uλ ≤ ûλ, uλ 6= ûλ;
(c) for every λ < λ∗, problem (Pλ) has a smallest positive solution ūλ ∈ D+ and

the map λ 7→ ūλ from L = (−∞, λ̂1) into C1(Ω) is
• strictly increasing (that is, ϑ < λ ∈ L ⇒ ūλ − ūϑ ∈ intC+);
• left continuous.

Again, in the special case of the p-Laplacian, see problem (PLλ) (a(y) = |y|p−2y

for all y ∈ RN ), we can identify λ∗ as λ̂1 = λ̂1(p, ξ, β), provided that f(z, x) > 0 for
almost all z ∈ Ω, and for all x > 0 and we restrict the condition near zero (that is,
H(f)2(iv)).

So, the new conditions on the perturbation f(z, x) are the following:

H(f)′2 : f : Ω×R→ R is a Carathéodory function such that for almost all z ∈ Ω,
f(z, 0) = 0, f(z, x) > 0 for all x > 0, hypotheses H(f)′2(i), (ii), (iii), (v) are the
same as the corresponding hypotheses H(f)′2(i), (ii), (iii), (v) and

(iv) lim
x→0+

f(z,x)
xp−1 = 0 uniformly for almost all z ∈ Ω.

From Proposition 13, we already know that for λ ≥ λ̂1 = λ̂1(p, ξ, β) problem
(PLλ) has no positive solutions.

Proposition 20. If hypotheses H(ξ), H(β), H(f)′2 hold and λ < λ̂1, then λ ∈ L.

Proof. Let λ ∈ (−∞, λ̂1) and consider the Carathéodory function ϑ̂λ(z, x) defined
by

ϑ̂λ(z, x) =

{
0 if x ≤ 0
λxp−1 + f(z, x) if 0 < x.

(78)

We set Θ̂λ(z, x) =
∫ x

0
ϑ̂λ(z, s)ds and with η > ||ξ||∞, we consider the C1-

functional wλ : W 1,p(Ω)→ R defined by

wλ(u) =
1

p
µ(u) +

η

p
||u−||pp −

∫
Ω

Θ̂λ(z, u)dz for all u ∈W 1,p(Ω).

Hypotheses H(f)′2(i), (iv) imply that given ε > 0, we can find c22 > 0 such that

F (z, x) ≤ ε

p
xp + c22x

r for almost all z ∈ Ω, and for all x ≥ 0. (79)

Then from (78) and (79), we have

wλ(u) ≥ 1

p
[µ(u−) + η||u−||pp] +

1

p
[µ(u+)− (λ+ ε)||u+||pp]− c22||u+||rr (see (79)).

Choosing ε ∈ (0, λ̂1 − λ), we have

wλ(u) ≥ c23||u||p − c24||u||r for some c23, c24 > 0,

⇒ u = 0 local minimizer of wλ(·) (recall that r > p).

So, we can find ρ ∈ (0, 1) small such that

wλ(0) = 0 < inf{wλ(u) : ||u|| = ρ} = mλ (80)

(see Aizicovici, Papageorgiou & Staicu [1], proof of Proposition 29).
Also, hypothesis H(f)′2(ii) implies that if u ∈ D+, then

wλ(tu)→ −∞ as t→ +∞. (81)



1430 N. S. PAPAGEORGIOU, V. D. RĂDULESCU AND D. D. REPOVŠ

Finally, from the proof of Proposition 16 (see the claim), we know that

wλ(·) satisfies the C-condition. (82)

Then (80), (81), (82) permit the use of Theorem 2.1 (the mountain pass theorem)
and produce uλ ∈W 1,p(Ω) such that

uλ ∈ Kwλ ⊆ D+ ∪ {0} (see the proof of Proposition 5)

wλ(0) = 0 < mλ ≤ wλ(uλ).

Therefore uλ ∈ D+ is a positive solution of (PLλ), hence λ ∈ L.

So, for problem (PLλ) we can state the following theorem covering the case of a
(p− 1)-superlinear perturbation.

Theorem 4.2. If hypotheses H(ξ), H(β), H(f)′2 hold, then

(a) for every λ ≥ λ̂1 = λ̂1(p, ξ, β), problem (PLλ) has no positive solutions;

(b) for every λ < λ̂1 problem (PLλ) has at least two positive solutions

uλ, ûλ ∈ D+, uλ ≤ ûλ, uλ 6= ûλ;

(c) for every λ < λ̂1 problem (PLλ) has a smallest positive solution ūλ ∈ D+ and

the map λ 7→ ūλ from L = (−∞, λ̂1) into C1(Ω) is

• strictly increasing (that is, ϑ < λ < λ̂1 ⇒ ūλ − ūϑ ∈ intC+);
• left continuous.
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