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Abstract
In this paper, we investigate the following fractional p-Kirchhoff type problem

{(
a + b[u]p(θ−1)

s,p

)
(−�)spu =

(
Iμ ∗ |u|q

)
|u|q−2u + |u|p∗α−2u

|x |α , u > 0, in �,

u = 0, in R
N\�,

where [u]ps,p =
∫∫

R2N

|u(x) − u(y)|p
|x − y|N+ps

dxdy, � is a bounded smooth domain of RN

containing 0 with Lipschitz boundary, (−�)sp denotes the fractional p-Laplacian,
0 ≤ α < ps < N with s ∈ (0, 1), p > 1, a ≥ 0, b > 0, 1 < θ ≤ p∗

α/p,
p∗
α = (N−α)p

N−ps is the fractional critical Hardy-Sobolev exponent, Iμ(x) = |x |−μ is the
Riesz potential of order μ ∈ (0,min{N , 2ps}), q ∈ (1, Np/(N − ps)) satisfies some
restrictions. By the concentration-compactness principle and mountain pass theorem,
we obtain the existence of a positive weak solution for the above problem as q satisfies
suitable ranges.

B Binlin Zhang
zhangbinlin2012@163.com

Wenjing Chen
wjchen@swu.edu.cn
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1 Introduction andmain results

This paper is devoted to the qualitative analysis of solutions for a class of p–fractional
Choquard–Kirchhoff problems. The features of this paper are the following:

(1) we are concerned with the existence of solutions if the reaction has a critical
growth;

(2) the problem has a singular behavior due to the presence of a Hardy potential;
(3) the lack of compactness is overcome by using the concentration-compactness

principle.

In the first part of this section, we recall some significant historical comments related
to the development of Choquard-type problems. The main result and some related
comments are described in the second part of the present section.

1.1 Historical comments

The Choquard equation

− �u + u =
(

1

|x | ∗ |u|2
)
u, in R3. (1.1)

was first introduced in the pioneering work of Fröhlich [1] and Pekar [2] for the mod-
eling of quantum polaron. This model corresponds to the study of how free electrons
in an ionic lattice interact with phonons associated to deformations of the lattice or
with the polarisation that it creates on the medium (interaction of an electron with its
own hole). In the approximation to Hartree-Fock theory of one component plasma,
Choquard used Eq. (1.1) to describe an electron trapped in its own hole,

The Choquard equation is also known as the Schrödinger-Newton equation in mod-
els coupling the Schrödinger equation of quantumphysics togetherwith nonrelativistic
Newtonian gravity. The equation can also be derived from the Einstein-Klein-Gordon
and Einstein-Dirac system. Such a model was proposed for boson stars and for the
collapse of galaxy fluctuations of scalar field dark matter. We refer for details to Elgart
and Schlein [3], Giulini and Großardt [4], Jones [5], and Schunck andMielke [6]. Pen-
rose [7,8] proposed Eq. (1.1) as a model of self-gravitating matter in which quantum
state reduction was understood as a gravitational phenomenon.

As pointed out by Lieb [9], Choquard used Eq. (1.1) to study steady states of the
one component plasma approximation in the Hartree-Fock theory. Classification of
solutions of (1.1)wasfirst studiedbyMaandZhao [10]. For a broad surveyofChoquard
equations we refer to Moroz and van Schaftingen [11] and references therein. We also
refer to D’Avenia and Squassina [42], Cassani and Zhang [12],Mingqi, Rădulescu and
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Zhang [13] and Seok [14] as recent relevant contributions to the study of Choquard-
type problems.

1.2 Main result and related remarks

In this article, we consider the following fractional p-Kirchhoff type problem

{(
a + b[u]p(θ−1)

s,p

)
(−�)spu =

(
Iμ ∗ |u|q

)
|u|q−2u + |u|p∗α−2u

|x |α , u > 0, in �,

u = 0, in R
N\�,

(1.2)

where � is a bounded smooth domain of RN containing 0 with Lipschitz boundary,
0 ≤ α < ps < N with s ∈ (0, 1), p > 1, a ≥ 0, b > 0, θ > 1, and Iμ(x) = |x |−μ is
theRiesz potential of orderμ ∈ (0,min{N , 2ps}), the fractional p–Laplacian operator
(−�)sp is the differential of the convex functional

u �→ 1

p
[u]ps,p := 1

p

∫∫
R2N

|u(x) − u(y)|p
|x − y|N+ps

dx dy

defined on the Banach space (with respect to the norm [u]s,p defined above)

Ws,p
0 (�) :=

{
u ∈ L p

loc(R
N ) : u ≡ 0 inRN \ � and [u]s,p < +∞

}
.

This definition is consistent, up to a normalization constant, with the linear fractional
Laplacian (−�)s for the case p = 2. Moreover, p∗

α = (N−α)p
N−ps is the fractional critical

Hardy–Sobolev exponent, which arises from the general fractional Hardy–Sobolev
inequality

(∫
RN

|u|p∗
α

|x |α dx

)1/p∗
α

≤ C(N , p, α)[u]s,p. (1.3)

The latter is a scale invariant inequality and as such is critical for the embedding

Ws,p
0 (�) ↪→ Lq

(
�,

dx

|x |α
)

in the sense that the latter is continuous for any q ∈ [1, p∗
α] but (as long as 0 ∈ �, as

we are assuming) is compact if and only if q < p∗
α . As a result, the energy functional

does not satisfy the Palais-Smale condition globally for the critical case, but it is
true for the energy functional in a suitable range related to the best fractional critical

Hardy-Sobolev constant in the embedding Ws,p
0 (�) ↪→ Lq

(
�, dx

|x |α
)
. To do this, let
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us define the best fractional critical Hardy-Sobolev constant Sα as

Sα = inf

{∫∫
R2N

|u(x) − u(y)|p
|x − y|N+ps

dx dy :∈ Ws,p
0 (�) with

∫
�

|u|p∗
α

|x |α dx = 1

}
.

(1.4)

For the critical fractional p-Laplacian case, the main difficulty is the lack of an explicit
formula for a minimizer of Sα . We can overcome this difficulty by the asymptotic
estimates for minimizers obtained by Marano and Mosconi in [15], we will recall
them in Sect. 3.

This paper is motivated by some works which have been focused on the study of
Kirchhoff type problems and the Choquard equation. On the one hand, Fiscella and
Valdinoci [16] first proposed a stationary fractional Kirchhoff variational model as
follows {

M
(
[u]2s,2

)
(−�)su = λ f (x, u) + |u|2∗−2u, in �,

u = 0, in R
N\�,

(1.5)

where � ⊂ R
N is an open bounded set, 2∗ = 2N/(N − 2s), N > 2s with s ∈ (0, 1),

M and f are two continuous functions under some suitable assumptions. In [16], the
authors first provided a detailed discussion about the physical meaning underlying
the fractional Kirchhoff problems and their applications. They supposed that M :
R

+ → R
+ is an increasing and continuous function, and there exists m0 > 0 such

that M(t) ≥ m0 = M(0) for all t ∈ R
+. Based on the truncated skill and the

mountain pass theorem, they obtained the existence of a non-negative solution to
problem (1.5) for any λ > λ∗ > 0, where λ∗ is an appropriate threshold. Subsequently,
there were many extension and complement results, see for example [17] for the
existence and the asymptotic behavior of non–negative solutions to problem (1.5)
under different assumptions on M . In particular, the Kirchhoff function M may be
zero at zero; that is, the Kirchhoff-type problem is degenerate. We also refer to [18–
24] and references therein, for some recent results on the existence, uniqueness and
multiplicity of solutions for Kirchhoff-type fractional p-Laplacian problems. For the
case involving the Hardy term, Fiscella and Pucci in [25] considered the following
Kirchhoff–Hardy problem:⎧⎨

⎩M
([u]ps,p

)
(−�)spu = λω(x)|u|q−2u + |u|p∗α−2u

|x |α in �,

u = 0 in R
N\�,

(1.6)

where pθ < q < p∗
α , λ is a real parameter, ω(x) ∈ L p∗/(p∗−q)(RN ) with p∗ := p∗

0 .
As a result, the existence of nontrivial mountain pass solution for (1.6) is obtained
as λ is large enough, see [25, Theorem 1.2] for more details. We refer the interested
reader to [26,27] for more related results. The existence of infinitely many solutions
for p-fractional Kirchhoff equations with critical Hardy-Sobolev nonlinearities can
be seen in [25–29].
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On the other hand, there are some interesting results about the Choquard equation.
We refer to [11] for a good survey of the Choquard equation. In the setting of the
fractional Choquard equations, the following problem has been investigated recently

(−�)su + V (x)u = (Iμ ∗ F(u)) f (u), in RN . (1.7)

The existence, regularity and asymptotic behavior of solutions to problem (1.7) with
f satisfying some mild assumptions have been obtained, we refer to [30–32] and
references therein. In the Kirchhoff setting, Mingqi et al. in [33] firstly considered the
following Choquard-type fractional p-Laplacian problem

(
a + b‖u‖p(θ−1)

s
)[

(−�)spu + V (x)|u|p−2u
] = λ f (x, u)

+
(
Kμ ∗ |u|p∗

μ,s

)
|u|p∗

μ,s−2u, in R
N , (1.8)

where ‖u‖s = ([u]ps,p + ∫
RN V (x)|u|pdx)1/p, Kμ(x) = |x |−μ, a, b ≥ 0 with a +

b > 0, p∗
μ,s = p(N − μ/2)/(N − ps) is the upper critical exponent in the sense

of the Hardy-Littlewood-Sobolev inequality. Under some appropriate assumptions,
existence of mountain pass solutions for problem (1.8) is obtained when f satisfies
the sublinear or superlinear growth condition in the non-degenerate or degenerate case.
Subsequently, some existence results for problems like (1.8) with the extra magnetic
field are presented in [13].

It is worth mentioning that Chen et al. in [34] studied the following fractional
p-Laplacian problem with critical Hardy-Sobolev nonlinearity:

{
(−�)spu = λ|u|r−2u + |u|p∗α−2u

|x |α , in �,

u = 0, in R
N\�,

(1.9)

where p ≤ r < Np/(N − ps). By finding the minimizer of the corresponding
energy functional on positive Nehari and sign-changing Nehari sets, the existence of
positive and sign-changing least energy solutions for problem (1.9) was established.
Very recently, Chen in [35] was interested in the existence of positive solutions for the
following problem:

{
M([u]ps,p)(−�)spu = λ

(
Iμ ∗ F(u)

)
f (u) + |u|p∗α−2u

|x |α , u > 0, in �,

u = 0, in R
N\�,

(1.10)

where M : R+
0 → R

+ is a Kirchhoff function, f ∈ C1(R,R) fulfills the Ambrosetti-
Rabinowitz type condition, F(u) = ∫ u

0 f (t)dt . Note that the authors in [35] and [31]
assumed the parameter λ > 0 is large enough, in order to make the level of the energy
functional below a suitable compactness threshold.

Inspired by the above works, especially by [13,25,35], we are devoted to studying
the existence of positive solutions for problem (1.2) in the possibly degenerate case.
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Here we suppose that the parameter is a fixed number, and then consider the existence
of positive solutions by choosing q in some suitable range. It is worth pointing out
that the related non-Choquard cases involving the critical Kirchhoff exponents, i.e.
θ p = p∗

s , have been investigated in [24,36] as α = 0.
We first give the definition of weak solutions for problem (1.2).

Definition 1.1 We say that u ∈ Ws,p
0 (�) is a (weak) solution of problem (1.2), if

(
a + b[u]p(θ−1)

s,p

)
〈u, ϕ〉s,p =

∫
�

∫
�

|u(y)|q
|x − y|μ |u(x)|q−2u(x)ϕ(x) dxdy

+
∫

�

|u(x)|p∗
α−2u(x)ϕ(x)

|x |α dx,

〈u, ϕ〉s,p :=
∫∫

R2N

|u(x) − u(y)|p−2(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+ps
dx dy,

for all ϕ ∈ Ws,p
0 (�), where space Ws,p

0 (�) will be introduced in Sect. 2.

Now we can state our main result as follows.

Theorem 1.1 Assume that 0 ≤ α < ps < N with s ∈ (0, 1), p > 1, 0 < μ <

min{N , 2ps}, and one of the following cases holds

(1) 1 < θ < N−α
N−ps , a = 0 and b > 0;

(2) θ = N−α
N−ps , a > 0 and 0 < b < S

−p∗
α/p

α , where Sα is the best Sobolev embedding

constant of Ws,p
0 (�) ↪→ L p∗

α (�, dx/|x |α), which is defined in (1.4);

(3) θ = N−(ps+α)/2
N−ps , a > 0 and b > 0.

Moreover, assume that q satisfies

max

{
(2N − μ)p

2N
,
p∗
α

2
, p∗

μ,s − p

2(p − 1)

}
< q < p∗

μ,s, (1.11)

or

max

{
(2N − μ)p

2N
,
pθ

2
, p∗

μ,s − p

2(p − 1)

}
< q ≤ p∗

α

2
. (1.12)

Then problem (1.2) admits a positive solution in Ws,p
0 (�).

Remark 1.1 Wewould like to point out that there is no similar result exists for the local
counterpart of problem (1.2), that is, the case s = 1. As far as we know,Ghoussoub and
Yuan [37] investigated the existence and multiplicity of solutions for the quasi-linear
problem

−�pu = λ|u|r−2u + μ
|u|q−2u

|x |α in �,

where λ,μ > 0, and 1 < p < N , p ≤ q ≤ (N − α)p/(N − p) and p ≤ r ≤
Np/(N − p).
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Remark 1.2 Comparing our main result with the result of [35], advantages of our result
are threefold:

(a) Our result is more delicate than that of [35]. In fact, our result may cover the
degenerate case of Kirchhoff–type problems.

(b) Our approach is quite different from that of [35]. Note that the existence of positive
solutions in our result heavily depends on the exponent q in some certain range
instead of the adjusted parameter λ in (1.10).

(c) Our result covers larger range of q in [35]. In fact, f in [35] satisfies the

Ambrosetti–Rabinowitz type condition and hence q ∈
(

(2N−μ)p
2N ,

(2N−μ)p
2(N−ps)

)
, see

(1.11) and (1.12).

The main tool in this paper is variational methods. More precisely, we will use
the mountain pass theorem, which is proposed by Ambrosetti and Rabinowitz in the
celebrated paper [38]. The key point is to overcome the compactness for the associated
Lagrange-Euler functional, namely, the Palais-Smale ((PS) for short) condition. Since
the nonlinearity term in problem (1.2) contains the critical Hardy-Sobolev term, the
functional does not satisfy the Palais-Smale condition in all range, we will use a
fractional version of the concentration compactness principle to show that the energy
functional satisfies the local (PS)c condition for c less than some critical level when
q is in some suitable range.

The paper is organized as follows: In Sect. 2, we give some definitions and pre-
liminaries. In Sect. 3, we recall the decay properties for the Aubin-Talenti functions
optimizing the Hardy–Sobolev inequality, and give some estimates for suitable trun-
cations of the latter. Section 4 is devoted to proving a compactness result. Finally, we
complete the proof of Theorem 1.1 in Sect. 5.

Throughout this paper, the positive constant C may vary from line to line.

2 Abstract setting and preliminary properties

In this section, we introduce some useful notations. The fractional Sobolev space
Ws,p

0 (�) is defined by

Ws,p
0 (�) =

{
u ∈ L p

loc(R
N ) : [u]ps,p < +∞, u ≡ 0 a.e. on R

N\�
}

and the homogeneous fractional Sobolev space

Ds,p(RN ) =
{
u ∈ L p∗

(RN ) : [u]s,p < +∞
}

⊃ Ws,p
0 (�).

For p > 1,Ws,p
0 (�) and Ds,p(RN ) are separable reflexive Banach spaces with respect

to the norm [ · ]s,p and both can also be seen as the completion with respect to the norm
[ · ]s,p ofC∞

c (RN ) (see e.g. [39, Theorem 2.1]). The topological dual ofWs,p
0 (�)will

be denoted by W−s,p′
(�), with corresponding duality pairing 〈 · , · 〉 : W−s,p′

(�) ×
Ws,p

0 (�) → R. The weak and weak∗ convergence in W−s,p′
(�) coincide because of

reflexivity.
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We first recall the following fractional Hardy-Sobolev inequality and Hardy-
Littlewood-Sobolev inequality.

Lemma 2.1 ( [34, Lemma 2.1]) (Hardy-Sobolev inequality) Assume that 0 ≤ α ≤
ps < N. Then there exists a positive constant C such that

( ∫
�

|u|p∗
α

|x |α dx
)1/p∗

α ≤ C
( ∫∫

R2N

|u(x) − u(y)|p
|x − y|N+ps

dx dy
)1/p

, for every u ∈ Ws,p
0 (�).

As a consequence of Lemma 2.1, it is easy to see that the optimization problem (1.4)
has a solution in Ds,p(RN ).

Lemma 2.2 ( [40, Theorem 4.3]) (Hardy-Littlewood-Sobolev inequality) Assume that
1 < r , t < ∞, 0 < μ < N and

1

r
+ 1

t
+ μ

N
= 2.

Then there exists C(N , μ, r , t) > 0 such that

∫∫
R2N

|g(x)||h(y)|
|x − y|μ dx dy ≤ C(N , μ, r , t)‖g‖r‖h‖t

for all g ∈ Lr (RN ) and h ∈ Lt (RN ).

As a consequence, the integral

∫∫
R2N

|u(x)|q |u(y)|q
|x − y|μ dx dy

is well defined if

p̃μ,s := (2N − μ)p

2N
< q <

(2N − μ)p

2(N − ps)
:= p∗

μ,s .

Hence, p̃μ,s is called the lower critical exponent and p∗
μ,s is said to be the upper critical

exponent in the sense of the Hardy-Littlewood-Sobolev inequality.
The energy functional J : Ws,p

0 (�) → R associated with problem (1.2) is

J (u) = a

p
‖u‖p + b

pθ
‖u‖pθ − 1

2q

∫
�

∫
�

|u(x)|q |u(y)|q
|x − y|μ dx dy − 1

p∗
α

∫
�

|u|p∗
α

|x |α dx

:= 
(u) − �q(u) − Hα(u),

with


(u) = a

p
‖u‖p + b

pθ
‖u‖pθ ,
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�q(u) = 1

2q

∫
�

∫
�

|u(x)|q |u(y)|q
|x − y|μ dx dy,

Hα(u) = 1

p∗
α

∫
�

|u|p∗
α

|x |α dx,

where and in what follows, ‖ · ‖ = [ · ]s,p denotes the norm of the space Ws,p
0 (�).

We have the following result.

Lemma 2.3 Let 0 ≤ α ≤ ps < N with s ∈ (0, 1), 0 < μ < min{N , 2ps} and
(2N−μ)p

2N < q <
(2N−μ)p
2(N−ps) . Then the functional J is of class C1(Ws,p

0 (�),R) and

J ′(u)ϕ =
(
a + b‖u‖p(θ−1)

)
〈u, ϕ〉s,p −

∫
�

∫
�

|u(y)|q
|x − y|μ |u(x)|q−2u(x)ϕ(x) dxdy

−
∫

�

|u(x)|p∗
α−2u(x)ϕ(x)

|x |α dx,

for all ϕ ∈ Ws,p
0 (�). Moreover, J is sequentially weakly lower semi–continuous in

Ws,p
0 (�), and the operatorJ ′ : Ws,p

0 (�) → W−s,p′
(�) is sequentially weak to weak

continuous.

Proof It easily follows from [19, Lemma 2], [31, Lemma 2.2] and [34, Lemma 2.3],
so we omit the details. ��

Clearly, the critical points of J are exactly the weak solutions of problem (1.2).

3 Hardy optimizers and some estimates

In this section, we recall the known decay properties for the Aubin–Talenti func-
tions optimizing the Hardy–Sobolev inequality, and give some estimates for suitable
truncations of the latter.

In [39] the existence and properties of solutions for the minimization problem (1.4)
when α = 0 was investigated. For 0 ≤ α < ps, one can get the following results, see
[15, Theorem 1.1].

Proposition 3.1 (Existence and properties) Let 0 ≤ α < ps < N. Then the following
facts hold.

(1) Problem (1.4) admits constant sign solutions, and any solution is bounded;
(2) For every nonnegativeUα ∈ Ds,p(RN ) solving problem (1.4), there exist x0 ∈ R

N

and a non-increasing u : R+ → R such that Uα(x) = u(|x − x0|);
(3) Every nonnegative minimizer Uα ∈ Ds,p(RN ) of problem (1.4) weakly solves

(−�)spUα = Sα

U
p∗
α−1

α

|x |α in R
N .
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i.e.,

〈(−�p)
sUα, ϕ〉 = Sα

∫
RN

U
p∗
α−1

α

|x |α ϕ dx, f or all ϕ ∈ Ds,p(RN )

and the last integrand is absolutely integrable.

Next we fix N , p, s, α and a positive radially symmetric decreasing minimizer
Uα = Uα(r) for Sα as in (1.4). MultiplyingUα by a positive constant, we may assume
that

(−�)spUα = U
p∗
α−1

α

|x |α weakly in RN . (3.1)

Testing this equation by Uα and using (1.4), we get

‖Uα‖p =
∫
RN

U
p∗
α

α

|x |α dx = S
N−α
ps−α
α . (3.2)

In [39] the asymptotic behavior for Uα was obtained when α = 0, while in [15] the
asymptotic for Uα with 0 < α < ps was derived by similar arguments.

Lemma 3.1 (Optimal decay) There exist c1 > 0 and c2 > 0 such that

c1

r
N−ps
p−1

≤ Uα(r) ≤ c2

r
N−ps
p−1

, for all r ≥ 1.

Furthermore, there exists κ > 1 such that

Uα(κr) ≤ 1

2
Uα(r) for all r ≥ 1. (3.3)

For any ε > 0, the function

Uα,ε(x) := ε
− N−ps

p Uα

( x
ε

)
(3.4)

is also a minimizer for Sα satisfying (3.1). We note that c1, c2, κ are universal since
we fixed N , p, s, α,Uα . In general, they depend upon these entries.

In what follows, 0 ≤ α < ps < N , Uα is a fixed minimizer for (1.4), κ is the
constant in Lemma 3.1 depending only on N , p, s, α and Uα . For every δ ≥ ε > 0,
let us set

mε,δ := Uα,ε(δ)

Uα,ε(δ) −Uα,ε(κδ)
.
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Due to (3.3) and the definition (3.4), it readily follows that mε,δ ≤ 2. Furthermore, let
us set

gε,δ(t) =

⎧⎪⎪⎨
⎪⎪⎩
0, if 0 ≤ t ≤ Uα,ε(κδ),

mp
ε,δ(t −Uα,ε(κδ)), if Uα,ε(κδ) ≤ t ≤ Uα,ε(δ),

t +Uα,ε(δ)(m
p−1
ε,δ − 1), if t ≥ Uα,ε(δ),

as well as

Gε,δ(t) =
∫ t

0
g′
ε,δ(τ )

1
p dτ =

⎧⎪⎪⎨
⎪⎪⎩
0, if 0 ≤ t ≤ Uα,ε(κδ),

mε,δ(t −Uα,ε(κδ)), if Uα,ε(κδ) ≤ t ≤ Uα,ε(δ),

t, if t ≥ Uα,ε(δ).

The functions gε,δ and Gε,δ are nondecreasing and absolutely continuous. Consider
now the radially symmetric nonincreasing function

uα,ε,δ(r) := Gε,δ(Uα,ε(r)), (3.5)

which satisfies

uα,ε,δ(r) =
{
Uα,ε(r), if r ≤ δ,

0, if r ≥ κδ.

Thenuα,ε,δ ∈ Ws,p
0 (�), for any δ < κ−1δ� := κ−1dist(0, ∂�).Wehave the following

estimates.

Lemma 3.2 ( [34, Lemma 2.10]) There exists C > 0 such that, for any 0 < 2ε ≤ δ <

κ−1δ�, there holds

‖uα,ε,δ‖p ≤ S
N−α
ps−α
α + C

(ε

δ

) N−ps
p−1

, (3.6)

and

∫
RN

uα,ε,δ(x)p
∗
α

|x |α dx ≥ S
N−α
ps−α
α − C

(ε

δ

) N−α
p−1

. (3.7)

Using Lemma 3.1, we can get the following estimate.

Lemma 3.3 We have∫
�

∫
�

|uα,ε,δ(x)|q |uα,ε,δ(y)|q
|x − y|μ dxdy ≥ Cε

2N−μ−2 N−ps
p q

, (3.8)

for some positive constant C.
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Proof The desired conclusion follows immediately from the following observation:

∫
�

∫
�

|uα,ε,δ(x)|q |uα,ε,δ(y)|q
|x − y|μ dxdy ≥

∫
Bδ

∫
Bδ

|uα,ε,δ(x)|q |uα,ε,δ(y)|q
|x − y|μ dxdy

=
∫
Bδ

∫
Bδ

|Uα,ε(x)|q |Uα,ε(y)|q
|x − y|μ dxdy

= ε
2N−μ−2 N−ps

p q
∫
B δ

ε

∫
B δ

ε

|Uα(x)|q |Uα(y)|q
|x − y|μ dxdy

≥ Cε
2N−μ−2 N−ps

p q
∫
B δ

ε
\B1∫

B δ
ε
\B1

1

(1 + |x |) (N−ps)q
p−1

1

(1 + |y|) (N−ps)q
p−1

1

|x − y|μ dxdy

= O
(
ε
2N−μ−2 N−ps

p q
)
,

where Bδ denotes the ball with center at 0 and radius δ > 0. ��

4 Compactness result

This section is devoted to proving a compactness result. We start with the following
definition.

Definition 4.1 ([38]) For c ∈ R, we say that J satisfies the (PS)c condition if for any
sequence {un} ⊂ Ws,p

0 (�) with

J (un) → c, J ′(un) → 0 in W−s,p′
(�)

has a convergent subsequence.

Lemma 4.1 (Palais-Smale condition) The functional J satisfies (PS)c condition for
any c < c∗, where c∗ is defined as

c∗ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1
p − 1

p∗
α

)
(aSα)

N−α
ps−α(

1−bS
N−α
N−ps

α

) N−ps
ps−α

, if θ = N−α
N−ps , a > 0, 0 < b < S

− p∗α
p

α ,

(
1
pθ − 1

p∗
α

) (
bSθ

α

) p∗α
p∗α−pθ , if 1 < θ < N−α

N−ps , a = 0, b > 0,[
a
(
1
p − 1

pθ

)
�

2(N−ps)
ps−α +

(
1
pθ − 1

p∗
α

)
�

2(N−α)
ps−α

]
S

N−α
ps−α

α , if θ = N−(ps+α)/2
N−ps , a > 0, b > 0,

(4.1)

with

� := �(a, b, Sα, p, s, α, N ) = bS
N−α

2(N−ps)
α +

√
b2S

N−α
N−ps
α + 4a

2
. (4.2)
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Proof Assume that {un} ⊂ Ws,p
0 (�) is the (PS)c sequence of J , that is

J (un) → c and J ′(un) → 0 in W−s,p′
(�).

If q satisfies (1.11), we have 2q > p∗
α , then there exists C > 0 such that

C + ‖un‖ ≥ J (un) − 1

p∗
α

J ′(un)un

= a

(
1

p
− 1

p∗
α

)
‖un‖p + b

(
1

pθ
− 1

p∗
α

)
‖un‖pθ

−
(

1

2q
− 1

p∗
α

)∫
�

∫
�

|un(x)|q |un(y)|q
|x − y|μ dx dy

≥
⎧⎨
⎩
b
(

1
pθ − 1

p∗
α

)
‖un‖pθ , if 1 < θ < N−α

N−ps , a ≥ 0, b > 0,

a
(
1
p − 1

p∗
α

)
‖un‖p, if θ = N−α

N−ps , a > 0, b > 0,
(4.3)

for n large enough.
If q satisfies (1.12), we have pθ < 2q ≤ p∗

α , then there exists C > 0 such that

C + ‖un‖ ≥ J (un) − 1

pθ
J ′(un)un

= a

(
1

p
− 1

pθ

)
‖un‖p −

(
1

p∗
α

− 1

pθ

)∫
�

|un|p∗
α

|x |α dx

−
(

1

2q
− 1

pθ

)∫
�

∫
�

|un(x)|q |un(y)|q
|x − y|μ dx dy

≥ a

(
1

p
− 1

pθ

)
‖un‖p. (4.4)

From (4.3) and (4.4), we obtain that {un} is bounded inWs,p
0 (�). By the concentration-

compactness principle (see [41, Theorem 2.5]), there exist u ∈ Ws,p
0 (�), two Borel

regular measures σ and ν, � denumerable, at most countable set {x j } j∈� ⊆ �̄, and
non-negative numbers {σ j } j∈�, {ν j } j∈� ⊂ [0,∞) such that, up to subsequence

un⇀u in Ws,p
0 (�),

un → u in Lr (�), for p ≤ r < p∗
0,

un → u a. e. in �, (4.5)

as n → ∞. Moreover,

‖un‖p⇀∗σ,
|un|p∗

α

|x |α ⇀∗ν, (4.6)

dσ ≥ ‖u‖p +
∑
j∈�

σ jδx j , σ j := σ({x j }), (4.7)
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dν = |u|p∗
α

|x |α +
∑
j∈�

ν jδx j , ν j := ν({x j }), (4.8)

σ j ≥ Sαν
p/p∗

α

j , for all j ∈ �. (4.9)

Fix i0 ∈ �, we prove that either νi0 = 0 or

νi0 ≥

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
aSα

1−bSθ
α

) θ
θ−1

, if θ = N−α
N−ps , a > 0, 0 < b < S−θ

α ,(
bSθ

α

) p∗α
p∗α−pθ , if 1 < θ < N−α

N−ps , a = 0, b > 0,(
bSθ

α+√
b2S2θα +4aSα

2

) 2θ−1
θ−1

, if θ = N−(ps+α)/2
N−ps , a > 0, b > 0.

(4.10)

In fact, let ϕε ∈ C∞
0 (B2ε(xi0)) satisfy 0 ≤ ϕε ≤ 1, ϕε |Bε (xi0 ) = 1, and ‖∇ϕε‖∞ ≤

C/ε. Clearly {ϕεun} is bounded in Ws,p
0 (�). It follows from 〈J ′(un), ϕεun〉 → 0 as

n → ∞ that

(
a + b‖un‖p(θ−1)

) ∫∫
R2N

|un(x) − un(y)|p−2(un(x) − un(y))(ϕε(x)un(x) − ϕε(y)un(y))

|x − y|N+ps
dxdy

=
∫
�

∫
�

|un(y)|q
|x − y|μ |un(x)|q−2un(x)ϕε(x)dxdy +

∫
�

|un |p∗
α

|x |α ϕε(x)dx + o(1). (4.11)

On the one hand,

∫∫
R2N

|un(x) − un(y)|p−2(un(x) − un(y))
[
ϕε(x)un(x) − ϕε(y)un(y)

]
|x − y|N+ps

dx dy

=
∫∫

R2N

|un(x) − un(y)|p−2(un(x) − un(y))
[
un(x) − un(y)

]
ϕε(x)

|x − y|N+ps
dx dy

+
∫∫

R2N

|un(x) − un(y)|p−2(un(x) − un(y))un(y)
[
ϕε(x) − ϕε(y)

]
|x − y|N+ps

dx dy.

(4.12)

Since

∫∫
R2N

|un(x) − un(y)|pϕε(x)

|x − y|N+ps
dx dy →

∫
RN

ϕε(x)dσ,

as n → ∞. Taking ε → 0, we have

lim
ε→0

lim
n→∞

∫∫
R2N

|un(x) − un(y)|pϕε(x)

|x − y|N+ps
dx dy = σi0 .
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This gives that

lim
ε→0

lim
n→∞

(
a + b‖un‖p(θ−1)

) ∫∫
R2N

|un(x) − un(y)|p
|x − y|N+ps

ϕε(x)dxdy

≥ lim
ε→0

lim
n→∞

[
a
∫∫

R2N

|un(x) − un(y)|p
|x − y|N+ps

ϕε(x)dxdy

+b

(∫∫
R2N

|un(x) − un(y)|p
|x − y|N+ps

ϕε(x)dxdy

)θ
]

= aσi0 + bσθ
i0 . (4.13)

By using Hölder’s inequality and Lemma 2.3 in [24], we find

lim
ε→0

lim
n→∞

∣∣∣(a + b‖un‖p(θ−1)
)

∫∫
R2N

|un(x) − un(y)|p−2(un(x) − un(y))(ϕε(x) − ϕε(y))un(y)

|x − y|N+ps
dxdy

∣∣∣∣
≤ C lim

ε→0
lim
n→∞

(∫∫
R2N

|un(x) − un(y)|p
|x − y|N+ps

dxdy

) p−1
p

(∫∫
R2N

|(ϕε(x) − ϕε(y))un(y)|p
|x − y|N+ps

dxdy

) 1
p

≤ C lim
ε→0

lim
n→∞

(∫∫
R2N

|(ϕε(x) − ϕε(y))un(y)|p
|x − y|N+ps

dxdy

) 1
p = 0. (4.14)

Moreover, by Lemma 2.2 in [31], we get

lim
ε→0

lim
n→∞

∫
�

∫
�

|un(y)|q
|x − y|μ |un(x)|q−2un(x)ϕε(x)dxdy = 0. (4.15)

Furthermore, by (4.8), one has

lim
ε→0

lim
n→∞

∫
�

|un|p∗
α

|x |α ϕεdx = lim
ε→0

∫
�

ϕεdν = νi0 . (4.16)

Therefore, taking the limit for n → ∞ and ε → 0 in (4.11), from (4.13), (4.15) and
(4.16), we obtain

νi0 ≥ aσi0 + bσθ
i0 .

This together with (4.9) implies that νi0 = 0 or (4.10) holds.
Next we claim that (4.10) cannot occur.
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Indeed, by contradiction, we assume that there exists i0 ∈ � such that (4.10) holds.
From (4.7) and (4.8), we have

c = lim
n→∞

[
J (un) − 1

pθ
〈J ′(un), un〉

]

= lim
n→∞

[
a
( 1
p

− 1

pθ

) ∫∫
R2N

|un(x) − un(y)|p
|x − y|N−ps

dxdy

+
( 1

pθ
− 1

p∗
α

) ∫
�

|un|p∗
α

|x |α dx −
( 1

2q
− 1

pθ

) ∫
�

∫
�

|un(x)|q |un(y)|q
|x − y|μ dxdy

]

≥ lim
ε→0

lim
n→∞

[
a
( 1
p

− 1

pθ

) ∫∫
R2N

|un(x) − un(y)|p
|x − y|N−ps

ϕε(x)dxdy

+
( 1

pθ
− 1

p∗
α

) ∫
�

|un|p∗
α

|x |α ϕε(x)dx −
( 1

2q

− 1

pθ

) ∫
�

∫
�

|un(x)|q |un(y)|q
|x − y|μ ϕε(x)dxdy

]

= a
( 1
p

− 1

pθ

)
σi0 +

( 1

pθ
− 1

p∗
α

)
νi0

Using this fact and (4.9), (4.10), we deduce that c ≥ c∗.
This is a contradiction. Thus the claim holds. Hence ν j ≡ 0 for all j ∈ �, then

∫
�

|un|p∗
α

|x |α dx →
∫

�

|u|p∗
α

|x |α dx as n → ∞. (4.17)

Finally, we show that un → u strongly in Ws,p
0 (�).

We first assume that d := infn≥1 ‖un‖ > 0. For simplicity, let ψ ∈ Ws,p
0 (�) be

fixed and Bψ be the linear functional on Ws,p
0 (�) defined by

Bψ(v) =
∫∫

R2N

|ψ(x) − ψ(y)|p−2(ψ(x) − ψ(y))

|x − y|N+ps
(v(x) − v(y)) dx dy

for all v ∈ Ws,p
0 (�). By the Hölder inequality, we have

∣∣Bψ(v)
∣∣ ≤ [ψ]p−1

s,p [v]s,p,

for all v ∈ Ws,p
0 (�). Since J ′(un) → 0 in W−s,p′

(�) and un⇀u in Ws,p
0 (�), we

have

〈J ′(un) − J ′(u), un − u〉 → 0 as n → ∞.

That is,

o(1) = 〈J ′(un) − J ′(u), un − u〉
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=
(
a + b‖un‖p(θ−1)

)
Bun (un − u) −

(
a + b‖u‖p(θ−1)

)
Bu(un − u)

−
∫

�

[
(Iμ ∗ |un|q)|un|q−2un − (Iμ ∗ |u|q)|u|q−2u

]
(un − u)dx

−
∫

�

[ |un|p∗
α−2un

|x |α − |u|p∗
α−2u

|x |α
]
(un − u)dx

=
(
a + b‖un‖p(θ−1)

) [
Bun (un − u) − Bu(un − u)

]
+
[ (

a + b‖un‖p(θ−1)
)

−
(
a + b‖u‖p(θ−1)

) ]
Bu(un − u)

−
∫

�

[
(Iμ ∗ |un|q)|un|q−2un − (Iμ ∗ |u|q)|u|q−2u

]
(un − u)dx

−
∫

�

[ |un|p∗
α−2un

|x |α − |u|p∗
α−2u

|x |α
]
(un − u)dx . (4.18)

The boundedness of {un}n and (4.5) give that

lim
n→∞

(
a + b‖un‖p(θ−1)

)
Bu(un − u) = 0,

lim
n→∞

(
a + b‖u‖p(θ−1)

)
Bu(un − u) = 0. (4.19)

From Lemma 2.2 in [31], we have∫
�

[
(Iμ ∗ |un|q)|un|q−2un − (Iμ ∗ |u|q)|u|q−2u

]
(un − u)dx → 0, as n → ∞.

(4.20)

Moreover, from (4.17) and the well-known Brézis-Lieb Lemma, we get

∫
�

|un − u|p∗
α

|x |α dx =
∫

�

|un|p∗
α

|x |α dx −
∫

�

|u|p∗
α

|x |α dx + o(1) → 0

as n → ∞. This together with the Hölder inequality implies

∫
�

[ |un|p∗
α−2un

|x |α − |u|p∗
α−2u

|x |α
]
(un − u)dx → 0, as n → ∞. (4.21)

From (4.18)–(4.21), we obtain

lim
n→∞

(
a + b‖un‖p(θ−1)

) [
Bun (un − u) − Bu(un − u)

]
= 0.

By the assumptions infn≥1 ‖un‖ > 0, a ≥ 0 and b > 0, we have

lim
n→∞

[
Bun (un − u) − Bu(un − u)

]
= 0. (4.22)
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Let us now recall the well-known Simon inequalities. There exist positive numbers cp
and Cp, depending only on p, such that

|ξ − η|p ≤
{
cp(|ξ |p−2ξ − |η|p−2η)(ξ − η) for p ≥ 2,

Cp
[
(|ξ |p−2ξ − |η|p−2η)(ξ − η)

]p/2
(|ξ |p + |η|p)(2−p)/2 for 1 < p < 2,

(4.23)

for all ξ, η ∈ R
N . According to the Simon inequality, we divide the discussion into

two cases.
Case (I) p ≥ 2: From (4.22) and (4.23), we have

‖un − u‖p =
∫∫

R2N

|un(x) − u(x) − un(y) + u(y)|p
|x − y|N+ps

dxdy

≤ cp

∫∫
R2N

|un(x) − un(y)|p−2(un(x) − un(y)) − |u(x) − u(y)|p−2(u(x) − u(y))

|x − y|N+ps

×
(
un(x) − u(x) − un(y) + u(y)

)
dxdy

= cp
[
Bun (un − u) − Bu(un − u)

]
= o(1),

as n → ∞.
Case (2) 1 < p < 2: taking ξ = un(x) − un(y) and η = u(x) − u(y) in (4.23), as

n → ∞, we have

‖un − u‖p ≤ Cp
[
Bun (un − u) − Bu(un − u)

]p/2
(‖un‖p + ‖u‖p)(2−p)/2

≤ C
[
Bun (un − u) − Bu(un − u)

]p/2
(‖un‖p(2−p)/2 + ‖u‖p(2−p)/2) = o(1).

Here we used (4.22) and the fact that ‖un‖ and ‖u‖ are bounded, and the elementary
inequality (a + b)(2−p)/2 ≤ a(2−p)/2 + b(2−p)/2 for all a, b ≥ 0 and 1 < p < 2.
Thus un → u strongly in Ws,p

0 (�) as n → ∞.
We now consider the case infn≥1 ‖un‖ = 0, then either 0 is an accumulation point

of the sequence {un} and so there exists a subsequence of {un} strongly converging to
u = 0, or 0 is an isolated point of the sequence {un} and so there exists a subsequence,
still denoted by {un} such that infn≥1 ‖un‖ > 0. We are done the first case, while in
the second case we can process as before. The proof is thus complete. ��

5 Proof of Theorem 1.1

The existence of positive solutions for problem (1.2) follows the standard mountain
pass approach. The next result shows that the functionalJ has the geometric structure
of the mountain pass theorem.

Lemma 5.1 Assume the conditions in Theorem 1.1 hold. Then

(1) There exists ϑ, ρ > 0 such that J (u) ≥ ϑ for all u ∈ Ws,p
0 (�) with ‖u‖ = ρ.
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(2) There exists e ∈ Ws,p
0 (�) such that ‖e‖ > ρ and J (e) < 0.

Proof (1) By using the Hardy-Littlewood-Sobolev inequality, fractional Sobolev
embedding and the definition of Sα , we have

J (u) = a

p
‖u‖p + b

pθ
‖u‖pθ − 1

2q

∫
�

∫
�

|u(x)|q |u(y)|q
|x − y|μ dx dy − 1

p∗
α

∫
�

|u|p∗
α

|x |α dx

≥ a

p
‖u‖p + b

pθ
‖u‖pθ − C‖u‖2q − 1

p∗
α

S
− p∗α

p
α ‖u‖p∗

α .

If 1 < θ < N−α
N−ps i.e. pθ < p∗

α , in this case, we assume that a ≥ 0 and b > 0, then
we have

J (u) ≥ b

pθ
‖u‖pθ − 1

p∗
α

S
− p∗α

p
α ‖u‖p∗

α − C‖u‖2q .

Notice that if q satisfies (1.11), we have pθ < p∗
α < 2q. If q satisfies (1.12), we have

pθ < 2q ≤ p∗
α . Thus the claim follows if we choose ρ > 0 small enough.

If θ = N−α
N−ps i.e. pθ = p∗

α , in this case, we assume that a > 0 and 0 < b < S
− p∗α

p
α ,

then we have

J (u) ≥ a

p
‖u‖p + b − S

− p∗α
p

α

pθ
‖u‖pθ − C‖u‖2q ≥ a

p
‖u‖p − C‖u‖2q .

Since p < 2q, the claim follows if we choose ρ > 0 small enough.
(2) Taking uα,ε,δ ∈ Ws,p

0 (�) given in formula (3.5), without loss of generality, we
can consider δ = 1. From Lemma 3.2, we have

J (tuα,ε,1) = a

p
t p‖uα,ε,1‖p + b

pθ
t pθ‖uα,ε,1‖pθ

− t2q

2q

∫
�

∫
�

|uα,ε,1(x)|q |uα,ε,1(y)|q
|x − y|μ dx dy − t p

∗
α

p∗
α

∫
�

|uα,ε,1|p∗
α

|x |α dx

≤ a

p
t p‖uα,ε,1‖p + b

pθ
t pθ‖uα,ε,1‖pθ − t p

∗
α

p∗
α

∫
�

|uα,ε,1|p∗
α

|x |α dx

≤ a

p
t p
(
S

N−α
ps−α
α + Cε

N−ps
p−1

)
+ b

pθ
t pθ

(
S

N−α
ps−α
α + Cε

N−ps
p−1

)θ

− t p
∗
α

p∗
α

(
S

N−α
ps−α
α − Cε

N−α
p−1

)

≤
(
1 + Cε

N−ps
p−1

)[
a

p
t pS

N−α
ps−α
α + b

pθ
t pθ S

θ N−α
ps−α

α − t p
∗
α

p∗
α

S
N−α
ps−α
α

]
.
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If 1 < θ < N−α
N−ps i.e. pθ < p∗

α , we obtain that there exists t > 0 large enough such
that ‖tuα,ε,1‖ > ρ and J (tuα,ε,1) < 0.

If θ = N−α
N−ps i.e. pθ = p∗

α , we have

J (tuα,ε,1) ≤
(
1 + Cε

N−ps
p−1

)[
a

p
t pS

N−α
ps−α
α + b

pθ
t pθ S

θ N−α
ps−α

α − t p
∗
α

p∗
α

S
N−α
ps−α
α

]

=
(
1 + Cε

N−ps
p−1

)
S

N−α
ps−α
α

{
a

p
t p − t p

∗
α

p∗
α

[
1 − bS

p∗α
p

α

]}
.

It follows from a > 0, 0 < b < S
−p∗

α/p
α that there exists t > 0 large enough such that

‖tuα,ε,1‖ > ρ and J (tuα,ε,1) < 0. ��

Lemma 5.2 Under the assumptions in Theorem 1.1. There exists u0 ∈ Ws,p
0 (�)\{0}

such that

sup
t≥0

J (tu0) < c∗, (5.1)

where c∗ is given in (4.1).

Proof Write J (u) = I (u) − �q(u), where the functions I : Ws,p
0 (�) → R and

�q : Ws,p
0 (�) → R are defined by

I (u) = a

p
‖u‖p + b

pθ
‖u‖pθ − 1

p∗
α

∫
�

|u|p∗
α

|x |α dx,

�q(u) = 1

2q

∫
�

∫
�

|u(x)|q |u(y)|q
|x − y|μ dx dy.

Without loss of generality, we can consider δ = 1 in the definition of uα,ε,δ ∈ Ws,p
0 (�)

given in formula (3.5), for any sufficiently small 0 < ε < 1, set u0 = uα,ε,1. The map
h(t) := I (tu0) satisfies h(t) > 0 for t > 0 small, and h(t) < 0 for t > 0 large. Note
that

d

dt
h(t) =t p−1

[
a‖u0‖p + bt pθ−p‖u0‖pθ − t p

∗
α−p

∫
�

|u0|p∗
α

|x |α dx

]
.

There exists t̃ > 0 such that h(t) attainsmaximum value at the point t̃ , with t̃ satisfying

a‖u0‖p + bt̃ pθ−p‖u0‖pθ − t̃ p
∗
α−p

∫
�

|u0|p∗
α

|x |α dx = 0.
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• In the case θ = N−α
N−ps , a > 0, 0 < b < S

− p∗α
p

α . Direct calculations give that

t̃ =
⎛
⎝ a‖u0‖p∫

�
|u0|p∗α|x |α dx − b‖u0‖pθ

⎞
⎠

1
p(θ−1)

,

and

sup
t≥0

I (tu0) = I (t̃u0) =
(
1

p
− 1

pθ

)
(a‖u0‖p)

θ
θ−1(∫

�
|u0|p∗α|x |α dx − b‖u0‖pθ

) 1
θ−1

.

By the estimations in Lemma 3.2, we get

sup
t≥0

I (tu0) ≤
( 1
p

− 1

p∗
α

) (aSα)
N−α
ps−α(

1 − bS
N−α
N−ps
α

) N−ps
ps−α

+ O
(
ε

N−ps
p−1

)
. (5.2)

• In the case 1 < θ < N−α
N−ps , a = 0, b > 0, we have

t̃ =
⎛
⎝ b‖u0‖pθ∫

�
|u0|p∗α|x |α dx

⎞
⎠

1
p∗α−pθ

,

and

sup
t≥0

I (tu0) = I (t̃u0) =
(

1

pθ
− 1

p∗
α

) (
b‖u0‖pθ

) p∗α
p∗α−pθ

(∫
�

|u0|p∗α|x |α dx
) pθ

p∗α−pθ

.

By Lemma 3.2, we have

sup
t≥0

I (tu0) ≤
( 1

pθ
− 1

p∗
α

) (
bSθ

α

) p∗α
p∗α−pθ + O

(
ε

N−ps
p−1

)
. (5.3)

• In the case θ = N−(ps+α)/2
N−ps , a > 0, b > 0, we have p∗

α − p = 2(pθ − p) and

t̃ satisfies the following equality

(∫
�

|u0|p∗
α

|x |α dx

)
t̃2(pθ−p) − b‖u0‖pθ t̃ pθ−p − a‖u0‖p = 0. (5.4)
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By solving the above equation, we get

t̃ =

⎛
⎜⎜⎝
b‖u0‖pθ +

√
(b‖u0‖pθ )2 + 4a‖u0‖p

∫
�

|u0|p∗α|x |α dx

2
∫
�

|u0|p∗α|x |α dx

⎞
⎟⎟⎠

1
p(θ−1)

=
⎛
⎜⎝B +√

B2 + 4a‖u0‖p

2
(∫

�
|u0|p∗α|x |α dx

)1/2
⎞
⎟⎠

1
p(θ−1)

, with B = b‖u0‖pθ(∫
�

|u0|p∗α|x |α dx
)1/2 .

Therefore,

sup
t≥0

I (tu0) = I (t̃u0) =
(
1

p
− 1

pθ

)
a‖u0‖pt̃ p +

(
1

pθ
− 1

p∗
α

)
t̃ (2θ−1)p

∫
�

|u0|p∗
α

|x |α dx

=
(
1

p
− 1

pθ

)
a‖u0‖p

⎛
⎜⎝B +√

B2 + 4a‖u0‖p

2
(∫

�
|u0|p∗α|x |α dx

)1/2
⎞
⎟⎠

1
θ−1

+
(

1

pθ
− 1

p∗
α

)⎛⎜⎝B +√
B2 + 4a‖u0‖p

2
(∫

�
|u0|p∗α|x |α dx

)1/2
⎞
⎟⎠

2θ−1
θ−1 ∫

�

|u0|p∗
α

|x |α dx,

From Lemma 3.2, we have

sup
t≥0

I (tu0) ≤
[
a
( 1
p

− 1

pθ

)
�

2(N−ps)
ps−α +

( 1

pθ
− 1

p∗
α

)
�

2(N−α)
ps−α

]
S

N−α
ps−α
α + O

(
ε

N−ps
p−1

)
.

(5.5)

We note that

J (tu0) ≤ a
t p

p
‖u0‖p + b

t pθ

pθ
‖u0‖pθ for t ≥ 0.

Thus there exists t0 > 0 such that

sup
0≤t≤t0

J (tu0) < c∗.

From (5.2), (5.3) and (5.5), we obtain

sup
t≥t0

J (tu0) ≤ c∗ + O
(
ε

N−ps
p−1

)
− t2q0

2q

∫
�

∫
�

|u(x)|q |u(y)|q
|x − y|μ dx dy.
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By Lemma 3.3, we find

sup
t≥t0

J (tu0) ≤ c∗ + O
(
ε

N−ps
p−1

)
− O

(
ε
2N−μ−2 N−ps

p q
)
.

Either condition (1.11) or (1.12) implies that

N − ps

p − 1
> 2N − μ − 2

N − ps

p
q.

Therefore, we get that sup
t≥0

J (tu0) < c∗. ��

Proof of Theorem 1.1 Bymeans of Lemmas 4.1, 5.1 and 5.2 , the existence of a positive
solution for problem (1.2) follows from the well-known mountain pass theorem (see
[38]). ��
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