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Abstract. We study the existence of nontrivial weak solutions for a class of

generalized p(x)-biharmonic equations with singular nonlinearity and Navier
boundary condition. The proofs combine variational and topological argu-

ments. The approach developed in this paper allows for the treatment of

several classes of singular biharmonic problems with variable growth arising
in applied sciences, including the capillarity equation and the mean curvature

problem.

1. Introduction. One of the numerous contributions of Patrizia Pucci to the de-
velopment of the nonlinear analysis and mathematical physics concerns the refined
qualitative analysis of real world phenomena driven by nonhomogeneous differen-
tial or nonlocal operators with one or more variable exponents. We refer only to
P. Pucci and Q. Zhang [23] for the existence of entire solutions for several classes
of nonlinear problems with variable growth, G. Autuori and P. Pucci [2] for the
study of the asymptotic stability for Kirchhoff systems in variable exponent Sobolev
spaces, G. Autuori, F. Colasuonno and P. Pucci [1] for the analysis of stationary
higher-order Kirchhoff problems, and J. Liu, P. Pucci, H. Wu, and Q. Zhang [17] for
the existence and blow-up rate of large solutions of p(x)-Laplacian equations with
gradient terms.

The interest in the mathematical analysis of partial differential equations driven
by nonhomogeneous differential operators is motivated by their relevant applica-
tions in various disciplines. For instance, several models in the applied sciences are
characterized by the fact that the associated energy density changes its ellipticity
and growth properties according to the point. Such phenomena have been studied
starting with the seminal works of T.C. Halsey [12] and V.V. Zhikov [33, 34], in
close relationship with the qualitative mathematical analysis of strongly anisotropic
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materials in the context of the homogenization and nonlinear elasticity. In the
framework of materials with non-homogeneities, the standard approach based on
the classical theory of Lp and W 1,p Lebesgue and Sobolev spaces is inadequate. We
refer to electrorheological (smart) fluids or to phenomena in image processing, which
should enable that the exponent p is varying; see Y. Chen, S. Levine and M. Rao [8],
and M. Ruzicka [29]. For instance, we refer to the Winslow effect of some fluids (like
lithium polymetachrylate) in which the viscosity in an electrical field is inversely
proportional to the strength of the field. The field induces string-like formations in
the fluid, which are parallel to the field. They can raise the viscosity by as much as
five orders of magnitude. This corresponds to electrorheological (non-Newtonian)
fluids, which are mathematically described by means of nonlinear equations with
variable exponent. Such a study corresponds to the abstract setting of variable
exponents Lebesgue and Sobolev spaces, Lp(x) and W 1,p(x), where p is a real-valued
function.

The theory of function spaces with variable exponent has been rigorously devel-
oped in the monograph of L. Diening, P. Hästo, P. Harjulehto and M. Ruzicka [11]
while the recent book by V.D. Rădulescu and D.D. Repovš [26] is devoted to the
thorough variational and topological analysis of several classes of problems with one
or more variable exponents; see also the survey papers of P. Harjulehto, P. Hästö,
U.V. Le and M. Nuortio [13] and V.D. Rădulescu [24]. We also refer to G. Min-
gione et al. [4, 9, 10], M. Cencelj, V.D. Rădulescu and D.D. Repovš [6] M. Cencelj,
D.D. Repovš and Ž. Virk [7], and D.D. Repovš [28] for related results. The ab-
stract setting of p(x)-biharmonic problems with singular weights has been recently
considered by K. Kefi and V.D. Rădulescu [14] in relationship with microelectrome-
chanical phenomena, surface diffusion on solids, thin film theory, flow in Hele-Shaw
cells and phase field models of multiphasic systems. The present paper extends and
complements some results contained in [14, 15] to more general operators.

The study of elliptic problems with variable exponent has recently been extended
by I.H. Kim and Y.H. Kim [16] to a new class of non-homogeneous differential
operators. Their contribution is a step forward in the analysis of nonlinear problems
with variable exponent since it enables the understanding of problems with possible
lack of uniform convexity. More precisely, in [16] they studied problems of the type{

−div (φ(x, |∇u|)∇u) = f(x, u) in Ω
u = 0 on ∂Ω,

(1)

where Ω ⊂ RN is a bounded domain with smooth boundary. The nonlinear term
f : Ω × R → R satisfies the Carathéodory condition and the function φ(x, t) is of
type |t|p(x)−2 with p : Ω→ (1,∞) continuous.

In the special case when φ(x, t) = |t|p(x)−2, the operator involved in problem (1)
reduces to the p(x)-Laplacian, that is,

∆p(x)u = div (|∇u|p(x)−2∇u).

In many papers (see, e.g., [20, Hypothesis (A4), p. 2629]), the functional Φ induced
by the principal part of problem (1) is assumed to be uniformly convex, namely,
there exists k > 0 such that for all x ∈ Ω and all ξ, ψ ∈ RN ,

Φ

(
x,
ξ + ψ

2

)
≤ 1

2
Φ(x, ξ) +

1

2
Φ(x, ψ)− k |ξ − ψ|p(x).

However, since the function Ψ(x, t) = tp is not uniformly convex for t > 0 and 1 <
p < 2, this condition is not applicable to all p-Laplacian problems. An important
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feature of the abstract setting developed in [16] is that the main results are obtained
without any uniform convexity assumption.

In the present paper we extend [16] to problems involving p(x)-biharmonic oper-
ators and we describe some qualitative properties in the presence of singular terms.
We develop the study of biharmonic problems with Navier boundary condition for
equations driven by the operator ∆(φ(x, |∆u|)∆u), where φ is as in (1). Notice
that if φ(x, t) = |t|p(x)−2, then we obtain the p(x)-biharmonic operator defined by
∆2
p(x)u = ∆(|∆u|p(x)−2∆u).

2. Abstract framework and preliminary results. Throughout this paper we
assume that Ω ⊂ RN is a bounded domain with smooth boundary.

Set
C+(Ω) = {h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.

Assume that p ∈ C+(Ω) and let

p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x).

We define the Lebesgue space with variable exponent by

Lp(x)(Ω) =

{
u; u is measurable and

∫
Ω

|u(x)|p(x) dx <∞
}
.

This function space is a Banach space if it is endowed with the norm

|u|p(x) = inf

{
µ > 0;

∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

dx ≤ 1

}
.

This norm is also called the Luxemburg norm. Then Lp(x)(Ω) is reflexive if and
only if 1 < p− ≤ p+ <∞ and continuous functions with compact support are dense
in Lp(x)(Ω) if p+ <∞.

The standard inclusion between Lebesgue spaces generalizes to the framework
of spaces with variable exponent, namely if 0 < |Ω| < ∞ and p1, p2 are variable
exponents such that p1 ≤ p2 in Ω then there exists the continuous embedding
Lp2(x)(Ω) ↪→ Lp1(x)(Ω).

Let Lp
′(x)(Ω) denote the conjugate space of Lp(x)(Ω), where 1/p(x)+1/p′(x) = 1.

Then for all u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω) the following Hölder-type inequality
holds: ∣∣∣∣∫

Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

p′−

)
|u|p(x)|v|p′(x) . (2)

An important role in analytic arguments on Lebesgue spaces with variable expo-
nent is played by the modular of Lp(x)(Ω), which is the map ρp(x) : Lp(x)(Ω) → R
defined by

ρp(x)(u) =

∫
Ω

|u|p(x) dx.

If (un), u ∈ Lp(x)(Ω) and p+ <∞ then the following properties hold:

|u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x) (3)

|u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x) (4)

|un − u|p(x) → 0 ⇔ ρp(x)(un − u)→ 0. (5)

We define the variable exponent Sobolev space by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}.
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On W 1,p(x)(Ω) we may consider one of the following equivalent norms

‖u‖p(x) = |u|p(x) + |∇u|p(x)

or

‖u‖p(x) = inf

{
µ > 0;

∫
Ω

(∣∣∣∣∇u(x)

µ

∣∣∣∣p(x)

+

∣∣∣∣u(x)

µ

∣∣∣∣p(x)
)
dx ≤ 1

}
.

Zhikov [34] showed that smooth functions are in general not dense in W 1,p(x)(Ω).
This property is in relationship with the Lavrentiev phenomenon, which asserts that
there exist variational problems for which the infimum over the smooth functions is
strictly greater than the infimum over all functions that satisfy the same boundary
conditions. We refer to [26, pp. 12-13] for more details.

Let W
1,p(x)
0 (Ω) denote the closure of the set of compactly supported W 1,p(x)-

functions with respect to the norm ‖u‖p(x). When smooth functions are dense, we

can also use the closure of C∞0 (Ω) in W 1,p(x)(Ω). Using the Poincaré inequality, the

space W
1,p(x)
0 (Ω) can be defined, in an equivalent manner, as the closure of C∞0 (Ω)

with respect to the norm

‖u‖p(x) = |∇u|p(x).

The vector space (W
1,p(x)
0 (Ω), ‖ · ‖) is a separable and reflexive Banach space.

Moreover, if 0 < |Ω| <∞ and p1, p2 are variable exponents such that p1 ≤ p2 in Ω

then there exists a continuous embedding W
1,p2(x)
0 (Ω) ↪→W

1,p1(x)
0 (Ω).

Set

%p(x)(u) =

∫
Ω

|∇u(x)|p(x) dx. (6)

If (un), u ∈W 1,p(x)
0 (Ω) then the following properties hold:

‖u‖ > 1 ⇒ ‖u‖p
−
≤ %p(x)(u) ≤ ‖u‖p

+

, (7)

‖u‖ < 1 ⇒ ‖u‖p
+

≤ %p(x)(u) ≤ ‖u‖p
−
, (8)

‖un − u‖ → 0 ⇔ %p(x)(un − u)→ 0 . (9)

Set

p∗(x) =


Np(x)

N − p(x)
if p(x) < N

+∞ if p(x) ≥ N.
We point out that if p, q ∈ C+(Ω) and q(x) < p?(x) for all x ∈ Ω then the embedding

W
1,p(x)
0 (Ω) ↪→ Lq(x)(Ω) is compact.
For any positive integer k, let

W k,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k},

where α = (α1, α2, ..., αN ) is a multi-index, |α| =
∑N
i=1 αi and

Dαu =
∂|α|u

∂α1x1 . . . ∂αNxN
.

Then W k,p(x)(Ω) is a separable and reflexive Banach space equipped with the norm

‖u‖k,p(x) =
∑
|α|≤k

|Dαu|p(x).

The space W
k,p(x)
0 (Ω) is the closure of C∞0 (Ω) in W k,p(x)(Ω).
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Next, we recall some properties of the space

X := W
1,p(x)
0 (Ω) ∩W 2,p(x)(Ω).

For any u ∈ X we have ‖u‖ = ‖u‖1,p(x) + ‖u‖2,p(x), thus

‖u‖ = |u|p(x) + |∇u|p(x) +
∑
|α|=2

|Dαu|p(x).

A.B. Zang and Y. Fu [32] proved the equivalence of the norms and they also
established that the norm |∆u|p(x) is equivalent to the norm ‖u‖ (see [32, Theorem
4.4]). Note that (X , ‖.‖) is a separable and reflexive Banach space.

We recall that the critical Sobolev exponent is defined as follows:
p∗(x) =

Np(x)

N − 2p(x)
, p(x) <

N

2
,

p∗(x) = +∞, p(x) ≥ N

2
.

Assume that q ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω. Then, by Theorem 3.2
in [3], the function space X is continuously and compactly embedded in Lq(x)(Ω).

For a constant function p, the variable exponent Lebesgue and Sobolev spaces
coincide with the standard Lebesgue and Sobolev spaces. As pointed out in [26],
the function spaces with variable exponent have some striking properties, such as:

(i) If 1 < p− ≤ p+ <∞ and p : Ω→ [1,∞) is smooth, then the formula∫
Ω

|u(x)|pdx = p

∫ ∞
0

tp−1 |{x ∈ Ω; |u(x)| > t}| dt

has no variable exponent analogue.
(ii) Variable exponent Lebesgue spaces do not have the mean continuity property.

More precisely, if p is continuous and nonconstant in an open ball B, then there
exists a function u ∈ Lp(x)(B) such that u(x + h) 6∈ Lp(x)(B) for all h ∈ RN with
arbitrary small norm.

(iii) The function spaces with variable exponent are never translation invariant.
The use of convolution is also limited, for instance the Young inequality

|f ∗ g|p(x) ≤ C |f |p(x) ‖g‖L1

holds if and only if p is constant.

3. Main result. Throughout this paper we assume that Ω ⊂ RN is a bounded
domain with smooth boundary.

Let p ∈ C+(Ω) and consider the function φ : Ω × [0,∞) → [0,∞) satisfying the
following hypotheses:

(H1) the mapping φ(·, ξ) is measurable on Ω for all ξ ≥ 0 and φ(x, ·) is locally
absolutely continuous on [0,∞) for almost all x ∈ Ω;

(H2) there exist a ∈ Lp′(Ω) and b > 0 such that

|φ(x, |v|)v| ≤ a(x) + b|v|p(x)−1

for almost all x ∈ Ω and for all v ∈ RN ;

(H3) there exists c > 0 such that

φ(x, ξ) ≥ cξp(x)−2, φ(x, ξ) + ξ
∂φ

∂ξ
(x, ξ) ≥ cξp(x)−2

for almost all x ∈ Ω and for all ξ > 0.
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An interesting consequence of theses assumptions is that φ satisfies a Simon-type
inequality. More precisely, if we denote

Ω1 := {x ∈ Ω : 1 < p(x) < 2} and Ω2 := {x ∈ Ω; p(x) ≥ 2},

then the following estimate holds for all u, v ∈ RN

〈φ(x, |u|)u− φ(x, |v|)v, u− v〉

≥

{
c(|u|+ |v|)p(x)−2|u− v|2 if x ∈ Ω1 and (u, v) 6= (0, 0)

41−p+c|u− v|p(x) if x ∈ Ω2,

(10)

where c is the positive constant from hypothesis (H3).

Let A : W
1,p(x)
0 (Ω)→ R defined by

A(u) =

∫
Ω

∫ |∇u(x)|

0

sφ(x, s)dsdx.

Inequality (10) was used in [16] to show that A′ : W
1,p(x)
0 (Ω) → W−1,p′(x)(Ω) is

both a monotone operator and a mapping of type (S+). We refer to Simon [31] for
the initial version of inequality (10) in the framework of the p-Laplace operator.

We study the following singular biharmonic problem with variable growth:{
∆(φ(x, |∆u|)∆u) = |u|−q(x)−1u+ λ|u|r(x)−2u, x ∈ Ω
u = ∆u = 0, x ∈ ∂Ω,

(11)

where q, r are continuous functions and λ is a positive parameter.
If φ(x, ξ) = ξp(x)−2 then we obtain the standard p(x)-Laplace biharmonic oper-

ator, that is, ∆2
p(x)u := ∆(|∆u|p(x)−2∆u).

Our abstract setting includes the case φ(x, ξ) = (1 + |ξ|2)(p(x)−2)/2, which corre-
sponds to the generalized biharmonic mean curvature operator

∆
[
(1 + |∆u|2)(p(x)−2)/2∆u

]
.

The biharmonic capillarity equation corresponds to

φ(x, ξ) =

(
1 +

ξp(x)√
1 + ξ2p(x)

)
ξp(x)−2, x ∈ Ω, ξ > 0,

hence the corresponding capillary phenomenon is described by the differential op-
erator

∆

[(
1 +

|∆u|p(x)√
1 + |∆u|2p(x)

)
|∆u|p(x)−2∆u

]
.

We say that u is a solution of problem (11) if u ∈ X \ {0} with ∆u = 0 on ∂Ω
and ∫

Ω

φ(x, |∆u|)∆u∆vdx =

∫
Ω

|u|−q(x)−1uvdx+ λ

∫
Ω

|u|r(x)−2uv,

for all v ∈ X .

Theorem 3.1. Assume that hypotheses (H1)–(H3) are fulfilled and that

0 < q(x) < 1 < r(x) < p(x) < p∗(x) for all x ∈ Ω. (12)

Then problem (11) has a solution for all λ > 0.
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In the present paper, problem (11) is studied for the subcritical case, namely
under the basic hypothesis (12), which is crucial for compactness arguments. We
consider that a very interesting research direction is to study the same problem
in the almost critical setting, hence under the following assumption: there exists
x0 ∈ Ω such that

r(x) < p∗(x) for all x ∈ Ω \ {x0} and r(x0) = p∗(x0). (13)

Of course, this hypothesis is not possible if the functions p and r are constant. We
conjecture that the result stated in Theorem 3.1 remains true under assumption
(13).

4. Proof of Theorem 3.1. Fix λ > 0 and denote

Φ(x, t) :=

∫ t

0

sφ(x, s)ds for all x ∈ Ω.

The energy functional associated to problem (11) is E : X → R defined by

E(u) =

∫
Ω

Φ(x, |∆u|)dx−
∫

Ω

|u|1−q(x)

1− q(x)
dx− λ

∫
Ω

|u|r(x)

r(x)
dx.

By hypothesis (12), we deduce that E is well-defined. On the other hand, with the
same arguments as in [14, Proposition 3.3], the energy functional E is sequentially
lower semicontinuous and of class C1. Moreover, the mapping E ′ : X → X ∗ is a
strictly monotone, bounded homeomorphism and is of type (S+), that is, if

un ⇀ u in X and lim sup
n→∞

E ′(un)(un − u) ≤ 0,

then un → u in X .
We split the proof of Theorem 3.1 into several steps.

Step 1. The functional E is coercive.
Using (H3), we first deduce that for all u ∈ X

E(u) ≥ c
∫

Ω

|∆u|p(x)

p(x)
dx−

∫
Ω

|u|1−q(x)

1− q(x)
dx− λ

∫
Ω

|u|r(x)

r(x)
dx.

Therefore

E(u) ≥ c

p+

∫
Ω

|∆u|p(x)dx− 1

1− q+

∫
Ω

|u|1−q(x)dx− λ

r−

∫
Ω

|u|r(x)dx.

It follows that for all u ∈ X with ‖u‖ > 1 we have

E(u) ≥ c

p+
‖u‖p

−
− 1

1− q+

∫
Ω

|u|1−q(x)dx− λ

r−

∫
Ω

|u|r(x)dx

≥ c

p+
‖u‖p

−
− 1

1− q+
min

{
|u|1−q

+

(1−q(x))p(x), |u|
1−q−
(1−q(x))p(x)

}
− λ

r−
min{|u|r

+

r(x), |u|
r−

r(x)}.

Next, by hypothesis (12), it follows that there exists c0 > 0 such that for all u ∈ X
max{|u|(1−q(x))p(x), |u|r(x)} ≤ c0 ‖u‖.

We deduce that

E(u) ≥ c

p+
‖u‖p

−
− c0

1− q+
min

{
‖u‖1−q

+

, ‖u‖1−q
−
}
− λc0
r−

min{‖u‖r
+

, ‖u‖r
−
}

=
c

p+
‖u‖p

−
− c0

1− q+
‖u‖1−q

+

− λc0
r−
‖u‖r

−
.
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We conclude the proof of Step 1 by using hypothesis (12).

The next step shows that the energy E does not satisfy one of the geometric
hypotheses of the mountain pass theorem. More precisely, we show that there
exists a “valley” for E close to the origin, so not far away from the origin, as it is
required by the Ambrosetti-Rabinowitz theorem.

Step 2. There exists v ∈ X such that E(tv) < 0 for all small enough t > 0.
Hypothesis (H2) yields for all u ∈ X

Φ(x, |∆u|) ≤

∣∣∣∣∣
∫ |∆u|

0

(
a(x) + b|s|p(x)−1

)
ds

∣∣∣∣∣ ≤ |a(x)| |∆u|+ b
|∆u|p(x)

p(x)
.

It follows that∫
Ω

Φ(x, |∆u|)dx ≤
∫

Ω

|a(x)| |∆u|dx+ b

∫
Ω

|∆u|p(x)

p(x)
dx.

Fix v ∈ C∞(Ω) with supp (v) ⊂ Ω and 0 ≤ v ≤ 1. For all t > 0 we have∫
Ω

Φ(x, |∆(tv)|)dx ≤ 2t|a|p′(x) |∆v|p(x) + b

∫
Ω

tp(x) |∆v|p(x)

p(x)
dx

≤ 2t|a|p′(x) |∆v|p(x) + b
tp
−

p−

∫
Ω

|∆v|p(x)dx

= C1t+ C2t
p− ,

where

C1 = 2|a|p′(x) |∆v|p(x) > 0 and C2 =
b

p−

∫
Ω

|∆v|p(x)dx > 0.

We conclude that

E(tv) ≤ C1t+ C2t
p− − C3t

1−q− , (14)

where

C3 =

∫
Ω

|v|1−q(x)

1− q(x)
dx > 0.

Since 0 < 1−q− < 1 < p−, relation (14) implies that E(tv) < 0, provided that t > 0
is small enough.

Step 3. The infimum of E is achieved by some u0 ∈ X \ {0}.
Let (un) ⊂ X be a minimizing sequence of E . By Step 1, we deduce that (un) is

a bounded sequence. So, there exists u0 ∈ X such that, up to a subsequence,

un ⇀ u0 in X

un → u0 in Lr(x)(Ω).

By the weak lower semicontinuity of E we conclude that

m := inf{E(u); u ∈ X} ≤ E(u0) ≤ lim inf
n→∞

E(un) = m,

hence u0 is a global minimizer of E and

m = E(u0).

Moreover, by Step 2, we have m < 0, hence u0 ∈ X \ {0}.
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To complete the proof of Step 3, it remain to show that u0 satisfies (11) in the
weak sense and that ∆u0 = 0 on ∂Ω. These properties will be established in the
final steps of the proof.

Step 4. We have∫
Ω

φ(x, |∆u0|)∆u0∆vdx =

∫
Ω

|u0|−q(x)−1u0vdx+ λ

∫
Ω

|u0|r(x)−2u0v, (15)

for all v ∈ X .
Fix v ∈ X and ε > 0. Define z = (u0 + εv)+.
Since u0 is a (global) minimizer of E , we deduce that

0 ≤
∫

Ω

φ(x, |∆u0|)∆u0∆zdx−
∫

Ω

|u0|−q(x)−1u0zdx− λ
∫

Ω

|u0|r(x)−2u0zdx

=

∫
[u0+εv>0]

φ(x, |∆u0|)∆u0∆(u0 + εv)dx−
∫

[u0+εv>0]

|u0|−q(x)−1u0(u0 + εv)dx

−λ
∫

[u0+εv>0]

|u0|r(x)−2u0(u0 + εv)

=

∫
Ω

φ(x, |∆u0|)∆u0∆(u0 + εv)dx−
∫

Ω

|u0|−q(x)−1u0(u0 + εv)dx

−λ
∫

Ω

|u0|r(x)−2(u0 + εv)dx

−
∫

[u0+εv≤0]

φ(x, |∆u0|)∆u0∆(u0 + εv)dx+

∫
[u0+εv≤0]

|u0|−q(x)−1u0(u0 + εv)dx

+λ

∫
[u0+εv≤0]

|u0|r(x)−2u0(u0 + εv)dx.

It follows that

0 ≤
∫

Ω

φ(x, |∆u0|)|∆u0|2dx−
∫

Ω

|u0|1−q(x)dx− λ
∫

Ω

|u0|r(x)dx

+ε

∫
Ω

φ(x, |∆u0|)∆u0∆vdx− ε
∫

Ω

|u0|−q(x)−1u0vdx

−λε
∫

Ω

|u0|r(x)−2u0vdx+O(ε2)

−
∫

[u0+εv≤0]

φ(x, |∆u0|)∆u0∆(u0 + εv)dx+

∫
[u0+εv≤0]

|u0|−q(x)−1u0(u0 + εv)dx

+λ

∫
[u0+εv≤0]

|u0|r(x)−2u0(u0 + εv)dx.

Since u0 is a critical point of E , this relation yields

0 ≤ ε
(∫

Ω

φ(x, |∆u0|)∆u0∆vdx−
∫

Ω

|u0|−q(x)−1u0vdx− λ
∫

Ω

|u0|r(x)−2u0vdx

)
−ε
∫

[u0+εv≤0]

φ(x, |∆u0|)∆u0∆vdx

= ε

(∫
Ω

φ(x, |∆u0|)∆u0∆vdx−
∫

Ω

|u0|−q(x)−1u0vdx− λ
∫

Ω

|u0|r(x)−2u0vdx

)
+o(ε) as ε→ 0.

This relation implies that∫
Ω

φ(x, |∆u0|)∆u0∆vdx−
∫

Ω

|u0|−q(x)−1u0vdx− λ
∫

Ω

|u0|r(x)−2u0vdx ≥ 0.

Changing v with −v we deduce that∫
Ω

φ(x, |∆u0|)∆u0∆vdx−
∫

Ω

|u0|−q(x)−1u0vdx− λ
∫

Ω

|u0|r(x)−2u0vdx ≤ 0.
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We conclude that relation (15) holds.

Step 5. We have ∆u0 = 0 on ∂Ω.
We use some ideas developed in [14, pp. 79-80].
By virtue of (15), the function u0 satisfies for all v ∈ X∫

Ω

φ(x, |∆u0|)∆u0∆vdx =

∫
Ω

A(x)vdx, (16)

where
A(x) := |u0|−q(x)−1u0 + λ |u0|r(x)−2u0.

Let z ∈ X be the unique solution of the linear problem{
∆z = A(x) in Ω
z = 0 on ∂Ω.

(17)

Relations (16) and (17) yield that for all v ∈ X∫
Ω

φ(x, |∆u0|)∆u0∆vdx =

∫
Ω

(∆z)vdx.

By Green’s formula we deduce that for all v ∈ C∞c (Ω) ⊂ X∫
Ω

φ(x, |∆u0|)∆u0∆vdx =

∫
Ω

z∆vdx. (18)

For any w ∈ C∞c (Ω), let v ∈ C∞c (Ω be the unique solution of the problem{
∆v = w in Ω
v = 0 on ∂Ω.

Returning to (18), we deduce that for all w ∈ C∞c (Ω)∫
Ω

(φ(x, |∆u0|)∆u0 − z)wdx = 0.

Applying [5, Lemma VIII.1] we conclude that

φ(x, |∆u0|)∆u0 − z = 0 in Ω. (19)

But z = 0 on ∂Ω. Using hypothesis (H3), relation (19) implies that ∆u0 = 0 on
∂Ω. The proof of Theorem 3.1 is now complete.

We point out that the same arguments are no longer valid if the parameter λ in
problem (11) is negative. In this case, the conclusion of step 2 is not true, hence
it is possible that the global minimizer u0 obtained in step 3 is trivial. Thus, if
λ < 0, the reaction term |u|r(x)−2u becomes a source term. We believe that if λ is
negative, a natural assumption is to replace the nonlinearity |u|r(x)−2u with a term
having a different growth near the origin and at infinity.

4.1. Epilogue. A very interesting open problem concerns the same analysis if the
left-hand side of problem (11) is replaced either by the differential operator

∆(φ1(x, |∆u|)∆u) + V (x)∆(φ2(x, |∆u|)∆u) (20)

or by
∆(φ1(x, |∆u|)∆u) + V (x)∆(φ2(x, |∆u|)∆u) log(e+ |x|), (21)

where V is a nonnegative potential and φ1, φ2 satisfy hypotheses (H1)–(H3) cor-
responding to the variable exponents p1(x), p2(x) with p1(x) ≤ p2(x) in Ω. Con-
sidering two different materials with power hardening exponents p1(x) and p2(x),
respectively, the coefficient V (x) dictates the geometry of a composite of the two ma-
terials. When V (x) > 0 then p2(x)-material is present, otherwise the p1(x)-material
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is the only one making the composite. Composite materials with locally different
hardening exponents p1(x) and p2(x) can be described using the energies associated
to the differential operators defined in (20) and (21). Problems of this type were
also motivated by applications to elasticity, homogenization, modelling of strongly
anisotropic materials, Lavrentiev phenomenon, etc. In the case of constant expo-
nents, we refer to the pioneering papers by P. Marcellini [18, 19] and G. Mingione
et al. [4, 9, 10]. Double phase problems with variable growth have recently been
considered by M. Cencelj, V.D. Rădulescu and D.D. Repovš [6], V.D. Rădulescu
and Q. Zhang [27], and X. Shi, V.D. Rădulescu, D.D. Repovš and Q. Zhang [30].

We conclude by pointing out that the differential operator ∆(φ(x, |∆u|)∆u) con-
sidered in problem (11) falls in the realm of those related to the so-called Musielak-
Orlicz spaces (see J. Musielak [21] and W. Orlicz [22]), more generally, of the opera-
tors having non-standard growth conditions (which are widely considered in the cal-
culus of variations). These function spaces are Orlicz spaces whose defining Young
function exhibits an additional dependence on the x variable. Nonlinear problems
in Musielak-Orlicz spaces were studied in V.D. Rădulescu and D.D. Repovš [26,
Chapter 4], but only in the framework of the standard p(x)-Laplace operator.
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