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Abstract

We are concerned with singular elliptic problems of the form −�u ± p(d(x))g(u) = λf (x,u) + μ|∇u|a in Ω , where Ω is a
smooth bounded domain in R

N , d(x) = dist(x, ∂Ω), λ > 0, μ ∈ R, 0 < a � 2, and f is a nondecreasing function. We assume
that p(d(x)) is a positive weight with possible singular behavior on the boundary of Ω and that the nonlinearity g is unbounded
around the origin. Taking into account the competition between the anisotropic potential p(d(x)), the convection term |∇u|a , and
the singular nonlinearity g, we establish various existence and nonexistence results.
© 2007 Elsevier Masson SAS. All rights reserved.

Résumé

On considère des problèmes singuliers du type −�u ± p(d(x))g(u) = λf (x,u) + μ|∇u|a dans un domaine borné régulier Ω

de R
N , où d(x) = dist(x, ∂Ω), λ > 0, μ ∈ R, 0 < a � 2, et f est une fonction croissante. Nous supposons que p(d(x)) est un

potentiel positif singulier sur ∂Ω et que la non-linéarité g est non bornée autour de l’origine. Compte tenu de la compétition entre
le potentiel anisotrope p(d(x)), le terme de convection |∇u|a et la non-linéarité singulière g, nous établissons plusieurs résultats
d’existence et de non-existence.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let Ω ⊂ R
N (N � 2) be a bounded domain with smooth boundary. We are concerned in this paper with singular

elliptic problems of the following type:⎧⎨
⎩

−�u ± p(d(x))g(u) = λf (x,u) + μ|∇u|a in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(P )±

where d(x) = dist(x, ∂Ω), λ > 0, μ ∈ R, and 0 < a � 2.
We assume that g ∈ C1(0,∞) is a positive decreasing function, and

(g1) limt→0+ g(t) = +∞.

As remarked by Serrin [27], Choquet-Bruhat and Leray [8], and Kazdan and Warner [24], the requirement that the
nonlinearity |∇u|a grows at most quadratically is natural in order to apply the maximum principle.

Throughout this paper we suppose that f :Ω × [0,∞) → [0,∞) is a Hölder continuous function which is nonde-
creasing with respect to the second variable and such that f is positive on Ω × (0,∞). The analysis we develop in
this paper concerns the cases where f is either linear or f is sublinear with respect to the second variable. This last
case means that f fulfills the hypotheses:

(f 1) the mapping (0,∞) � t 	→ f (x,t)
t

is nonincreasing for all x ∈ Ω ;

(f 2) limt→0+ f (x,t)
t

= +∞ and limt→+∞ f (x,t)
t

= 0, uniformly for x ∈ Ω .

Such singular boundary value problems arise in the context of chemical heterogeneous catalysts and chemical catalyst
kinetics, in the theory of heat conduction in electrically conducting materials, singular minimal surfaces, as well as
in the study of non-Newtonian fluids or boundary layer phenomena for viscous fluids (we refer for more details to
[5–7,11,13,14] and the more recent papers [9,15,21–23,25,28,29,31]). We also point out that, due to the meaning of
the unknowns (concentrations, populations, etc.), only the positive solutions are relevant in most cases.

To the best of our knowledge, there does not exist a qualitative theory for the study of singular boundary value
problems with nonlinearities in the Kato class K loc

N (RN). This theory was introduced by Aizenman and Simon in [2]
to describe wide classes of functions arising in Potential Theory. We refer to the recent paper [26] for existence and
bifurcation results on Dirichlet boundary value problems with indefinite nonlinearities.

The main features of this paper are the presence of the convection term |∇u|a combined with the singular weight
p : (0,∞) → (0,∞) which is supposed to be nonincreasing and Hölder continuous.

The results in this paper complete the study developed in [17,16,18] since here we deal with singular weights. One
of our purposes is to give a necessary and sufficient condition on the weight p in order to obtain a classical solution
of problems (P )±. By classical solution we understand a function u ∈ C2(Ω) ∩ C(Ω) that fulfills (P )±.

Dealing with problem (P )+ we show that when μ � 0, then a necessary condition in order to have classical solution
is:

1∫
0

p(t)g(t)dt < +∞. (1)

In the case where f is sublinear, that is, f fulfills the hypotheses (f 1) and (f 2), condition (1) is also sufficient for
existence of a classical solutions of (P )+ provided λ and μ belong to a certain range (see Theorem 2.2). Obviously,
(1) implies the following Keller–Osserman type condition around the origin (see the proof of Theorem 2.2):

(KO)

1∫ ( t∫
Φ(s)ds

)−1/2

dt < +∞, where Φ(s) = p(s)g(s), for all s > 0.
0 0
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As proved by Bénilan, Brezis and Crandall [4], condition (KO) is equivalent to the property of compact support, that
is, for every h ∈ L1(RN) with compact support, there exists a unique u ∈ W 1,1(RN) with compact support such that
�u ∈ L1(RN) and

−�u + Φ(u) = h a.e. in R
N.

The results are completely different for problem (P )−. Our results in this case generalize those established in [32],
in the sense that in the present paper we do not prescribe the behavior of the singular nonlinearity g around the origin.
Also, we proved in [17] that if p ≡ 1, then the existence of a classical solution to (P )− does not depend on the
asymptotic behavior of g near the origin, whereas the exponent a of the convection term |∇u|a plays a crucial role. In
our case, the potential p(d(x)) also affects the existence of classical solutions to (P )−.

Many papers have been devoted to the case p ≡ 1 and μ = 0 (see [10,12,15,28] and the references therein). One
of the first works in the literature dealing with singular weights in connection with singular nonlinearities is due to
Taliaferro [30]. In [30] the following problem has been considered:{−y′′ = ϕ(x)y−β in (0,1),

y(0) = y(1) = 0,
(2)

where β > 0 and ϕ(x) is positive and continuous on (0,1). It was proved that problem (2) has solutions if and only if∫ 1
0 t (1 − t)ϕ(t)dt < +∞. Later, Agarwal and O’Regan [1, Section 2] studied the more general problem:⎧⎨

⎩
H ′′(t) = −p(t)g(H(t)) in (0,1),

H > 0 in (0,1),

H(0) = H(1) = 0,

(3)

where g satisfies (g1) and p is positive and continuous on (0,1). It is shown in [1] that if

1∫
0

t (1 − t)p(t)dt < +∞, (4)

then (3) has at least one classical solution. In our framework, p is continuous at t = 1 so condition (4) shows that

1∫
0

tp(t)dt < +∞. (5)

In this paper we prove that the assumption (5) is also necessary in order that problem (P )− with μ � 0 has classical
solutions. Furthermore, we argue in Section 3 that the existence of a classical solution of (P )− when f is sublinear
depends on the asymptotic behavior of the gradient term |∇u|a . In this sense, we prove that if 0 < a < 1, then (P )−
has at least one classical solution for all μ ∈ R. In turn, if 1 < a � 2, then (P )− has no solutions for large values of μ.

A special attention is payed to the case where a = 1. This case was left as an open question in [17]. We prove in
Theorem 3.3 that if Ω is a ball centered at the origin, then (P )− has at least one solution for all μ ∈ R provided a = 1.

The existence of a solution to (P )± is achieved by the sub and super-solution method. In particular, the super-
solution of (P )− is expressed in terms of H . In the case of pure power nonlinearities, a careful analysis of (3) allows
us to give boundary estimates of the solution.

The outline of the paper is as follows. In Section 2 we obtain existence and nonexistence results for problem (P )+.
Section 3 concerns the problem (P )− in which we discuss separately the case where f is linear or sublinear. At the
end of this section we present the case p(t) = t−α and g(t) = t−β , and we give some estimates for the solution at the
boundary. To make the results clearer, we assume that λ = 1 and f is sublinear. Thus, problem (P )− becomes:⎧⎨

⎩
−�u = d(x)−αu−β + f (x,u) + μ|∇u|a in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(6)
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2. The problem (P )+

We first establish the following nonexistence result related to problem (P )+.

Theorem 2.1. Assume that
∫ 1

0 p(t)g(t)dt = +∞. Let Φ :Ω × [0,∞) → [0,∞) be a continuous function such that
Φ 
≡ 0. Then the inequality boundary value problem:⎧⎨

⎩
−�u + p(d(x))g(u) � Φ(x,u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(7)

has no classical solutions.

Proof. Assume that (7) has a classical solution u and let C = maxΩ Φ(x,u) > 0. Let also v ∈ C2(Ω) be the unique
solution of ⎧⎨

⎩
−�v = C in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.

(8)

Moreover, there exist c1, c2 > 0 such that

c1d(x) � v � c2d(x), for all x ∈ Ω. (9)

By the maximum principle, it follows that u � v in Ω . Next we consider the perturbed problem:⎧⎨
⎩

−�u + p(d(x) + ε)g(u + ε) = C in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(10)

Then, u and v are, respectively, sub- and super-solution of (10). By standard arguments and elliptic regularity
(see [19]), there exists uε ∈ C2(Ω) a solution of (10) such that u � uε � v in Ω . Integrating in (10) we obtain:

−
∫
Ω

�uε dx +
∫
Ω

p
(
d(x) + ε

)
g(uε + ε)dx = C|Ω|.

Hence

−
∫

∂Ω

∂uε

∂n
ds +

∫
Ω

p
(
d(x) + ε

)
g(uε + ε)dx � M, (11)

where M is a positive constant. Taking into account that ∂uε

∂n
� 0 on ∂Ω , relation (11) yields:∫

Ω

p
(
d(x) + ε

)
g(uε + ε)dx � M.

Since g is decreasing and uε � v in Ω , the last inequality implies
∫
Ω

p(d(x) + ε)g(v + ε)dx � M . Thus, for any
compact subset ω � Ω we have: ∫

ω

p
(
d(x) + ε

)
g(v + ε)dx � M.

Passing to the limit with ε → 0+ we obtain
∫
ω

p(d(x))g(v)dx � M , for all ω � Ω . Therefore∫
p
(
d(x)

)
g(v)dx � M. (12)
Ω
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On the other hand, using (9) and the hypothesis
∫ 1

0 p(t)g(t)ds = +∞, it follows that

M �
∫
Ω

p
(
d(x)

)
g(v)dx �

∫
Ω

p
(
d(x)

)
g
(
c2d(x)

)
dx = +∞,

which is a contradiction. Hence, problem (7) has no classical solutions and the proof of Theorem 2.1 is complete. �
Corollary 2.1. Assume that

∫ 1
0 p(t)g(t)dt = +∞. Then, for all μ � 0, the problem (P )+ has no classical solutions.

Several times in this paper we apply the following auxiliary result (we refer to [16, Lemma 2.1] for a complete
proof).

Lemma 2.1. Let Ψ :Ω × (0,∞) → R be a Hölder continuous function such that the mapping (0,∞) � s 	→ Ψ (x,s)
s

is
strictly decreasing for each x ∈ Ω . Assume that there exist v, w ∈ C2(Ω) ∩ C(Ω) such that

(a) �w + Ψ (x,w) � 0 � �v + Ψ (x, v) in Ω;
(b) v,w > 0 in Ω and v � w on ∂Ω;
(c) �v ∈ L1(Ω) or �w ∈ L1(Ω).

Then v � w in Ω .

Next, we prove that condition (1) is sufficient for the existence of a classical solution to (P )+ provided μ � 0 and
λ > 0 is large enough. We have the:

Theorem 2.2. Assume that
∫ 1

0 p(t)g(t)dt < +∞ and f fulfills (f 1)–(f 2).

(i) If μ = −1, then there exists λ∗ > 0 such that (P )+ has at least one classical solution if λ > λ∗ and no solution
exists if 0 < λ < λ∗.

(ii) If μ = +1 and 0 < a < 1, then there exists λ∗ > 0 such that (P )+ has at least one classical solution for all λ > λ∗
and no solution exists if 0 < λ < λ∗.

Proof. (i) We split the proof into several steps.
Step 1: Existence of a solution for λ large. By virtue of [28, Lemma 2.4] (see also [29, Theorem 2.2]), the problem:⎧⎨

⎩
−�U = λf (x,U) in Ω,

U > 0 in Ω,

U = 0 on ∂Ω,

(13)

has at least one classical solution Uλ, for all λ > 0. Using the regularity of f it follows that Uλ ∈ C2(Ω) and there
exist c1, c2 > 0 depending on λ such that

c1d(x) � Uλ(x) � c2d(x) in Ω. (14)

Fix λ > 0 and notice that Uλ is a super-solution of (P )+. The main point is to find a sub-solution uλ of (P )+ such
that uλ � Uλ in Ω . For this purpose, let Φ(t) = p(t)g(t), t > 0, and define

Ψ : [0,∞) → [0,∞), Ψ (t) =
t∫

0

1√
2
∫ s

0 Φ(τ)dτ

ds.

Remark first that Ψ is well defined, since Φ ∈ L1(0,1). Indeed, if M := Φ(1) > 0, then Φ(s) � M , for all 0 < s < 1.
This yields (

∫ s

0 Φ(τ)dτ)−1/2 � (
√

Ms )−1, for all 0 < s < 1 which implies the Keller–Osserman condition (KO)
around the origin:

1∫ ( t∫
Φ(s)ds

)−1/2

dt < +∞.
0 0



568 L. Dupaigne et al. / J. Math. Pures Appl. 87 (2007) 563–581
We claim that Ψ is a bijective map. Indeed, Ψ is increasing, and

s∫
0

Φ(τ)dτ �
1∫

0

Φ(τ)dτ + M(s − 1), ∀s � 1.

Thus, there exists c > 0 such that
s∫

0

Φ(τ)dτ � Ms + c, ∀s � 1.

It follows that

Ψ (t) �
t∫

1

1√
2(Ms + c)

ds � 1

M

(√
2(Mt + c) − c1

)
, ∀ t � 1.

This gives limt→+∞ Ψ (t) = +∞ and the claim follows.
Let h : [0,∞) → [0,∞) be the inverse of Ψ . Then h satisfies:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

h > 0 in (0,∞),

h′(t) =
√

2
∫ h(t)

0 Φ(s)ds in (0,∞),

h′′(t) = Φ(h(t)) in (0,∞),

h(0) = h′(0) = 0.

(15)

Hence h ∈ C2(0,∞)∩C1[0,∞). Let ϕ1 > 0 be the first eigenfunction of (−�) in H 1
0 (Ω). It is well known that there

exists C > 0 such that

Cd(x) � ϕ1 � 1

C
d(x) for all x ∈ Ω. (16)

The key result for this part of the proof is the following:

Lemma 2.2. There exist two positive constants c > 0 and M > 0 such that uλ := Mh(cϕ1) is a sub-solution of (P )+
provided λ > 0 is large enough.

Proof. Since h ∈ C1[0,∞) and h(0) = 0, we can take c > 0 small enough such that

h(cϕ1) � d(x) in Ω. (17)

By Hopf’s maximum principle, there exist δ > 0 and ω � Ω such that |∇ϕ1| � δ in Ω \ ω. Let

M = max
{
1,2(cδ)−2}. (18)

Since

lim
d(x)→0+

{−p
(
d(x)

)
g
(
h(cϕ1)

) + Mcλ1ϕ1h
′(cϕ1) + (

Mch′(cϕ1)|∇ϕ1|
)a} = −∞,

we can assume that

−p
(
d(x)

)
g
(
h(cϕ1)

) + Mcλ1ϕ1h
′(cϕ1) + (

Mch′(cϕ1)|∇ϕ1|
)a

< 0 in Ω \ ω. (19)

We are now able to show that uλ := Mh(cϕ1) is a sub-solution of (P )+ provided λ > 0 is sufficiently large. Indeed,
using the monotonicity of g and (17) we have:

−�uλ + p
(
d(x)

)
g(uλ) + |∇uλ|a

= −Mc2p
(
h(cϕ1)

)
g
(
h(cϕ1)

)|∇ϕ1|2 + Mcλ1ϕ1h
′(cϕ1) + p

(
d(x)

)
g
(
Mh(cϕ1)

) + (
Mch′(cϕ1)|∇ϕ1|

)a

� p
(
d(x)

)
g
(
h(cϕ1)

)(
1 − Mc2|∇ϕ1|2

) + Mcλ1ϕ1h
′(cϕ1) + (

Mch′(cϕ1)|∇ϕ1|
)a

. (20)

Taking into account the definition of M and (19), we find:
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−�uλ + p
(
d(x)

)
g(uλ) + |∇uλ|a

� −p
(
d(x)

)
g
(
h(cϕ1)

) + Mcλ1ϕ1h
′(cϕ1) + (

Mch′(cϕ1)|∇ϕ1|
)a

< 0 in Ω \ ω. (21)

On the other hand, from (20) and for all x ∈ ω, we have:

−�uλ + p
(
d(x)

)
g(uλ) + |∇uλ|a � p

(
d(x)

)
g
(
h(cϕ1)

) + Mcλ1ϕ1h
′(cϕ1) + (

Mch′(cϕ1)|∇ϕ1|
)a

. (22)

Since ϕ1 > 0 in ω and f is positive on ω × (0,+∞), we may choose λ > 0 such that for all x ∈ ω, we have:

λf
(
x,Mh(cϕ1)

)
� p

(
d(x)

)
g
(
h(cϕ1)

) + Mcλ1ϕ1h
′(cϕ1) + (

Mch′(cϕ1)|∇ϕ1|
)a

. (23)

From (22) and (23) we deduce:

−�uλ + p
(
d(x)

)
g(uλ) + |∇uλ|a � λf (x,uλ) in ω. (24)

Now, relations (21) and (24) show that uλ = Mh(cϕ1) is a sub-solution of (P )+ provided λ > 0 satisfies (23). This
finishes the proof of our lemma. �

Using Lemma 2.1, it follows that uλ � Uλ in Ω and by standard elliptic arguments (see [19]) we obtain a classical
solution uλ of (P )+ such that uλ � uλ � Uλ in Ω .

Step 2: Nonexistence for λ > 0 small. We first remark that

lim
t→0+

(
f (x, t) − p

(
d(x)

)
g(t)

) = −∞ uniformly for x ∈ Ω.

Hence, there exists t0 > 0 such that

f (x, t) − p
(
d(x)

)
g(t) < 0, for all (x, t) ∈ Ω × (0, t0). (25)

On the other hand, the assumption (f 1) yields

f (x, t) − p(d(x))g(t)

t
� f (x, t)

t
� f (x, t0)

t0
, (26)

for all (x, t) ∈ Ω × [t0,∞). Let m = maxx∈Ω
f (x,t0)

t0
. Combining (25) and (26) we find

f (x, t) − p
(
d(x)

)
g(t) < mt, for all (x, t) ∈ Ω × (0,+∞). (27)

Set λ0 = min{1, λ1/2m}. We claim that problem (P )+ has no classical solution for 0 < λ � λ0. Indeed, assume by
contradiction that u0 is a classical solution of (P )+ with λ ∈ (0, λ0]. Then, according to (27), u0 is a sub-solution of⎧⎨

⎩
−�u = λ1

2 u in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(28)

By Lemma 2.1 we have u0 � Uλ in Ω . Furthermore, from (14) and (16) we get cu0 � ϕ1 in Ω for some positive
constant c > 0. Note that cu0 is still a sub-solution of (28) while ϕ1 is a super-solution of (28). By standard elliptic
arguments, problem (28) has a solution u ∈ C2(Ω). Multiplying by ϕ1 in (28) and integrating on Ω , we have:

−
∫
Ω

ϕ1�udx = λ1

2

∫
Ω

uϕ1 dx,

that is,

λ1

∫
Ω

uϕ1 dx = −
∫
Ω

u�ϕ1 dx = λ1

2

∫
Ω

uϕ1 dx.

The above equality yields
∫
Ω

uϕ1 dx = 0, but this is clearly a contradiction, since both u and ϕ1 are positive in Ω . It
follows that (P )+ has no classical solutions for 0 < λ � λ0.
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Step 3: Dependence on λ > 0. Set,

A = {
λ > 0; problem (P )+ has at least one classical solution

}
.

From the above arguments we deduce that A is nonempty and λ∗ := infA is positive. We show that if λ ∈ A, then
(λ,∞) ⊆ A. To this aim, let λ1 ∈ A and λ2 > λ1. If uλ1 is a solution of (P )+ with λ = λ1, then uλ1 is a sub-solution
of (P )+ with λ = λ2 while Uλ2 defined in (13) for λ = λ2 is a super-solution. Moreover, we have:

�Uλ2 + λ2f (x,Uλ2) � 0 � �uλ1 + λ2f (x,uλ1) in Ω,

Uλ2, uλ1 > 0 inΩ,

Uλ2 = uλ1 = 0 on ∂Ω,

�Uλ2 ∈ L1(Ω).

Again by Lemma 2.1 we get uλ1 � Uλ2 in Ω . Therefore, problem (P )+ with λ = λ2 has at least one classical solution.
Since λ ∈ A was arbitrary, we conclude that (λ∗,∞) ⊂ A. This completes the proof of (i).

(ii) Step 1: Existence of a solution for λ large.
According to Lemma 2.2, there exists λ∗ > 0 such that (P )+ has a sub-solution uλ for λ > λ∗ and μ = −1. Then

uλ is also a sub-solution in case μ = +1, provided λ > λ∗. Let us construct now a super-solution. By [28, Lemma 2.4],
for all λ > λ∗ there exists vλ ∈ C2(Ω) a solution of⎧⎨

⎩
−�v = λf (x, v) + 1 in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.

Since 0 < a < 1, we can choose M = M(λ) > 1 large enough such that M > Ma|∇vλ|a in Ω . Then, using (f 1), we
obtain:

−�(Mvλ) = λMf (x, vλ) + M � λf (x,Mvλ) + ∣∣∇(Mvλ)
∣∣a in Ω.

Hence uλ := Mvλ ∈ C2(Ω) is a super-solution of (P )+ for all λ > λ∗. On the other hand, since �uλ + λf (x,uλ) �
0 � �uλ + λf (x,uλ) in Ω , by Lemma 2.1 we get uλ � uλ and finally, problem (P )+ has at least one solution for all
λ > λ∗.

Step 2: Nonexistence for λ > 0 small. We first extend Lemma 2.1 in the following way:

Lemma 2.3. Let 0 < a < 1 and Ψ :Ω × (0,∞) → R be a Hölder continuous function such that the mapping
i(0,∞) � s 	→ Ψ (x,s)

s
is strictly decreasing for each x ∈ Ω . Assume that there exist v, w ∈ C2(Ω) ∩ C(Ω) such

that

(a) �w + Ψ (x,w) + |∇w|a � 0 � �v + Ψ (x, v) + |∇v|a in Ω;
(b) v,w > 0 in Ω and v < w on ∂Ω .

Then v � w in Ω .

Proof. Assume by contradiction that the inequality v � w does not hold throughout Ω and let ϕ = v
w

. Clearly ϕ < 1
on ∂Ω and

−∇ · [w2∇ϕ
] = −w�v + v�w in Ω.

Let x0 ∈ Ω be a point where ϕ achieves its maximum. In particular ∇ϕ(x0) = 0, −�ϕ(x0) � 0 and it follows that

0 � [−w�v + v�w](x0).

Since w(x0) < v(x0), it follows from assumption (a), the properties of Ψ and the above inequality that

0 <
[|∇v|aw − |∇w|av]

(x0).

Since ∇ϕ(x0) = 0, we finally obtain:

0 <

[(
v

w

)a

w − v

]
|∇w|a(x0) = va

(
w1−a − v1−a

)|∇w|a(x0),

contradicting w(x0) < v(x0). This concludes the proof of our lemma. �
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Next, we assume by contradiction that there exists a sequence of solutions un of (P +) associated to a parameter
λn → 0+. A simple calculation shows that w(x) = A(R2 − |x|2) is positive and satisfies the inequality �w +
f (x,w) + |∇w|a � 0 in Ω , where A,R > 0 are large constants. In particular, it follows from Lemma 2.3 that
0 < un � w in Ω whenever λn � 1. Let xn ∈ Ω be a maximum point of un. Then ∇un(xn) = 0 and −�un(xn) � 0.
Letting dn = d(xn), Mn = un(xn), it follows from (P +) that

p(dn)g(Mn) � λnf (xn,Mn) � Cλn,

which yields a contradiction as n → ∞.
The rest of the proof of (ii) follows in the same manner as in the case μ = −1. This completes the proof of

Theorem 2.2. �
3. The problem (P )−

3.1. A nonexistence result

We first prove the following general nonexistence result which is related to our problem (P )−.

Theorem 3.1. Assume that
∫ 1

0 tp(t)dt = +∞. Then the inequality boundary value problem,⎧⎨
⎩

−�u + C|∇u|2 � p(d(x))g(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(29)

has no classical solutions.

Proof. It suffices to prove the theorem only for C > 0. We argue by contradiction and assume that there exists
u ∈ C2(Ω) ∩ C(Ω) a solution of (29). Using (g1), we can find c1 > 0 such that u := c1ϕ1 verifies:

−�u + C|∇u|2 � p
(
d(x)

)
g(u ) in Ω.

Since g is decreasing, we easily obtain:

u � u in Ω. (30)

We make in (29) the change of variable v = 1 − e−Cu. Therefore,⎧⎨
⎩

−�v = C(1 − v)(C|∇u|2 − �u) in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.

(31)

From (31) we easily derive,

−�v � C(1 − v)p
(
d(x)

)
g

(
− ln(1 − v)

C

)
in Ω.

In order to avoid the singularities in (31) let us consider the approximated problem:⎧⎨
⎩

−�v = C(1 − v)p(d(x))g(ε − ln(1−v)
C

) in Ω,

v > 0 in Ω,

v = 0 on ∂Ω,

(32)

with 0 < ε < 1. Clearly v is a super-solution of (32). Furthermore, by (30) and the fact that limt→0+ 1−e−Ct

t
= C > 0,

there exists c2 > 0 such that v � c2ϕ1 in Ω . On the other hand, there exists 0 < c < c2 such that cϕ1 is a sub-solution
of (32) and obviously cϕ1 � v in Ω . Then, the problem (32) has a solution vε ∈ C2(Ω) such that

cϕ1 � vε � v in Ω. (33)
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Multiplying by ϕ1 in (32) and integrating, we find:

λ1

∫
Ω

ϕ1vε dx = C

∫
Ω

(1 − vε)ϕ1p
(
d(x)

)
g

(
ε − ln(1 − vε)

C

)
dx.

Using (33), we obtain:

M =: λ1

∫
Ω

ϕ1v dx � C

∫
Ω

(1 − v)ϕ1p
(
d(x)

)
g

(
1 − ln(1 − v)

C

)
dx

� C1

∫
Ωδ

ϕ1p
(
d(x)

)
dx, (34)

where Ωδ = {x ∈ Ω; d(x) < δ}, for some δ > 0 sufficiently small. Since ϕ1(x) behaves like d(x) in Ωδ and∫ 1
0 tp(t)dt = +∞, by (34) we find a contradiction. Hence, problem (3.1) has no classical solutions and the proof

is now complete. �
A direct consequence of Theorem 3.1 is the following nonexistence property:

Corollary 3.1. Assume that
∫ 1

0 tp(t)dt = +∞ and conditions (g1), 0 < a � 2 are fulfilled.
Then the problem (P )− has no classical solutions.

3.2. Existence results for (P )− in the sublinear case on f

Our aim here is to give existence results concerning (P )− in case where f is sublinear. Nevertheless, we prove that
condition (5) suffices to guarantee the existence of a classical solution for μ belonging to a certain range.

In this case the existence of a solution is strongly dependent on the exponent a of the gradient term. To better
understand this dependence, we assume λ = 1 but the same results hold for any λ > 0 (note only that the bifurcation
point μ∗ in the following theorem is dependent on λ).

Theorem 3.2. Assume λ = 1,
∫ 1

0 tp(t)dt < +∞ and conditions (f 1), (f 2), (g1) and 0 < a � 2 are fulfilled.

(i) If 0 < a < 1, then problem (P )− has at least one solution, for all μ ∈ R;
(ii) If 1 < a � 2, then there exists μ∗ > 0 such that (P )− has at least one classical solution for all μ < μ∗ and no

solution exists if μ > μ∗.

Proof. (i) CASE μ > 0. By [28, Lemma 2.4] there exists a classical solution ζ of the problem:⎧⎨
⎩

−�ζ = f (x, ζ ) in Ω,

ζ > 0 in Ω,

ζ = 0 on ∂Ω.

(35)

Using the regularity of f we have ζ ∈ C2(Ω). Then, ζ is a sub-solution of (P )− provided μ > 0. We focus now on
finding a super-solution uμ of (P )− such that ζ � uμ in Ω .

Let H be the solution of (3). Since H is concave, there exists H ′(0+) ∈ (0,∞]. Taking 0 < b < 1 small enough,
we can assume that H ′ > 0 in (0, b], so H is increasing on [0, b]. Multiplying by H ′ in (3) and integrating on [t, b],
we find:

(H ′)2(t) − (H ′)2(b) = 2

b∫
t

p(s)g
(
H(s)

)
H ′(s)ds � 2p(t)

H(b)∫
H(t)

g(τ )dτ. (36)

Using the monotonicity of g it follows that

(H ′)2(t) � 2H(b)p(t)g
(
H(t)

) + (H ′)2(b), for all 0 < t � b. (37)
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Hence, there exist C1,C2 > 0 such that

(H ′)(t) � C1p(t)g
(
H(t)

)
, for all 0 < t � b (38)

and

(H ′)2(t) � C2p(t)g
(
H(t)

)
, for all 0 < t � b. (39)

Now we can proceed to construct a super-solution for (P )−. First, we fix c > 0 such that

cϕ1 � min
{
b, d(x)

}
in Ω. (40)

By Hopf’s maximum principle, there exist ω � Ω and δ > 0 such that

|∇ϕ1| > δ in Ω \ ω. (41)

Moreover, since

lim
d(x)→0+

{
c2p(cϕ1)g

(
H(cϕ1)

)|∇ϕ1|2 − 3f
(
x,H(cϕ1)

)} = +∞,

we can assume that

c2p(cϕ1)g
(
H(cϕ1)

)|∇ϕ1|2 � 3f
(
x,H(cϕ1)

)
in Ω \ ω. (42)

Let M > 1 be such that

Mc2δ2 > 3. (43)

Since H ′(0+) > 0 and 0 < a < 1, we can choose M > 1 such that

M
(cδ)2

C1
H ′(cϕ1) � 3μ

(
McH ′(cϕ1)|∇ϕ1|

)a in Ω \ ω,

where C1 is the constant appearing in (38). By (38), (41) and (43), we derive:

Mc2p(cϕ1)g
(
H(cϕ1)

)|∇ϕ1|2 � 3μ
(
McH ′(cϕ1)|∇ϕ1|

)a in Ω \ ω. (44)

Since g is decreasing and H ′(cϕ1) > 0 in ω, there exists M > 0 such that

Mcλ1ϕ1H
′(cϕ1) � 3p

(
d(x)

)
g
(
H(cϕ1)

)
in ω. (45)

In the same manner, using (f 2) and the fact that ϕ1 > 0 in ω, we can choose M > 1 large enough such that

Mcλ1ϕ1H
′(cϕ1) � 3μ

(
McH ′(cϕ1)|∇ϕ1|

)a in ω, (46)

and

Mcλ1ϕ1H
′(cϕ1) � 3f

(
x,MH(cϕ1)

)
in ω. (47)

For M satisfying (43)–(47), we prove that

uμ(x) := MH
(
cϕ1(x)

)
, for all x ∈ Ω, (48)

is a super-solution of (P )−. We have:

−�uμ = Mc2p(cϕ1)g
(
H(cϕ1)

)|∇ϕ1|2 + Mcλ1ϕ1H
′(cϕ1) in Ω. (49)

We first show that

Mc2p(cϕ1)g
(
H(cϕ1)

)|∇ϕ1|2 � p
(
d(x)

)
g(uμ) + f (x,uμ) + μ|∇uμ|a in Ω \ ω. (50)

Indeed, by (40), (41) and (43), we get:

M

3
c2p(cϕ1)g

(
H(cϕ1)

)|∇ϕ1|2 � p
(
d(x)

)
g
(
H(cϕ1)

)
� p

(
d(x)

)
g
(
MH(cϕ1)

) = p
(
d(x)

)
g(uμ) in Ω \ ω. (51)

The assumption (f 1) and (42) produce:
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M

3
c2p(cϕ1)g

(
H(cϕ1)

)|∇ϕ1|2 � Mf
(
x,H(cϕ1)

)
� f

(
x,MH(cϕ1)

) = f (x,uμ) in Ω \ ω. (52)

From (44) we also obtain:

M

3
c2p(cϕ1)g

(
H(cϕ1)

)|∇ϕ1|2 � μ
(
McH ′(cϕ1)|∇ϕ1|

)a = μ|∇uμ|a in Ω \ ω. (53)

Now, relation (50) follows by (51), (52) and (53).
Next we prove that

Mcλ1ϕ1H
′(cϕ1) � p

(
d(x)

)
g(uμ) + f (x,uμ) + μ|∇uμ|a in ω. (54)

From (45) and (46), we get:

M

3
cλ1ϕ1H

′(cϕ1) � p
(
d(x)

)
g
(
H(cϕ1)

)
� p

(
d(x)

)
g
(
MH(cϕ1)

) = p
(
d(x)

)
g(uμ) in ω (55)

and
M

3
cλ1ϕ1H

′(cϕ1) � μ
(
McH ′(cϕ1)|∇ϕ1|

)a = μ|∇uμ|a in ω. (56)

Finally, from (47) we derive:

M

3
cλ1ϕ1H

′(cϕ1) � f
(
x,MH(cϕ1)

) = f (x,uμ) in ω. (57)

Clearly, relation (54) follows from (55), (56) and (57).
Combining (49) with (50) and (54) we conclude that uμ is a super-solution of (P )−. Thus, by Lemma 2.1 we

obtain ζ � uμ in Ω and by sub and super-solution method it follows that (P )− has at least one classical solution for
all μ > 0.

CASE μ � 0. We fix ν > 0 and let uν ∈ C2(Ω)∩C(Ω) be a solution of (P )− for μ = ν. Then uν is a super-solution
of (P )− for all μ � 0. Set

m := inf
(x,t)∈Ω×(0,∞)

(
p
(
d(x)

)
g(t) + f (x, t)

)
.

Since limt→0+ g(t) = +∞ and the mapping (0,∞) � t 	→ minx∈Ω f (x, t) is positive and nondecreasing, we deduce
that m is a positive real number. Consider the problem:{−�v = m + μ|∇v|a in Ω,

v = 0 on ∂Ω.
(58)

Clearly zero is a sub-solution of (58). Since μ � 0, the solution w of the problem,{−�w = m in Ω,

w = 0 on ∂Ω,

is a super-solution of (58). Hence (58) has at least one solution v ∈ C2(Ω) ∩ C(Ω). We claim that v > 0 in Ω .
Indeed, if not, we deduce that minx∈Ω v is achieved at some point x0 ∈ Ω . Then ∇v(x0) = 0 and −�v(x0) =
m + μ|∇v(x0)|a = m > 0, contradiction. Therefore, v > 0 in Ω . It is easy to see that v is a sub-solution of (P )−
and −�v � m � −�uν in Ω . This yields v � uν in Ω . Again by the sub and super-solution method we conclude that
(P )− has at least one classical solution uμ ∈ C2(Ω) ∩ C(Ω).

(ii) The proof follows the same steps as above. The only difference is that (44) and (46) are no more valid for
any μ > 0. The main difficulty when dealing with estimates like (44) is that H ′(cϕ1) may blow-up at the boundary.
However, combining the assumption 1 < a � 2 with (39), we can choose μ > 0 small enough such that (44) and (46)
hold. This implies that the problem (P )− has a classical solution provided μ > 0 is sufficiently small.

Set:

A = {
μ > 0; problem (P )− has at least one classical solution

}
.
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From the above arguments, A is nonempty. Let μ∗ = supA. We first claim that if μ ∈ A, then (0,μ) ⊆ A. To this
aim, let μ1 ∈ A and 0 < μ2 < μ1. If uμ1 is a solution of (P )− with μ = μ1, then uμ1 is a super-solution of (P )−
with μ = μ2, while ζ defined in (35) is a sub-solution. Using Lemma 2.1 once more, we get ζ � uμ1 in Ω so (P )−
has at least one classical solution for μ = μ2. This proves the claim. Since μ1 ∈ A was arbitrary, we conclude that
(0,μ∗) ⊂ A.

Next, we prove that μ∗ < +∞. To this aim, we use the following result which is a consequence of Theorem 2.1
in [3].

Lemma 3.1. Assume that a > 1. Then there exists a positive number σ̄ such that the problem,{−�v � |∇v|a + σ in Ω,

v = 0 on ∂Ω,
(59)

has no solutions for σ > σ̄ .

Consider μ ∈ A and let uμ be a classical solution of (P )−. Set v = μ1/(a−1)uμ. Using our assumption 1 < a � 2,
we deduce that v fulfills: {−�v � |∇v|a + mμ1/(a−1) in Ω,

v = 0 on ∂Ω.
(60)

According to Lemma 3.1, we obtain mμ1/(a−1) � σ̄ , that is, μ � ( σ̄
m

)a−1. This means that μ∗ � ( σ̄
m

)a−1, hence μ∗ is
finite. The existence of a solution in the case μ � 0 can be achieved in the same manner as above.

This finishes the proof of Theorem 3.2. �
In what follows we discuss the case a = 1. Note that the method used in Theorem 3.2 does not apply here for large

values of μ.
Assume that Ω = BR(0) for some R > 0, where BR(0) = {x ∈ R

N ; |x| < R}. In this case and with λ = 1,
problem (P )− becomes: ⎧⎨

⎩
−�u = p(R − |x|)g(u) + f (x,u) + μ|∇u|, |x| < R,

u > 0, |x| < R,

u = 0, |x| = R.

(61)

Theorem 3.3. Assume that
∫ 1

0 tp(t)dt < +∞. Then the problem (61) has at least one solution for all μ ∈ R.

Proof. The case μ � 0 is the same as in the proof of Theorem 3.2(i). In what follows, we assume that μ > 0. Using
Theorem 3.2(i) it is easy to see that there exists u ∈ C2(Ω) ∩ C(Ω) such that⎧⎨

⎩
−�u = p(R − |x|)g(u ), |x| < R,

u > 0, |x| < R,

u = 0, |x| = R.

It is obvious that u is a sub-solution of (61) for all μ > 0. In order to provide a super-solution of (61) we consider the
problem: ⎧⎨

⎩
−�u = p(R − |x|)g(u) + 1 + μ|∇u|, |x| < R,

u > 0, |x| < R,

u = 0, |x| = R.

(62)

We need the following auxiliary result.

Lemma 3.2. Problem (62) has at least one solution.
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Proof. We are looking for radially symmetric solution u of (62), that is, u = u(r), 0 � r = |x| � R. In this case,
problem (62) becomes ⎧⎨

⎩
−u′′ − N−1

r
u′(r) = p(R − r)g(u(r)) + 1 + μ|u′(r)|, 0 � r < R,

u > 0, 0 � r < R,

u(R) = 0.

(63)

This implies

−(
rN−1u′(r)

)′ � 0 for all 0 � r < R,

which yields u′(r) � 0 for all 0 � r < R. Then (63) gives:

−
(

u′′ + N − 1

r
u′(r) + μu′(r)

)
= p(R − r)g

(
u(r)

) + 1, 0 � r < R.

We obtain:

−(
eμrrN−1u′(r)

)′ = eμrrN−1ψ
(
r, u(r)

)
, 0 � r < R, (64)

where

ψ(r, t) = p(R − r)g(t) + 1, (r, t) ∈ [0,R) × (0,∞).

From (64) we get:

u(r) = u(0) −
r∫

0

e−μt t−N+1

t∫
0

eμssN−1ψ
(
s, u(s)

)
ds dt, 0 � r < R. (65)

On the other hand, in view of Theorem 3.2 and using the fact that g is decreasing, there exists a unique solution
w ∈ C2(BR(0)) ∩ C(BR(0)) of the problem:⎧⎨

⎩
−�w = p(R − |x|)g(w) + 1, |x| < R,

w > 0, |x| < R,

w = 0, |x| = R.

(66)

Clearly, w is a sub-solution of (62). Due to the uniqueness and to the symmetry of the domain, w is radially symmetric,
so, w = w(r), 0 � r = |x| � R. As above we get:

w(r) = w(0) −
r∫

0

t−N+1

t∫
0

sN−1ψ
(
s,w(s)

)
ds dt, 0 � r < R. (67)

We claim that there exists a solution v ∈ C2[0,R) ∩ C[0,R] of (65) such that v > 0 in [0,R).
Let A = w(0) and define the sequence (vk)k�0 by v0 = w and

vk(r) = A −
r∫

0

e−μt t−N+1

t∫
0

eμssN−1ψ
(
s, vk−1(s)

)
ds dt, 0 � r < R, (68)

for all k � 1. Note that vk is decreasing in [0,R) for all k � 0. From (67) and (68) we easily check that v1 � v0 and
by induction we deduce vk � vk−1 for all k � 1. Hence

w = v0 � v1 � · · · � vk � · · · � A in BR(0).

Thus, there exists v(r) := limk→∞ vk(r), for all 0 � r < R and v > 0 in [0,R). We now can pass to the limit in (68)
in order to get that v is a solution of (65). By classical regularity results we also obtain v ∈ C2[0,R) ∩ C[0,R]. This
proves the claim.

We have obtained a super-solution v of (62) such that v � w in BR(0). So, the problem (62) has at least one solution
and the proof of our lemma is now complete. �
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Let u be a solution of the problem (62). For M > 1, we have:

−�(Mu) = Mp
(
R − |x|)g(u) + M + μ

∣∣∇(Mu)
∣∣

� p
(
R − |x|)g(Mu) + M + μ

∣∣∇(Mu)
∣∣. (69)

Since f is sublinear, we can choose M > 1 such that

M � f
(
x,M|u|∞

)
in BR(0).

Then uμ := Mu satisfies:

−�uμ � p
(
R − |x|)g(uμ) + f (x,uμ) + μ|∇uμ| in BR(0).

It follows that uμ is a super-solution of (61). Since g is decreasing we easily deduce u � uμ in BR(0) so, problem (P )−
has at least one solution.

The proof of Theorem 3.3 is now complete. �
3.3. Existence results for (P )− in the linear case on f

In this section we study the problem (P )− in which we drop out the sublinearity assumptions (f 1), (f 2) on f but
we require in turn that f is linear. More precisely, we assume that f (x, t) = t , for all (x, t) ∈ Ω ×[0,∞) and consider
the problem: ⎧⎨

⎩
−�u = p(d(x))g(u) + λu + μ|∇u|a in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(70)

where λ > 0 and p,g are as in the previous sections. We assume in what follows that 0 < a < 1.
Note that the existence results established in [28, Lemma 2.4] or [29] do not apply here since the mapping,

Ψ (x, t) = p
(
d(x)

)
g(t) + λt, (x, t) ∈ Ω × (0,∞),

is not defined on ∂Ω × (0,∞).

Theorem 3.4. Assume that
∫ 1

0 tp(t)dt < +∞ and conditions (g1), 0 < a < 1 are fulfilled. Then for μ � 0 the
problem (70) has solutions if and only if λ < λ1.

Proof. Fix λ ∈ (0, λ1) and μ � 0. By Theorem 3.2(i) there exists u ∈ C2(Ω) ∩ C(Ω) a solution of the problem:⎧⎨
⎩

−�u = p(d(x))g(u) + μ|∇u|a in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

Obviously, uλμ := u is a sub-solution of (70). Since λ < λ1, there exists v ∈ C2(Ω) such that⎧⎨
⎩

−�v = λv + 2 in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.

Since 0 < a < 1, we can choose M > 0 large enough such that

M > λ|u|∞ and M > μ(M|∇v|)a in Ω.

Then w := Mv satisfies:

−�w � λ(u + w) + μ|∇w|a in Ω.

We claim that uλμ := u + w is a super-solution of (70). Indeed, we have:

−�uλμ � p
(
d(x)

)
g(u) + λuλμ + μ|∇u|a + μ|∇w|a in Ω. (71)
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Using the assumption 0 < a < 1 one can easily deduce:

ta1 + ta2 � (t1 + t2)
a, for all t1, t2 � 0.

Hence

|∇u|a + |∇w|a �
(|∇u| + |∇w|)a �

∣∣∇(u + w)
∣∣a in Ω. (72)

Combining (71) and (72), we obtain:

−�uλμ � p
(
d(x)

)
g(uλμ) + λuλμ + μ|∇uλμ|a in Ω.

Hence, (uλμ,uλμ) is an ordered pair of sub and super-solution of (70), so there exists a classical solution uλμ of (70),
provided μ � 0 and 0 < λ < λ1. Assume by contradiction that there exist λ � λ1 and μ � 0 such that the problem (70)
has a classical solution uλμ. If m = minx∈Ω p(d(x))g(uλμ) > 0 it follows that uλμ is a super-solution of{−�u = λu + m in Ω,

u = 0 on ∂Ω.
(73)

Clearly zero is a sub-solution of (73), so there exists a classical solution u of (73) such that u � uλμ in Ω . By
maximum principle and elliptic regularity we get u > 0 in Ω and u ∈ C2(Ω). To raise a contradiction, we proceed as
in the proof of Theorem 2.2(ii).

Multiplying by ϕ1 in (73) and then integrating over Ω , we find:

−
∫
Ω

ϕ1�udx = λ

∫
Ω

uϕ1 dx + m

∫
Ω

ϕ1 dx.

This implies λ1
∫
Ω

uϕ1 dx = λ
∫
Ω

uϕ1 dx + m
∫
Ω

ϕ1 dx, which is a contradiction, since λ � λ1 and m > 0. The proof
of Theorem 3.4 is now complete. �
3.4. An application

We are concerned in this section with problem (6). Recall that if
∫ 1

0 tp(t)dt < +∞ and μ belongs to a certain
range, then Theorem 3.2 asserts that (6) has at least one classical solution uμ satisfying uμ � MH(cϕ1) in Ω , for
some M,c > 0. Here H is the solution of⎧⎨

⎩
H ′′(t) = −t−αH−β(t), for all 0 < t � b < 1,

H,H ′ > 0 in (0, b],
H(0) = 0.

(74)

With the same idea as in the proof of Theorem 3.2, we can show that there exists m > 0 small enough such that
v := mH(cϕ1) satisfies:

−�v � d(x)−αv−β in Ω. (75)

Indeed, we have:

−�v = m
[
c2−α|∇ϕ1|2ϕ−α

1 H−β(cϕ1) + λ1cϕ1H
′(cϕ1)

]
in Ω.

Using (16) and (38), there exist two positive constants c1, c2 > 0 such that

−�v � m
[
c1|∇ϕ1|2 + c2ϕ1

]
d(x)−αH−β(cϕ1) in Ω.

Clearly (75) holds if we choose m > 0 small enough such that m[c1|∇ϕ1|2 + c2ϕ1] < 1 in Ω . Moreover, v is a
sub-solution of (6) for all μ > 0 and one can easily see that v � uμ in Ω . Hence

mH(cϕ1) � uμ � MH(cϕ1) in Ω. (76)

Now, a careful analysis of (74) together with (76) is used in order to obtain boundary estimates for the solution
of (6). Our estimates complete the results in [20, Theorem 2.1] since here the potential p(d(x)) blows-up at the
boundary.
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Theorem 3.5. The following properties hold true:

(i) If α � 2, then the problem (6) has no classical solutions.
(ii) If α < 2, then there exists μ∗ ∈ (0,∞] (with μ∗ = +∞ if 0 < a < 1) such that problem (6) has at least one

classical solution uμ, for all −∞ < μ < μ∗. Moreover, for all 0 < μ < μ∗, there exist 0 < δ < 1 and C1,C2 > 0
such that uμ satisfies:
(ii1) If α + β > 1, then

C1d(x)
2−α
1+β � uμ(x) � C2d(x)

2−α
1+β , for all x ∈ Ω; (77)

(ii2) If α + β = 1, then

C1d(x)
(− lnd(x)

) 1
2−α � uμ(x) � C2d(x)

(− lnd(x)
) 1

2−α , (78)

for all x ∈ Ω with d(x) < δ;
(ii3) If α + β < 1, then

C1d(x) � uμ(x) � C2d(x), for all x ∈ Ω. (79)

Proof. The existence and nonexistence of a solution to (6) follows directly from Theorems 3.1 and 3.2. We next prove
the boundary estimates (77)–(79).

(ii1) Remark that

H(t) =
(

(1 + β)2

(2 − α)(α + β − 1)

)1/(1+β)

t
2−α
1+β , t > 0,

is a solution of (74) provided α + β > 1. The conclusion in this case follows now from (76).
(ii2) Note that in this case problem (74) becomes:⎧⎨

⎩
H ′′(t) = −t−αHα−1(t), for all 0 < t � b < 1,

H(0) = 0,

H > 0 in (0, b].
(80)

Since H is concave, it follows that

H(t) > tH ′(t), for all 0 < t � b. (81)

Relations (80) and (81) yield:

−H ′′(t) < t−1(H ′(t)
)α−1

, for all 0 < t � b.

Hence

−H ′′(t)
(
H ′(t)

)1−α � 1

t
, for all 0 < t � b. (82)

Integrating in (82) over [t, b] we get:

(H ′)2−α(t) − (H ′)2−α(b) � (2 − α)(lnb − ln t), for all 0 < t � b.

Hence, there exist c1 > 0 and δ1 ∈ (0, b) such that

H ′(t) � c1(− ln t)
1

2−α , for all 0 < t � δ1. (83)

Fix t ∈ (0, δ1]. Integrating over [ε, t], 0 < ε < t , in (83), we have:

H(t) − H(ε) � c1t (− ln t)
1

2−α + c1

2 − α

t∫
ε

(− ln s)
α−1
2−α ds. (84)

Note that
t∫
(− ln s)

α−1
2−α ds < +∞ and lim

t→0+

∫ t

0 (− ln s)
α−1
2−α ds

t (− ln t)
1

2−α

= 0. (85)
0
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Therefore, taking ε → 0+ in (84) we deduce that there exist c2 > 0 and δ2 ∈ (0, δ1) such that

H(t) � c2t (− ln t)
1

2−α , for all 0 < t � δ2. (86)

From (80) and (86), we obtain:

−H ′′(t) � cα−1
2 t−1(− ln t)

α−1
2−α , for all 0 < t � δ2.

Integrating over [t, δ2] in the above inequality, we get:

H ′(t) � (2 − α)cα−1
2

[
(− ln t)

1
2−α − (− ln δ2)

1
2−α

]
, for all 0 < t � δ2.

Therefore, there exist c3 > 0 and δ3 ∈ (0, δ2) such that

H ′(t) � c3(− ln t)
1

2−α , for all 0 < t � δ3.

With the same arguments as in (83)–(86) we obtain c4 > 0 and δ4 ∈ (0, δ3) such that

H(t) � c4t (− ln t)
1

2−α , for all 0 < t � δ4. (87)

The conclusion of (ii) in Theorem 3.5 follows now from (86) and (87).
(ii3) Using the fact that H ′(0+) ∈ (0,∞] and the inequality (81), we get the existence of c > 0 such that

H(t) > ct, for all 0 < t � b.

This yields

−H ′′(t) � c−βt−(α+β), for all 0 < t � b.

Since α + β < 1, it follows that H ′(0+) < +∞, that is, H ∈ C1[0, b]. Thus, there exists c1, c2 > 0 such that

c1t � H(t) � c2t, for all 0 < t � b. (88)

The conclusion in Theorem 3.5(iii) follows directly from (88) and (76).
This completes the proof of Theorem 3.5. �
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