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ABSTRACT. In this paper we study the existence of entire solutions for a class of quasilinear
elliptic equations on the whole space, provided that the nonlinear term has a subcritical growth.

Our main results establish related nonexistence or multiplicity results.
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1. INTRODUCTION

In [4], Alama and Tarantello studied the existence and multiplicity of solutions

of the equation

—Au — M= k(z)u? — h(z)uP, if z€Q
(1.1) u >0, if ze€Q
u =0, if xe 0,

where A € R, © € RN, N > 3 is a bounded open set with smooth boundary, the
functions h, k € L'(Q) are nonnegative and 1 < p < ¢. For A € R in a neigh-
borhood of the first eigenvalue of the Laplace operator in H}(f2), they obtained the
solvability of problem (1.1), as well as corresponding multiplicity properties, under
various assumptions on h and k. More exactly, they proved existence, nonexistence
and multiplicity results depending on A and according to the integrability properties
of the ratio k(z)P~!/h(z)1~1.

The work of Alama and Tarantello was carried on by Chabrowski [9] who obtained

similar results for the problem

—Au+u = Nu|"2u — h(z)|u[P2u, if zreRN
u > 0, if zeRY,
where h > 0 is a positive continuous function on RY satisfying some integrability
condition, A > 0 is a positive parameter and 2 < ¢ < p < 2N/(N —2), N > 3. More

exactly, Chabrowski proved that there exists A\g > 0 such that for any A € (0, \g)
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equation (1.2) does not have any solution while for any A > Ay equation (1.2) has at

least a nontrivial solution.

Related studies with those presented above can be found in [3], [5], [7], [14], [16].

We also refer to the recent monographs [1] and [2] for related qualitative results.

In this paper, motivated by [4] and [9], we study the existence and multiplicity

of solutions for the quasilinear problem

(1.3) —div(|Vu|™2Vu) + |u|™?u = Mu|"?u — h(x)|ulP~2u, if xRN
’ U Z O’ if ¢ ]RN,

where h(z) is a positive continuous function on RY (N > 3) satisfying the condition

1

A > 0 is a positive parameter and 2 <m < g<p<m*= Nm/(N —m), m < N.

If h = 0, problem (1.3) is called the Lane-Emden-Fowler equation and it arises
in the boundary-layer theory of viscous fluids (see [19]). This equation goes back
to the paper by Lane [11] in 1869 and is originally motivated by Lane’s interest in
computing both the temperature and the density of mass on the surface of the sun.
Problem (1.3) describes the behavior of the density of a gas sphere in hydrostatic
equilibrium and the index p, which is called the polytropic index in astrophysics and

is related to the ratio of the specific heats of the gas.

The main results in the present paper point out the following perturbation effects:
(i) if the perturbation in the right-hand side of (1.3) is weak, then there is no solution;
(ii) if the positive term in the right-hand side of (1.3) is big (this corresponding to
a strong perturbation) then there are at least two different entire solutions. More
precisely, we establish the non-existence of nontrivial solutions for problem (1.3) if A
is small enough (see Section 3) and the existence of at least two nontrivial solutions

for problem (1.3) if A is large enough (see Section 4).

In this paper we use standard notations and terminology. We denote by W™ (RM)

the Sobolev space equipped with the norm

1/m
I ( [ v+ dx) .
]RN

For simplicity we will often denote the above norm by ||u]|.

By L;(RN ), 1 < p < 0o, we denote the weighted Lebesgue space

2 = {us [ rlup do < oo},

where 7(x) is a positive continuous function on RY, equipped with the norm

e, = ([ o ac)
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If r(x) = 1 on RY, the norm is denoted by || - ||,

2. MAIN RESULTS

In this paper we seek weak solutions for problem (1.3) in a subspace of W™(RY).
Let E be the weighted Sobolev space defined by

E = {u c Whm™(RY); / h(x)|ulP de < oo} ,
RN

equipped with the norm

m/p
fallg = [ 0vul iy do ([ o az)

We define a weak solution for problem (1.3) as a function u € E with u(z) > 0

a.e. x € RV satisfying

/ |Vu|™ 2y d:L'—l—/ lu|™2uv dx — )\/ || 2uw d:)s+/ h(z)|u|P~2uv dx = 0,
RN RN RN RN

for all u, v € E.

The main results of this paper are the following.

Theorem 1. There exists \* > 0 such that for any X € (0,\*) problem (1.3) does

not have a nontrivial weak solution.

Theorem 2. There ezists A\g > 0 such that for A > Ao problem (1.3) admits at least

two nontrivial weak solutions.

Remark. In the linear case, when m = 2, similar results as those presented above

were obtained in [4], [9], and [16], while in the general case we refer to [18].

3. PROOF OF THEOREM 1

Let & : E — R be the energy functional defined by
1 A 1
() = —/ (V™ + [u|™) do — —/ |7 dz + —/ h()ul? da.
m Jry q JrN P JrN

R
Standard arguments assure that ® € C*(E,R) with the derivative given by

(@ (u),v) = / (|Vu|™ 2 VuVo+|u|™ 2uv) dx—)\/ || 2w da:+/ h(z)|u|P~*uv dx
RN RN RN
for any u, v € E. Solutions of problem (1.3) will be found as critical points of

functional ®.

We assume by contradiction that v € E is a weak solution of problem (1.3). Then
u satisfies

(3.1) /RN(WU\M ™) dm+/RN h()|ul? dx:)\/

|u|? dz.
RN
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To proceed further, we need Young’s inequality
a bﬁ
<+ Yab>0
o
where «, f > 1 satisfy 1/a+ 1/ = 1.
Taking a = h(z)??|u|, b = M\/[W(x)]¥?, a = p/q and B = p/(p — ¢q) we obtain
that

)\ q p—q )\ p/(p—q)
/P |y, |4 < 1 q/p|,,|2\P/4
o Plalty S < Lntopapis + 2 (LS

Integrating over RY we have
1

q
A “dy < = Pp 4+ 2 delm0 [ gy
Jotir o< [ w@tap dor LD [ o
The above inequality and relation (3.1) imply
m m D=9 \p/(p—0q) 1 9—pr p
/RN(\W +[ul™) do < 2= /RN e e+ = [ hwl .

Since ¢ < p it results that £ [,y h(2)|ul’ dv < 0 and thus

m m P =9\ p/(p—q) #
(3.2) /RN(|VU| + [u|™) dz < » A /RN h(x)e/ (=0 du

Since m < ¢ < m* the Sobolev embedding of W™ (R¥) into L(RY) implies the

existence of a positive constant C, such that

m/q
c, (/ \u\qu) g/ (V™ + [u™) dz
]RN N

We note that [y h(2)|ul dz > 0. It follows from (3.1) that

/ (IVul™ + [u|™) do < A/ ul? da.
RN RN

Combining the last two inequalities we obtain

m/q
33 ¢, (/ ful? dm) g/ (IVul™ + Ju™) dm§>\/ | dar
RN RN RN

Retaining the first and the last terms of (3.3) we get

(CA)qug/‘MPm.

RN
That inequality combined with (3.3) leads to
clex i< [ (Va4 ) do
RN
By relation (3.2) and the above inequality we have

m/(q— m) m m u p/(p—a) diz
C,(CA™H /RN(|VU‘ + [ul™) dz < D A /]RN h(x)e/ (=0 du
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Retaining the first and the last term it follows that

_17¢
Cq/(q my_P dx dr '
D—q h(x)Q/(p_Q)

Denoting the term in the right-hand side of the above inequality by A\*, we conclude
that Theorem 1 holds true. O

p—q)(g—m)/(a(p—m))

4. PROOF OF THEOREM 2

We first establish some auxiliary results.

Lemma 1. The functional ® is coercive.

Proof. To proceed to the proof of Lemma 1 we need the following inequality:

For every k1 > 0, ko > 0 and 0 < s < r we have

kl s/(r—s)
(4.1) ke = kolt]” < Cooke (/?) , VieR,
2

where C,s > 0 is a constant depending on r and s.
(m=1)h(z)

mp

If we take in inequality (4.1) ky = %, ky = ,s=qandr=p(s<ris

verified since ¢ < p) we obtain

A (m _ 1)h(:13) A )\/q (a/(p—9))
Z g __ \NTT O ST\ P < Z
= . \p/p=9) 1 mp q/(p_q)l
K W \gm 1)) ¢
VzeRY,

mp

(m—1)

)q/ (p—q)

where Cp, > 0 is a constant depending on p and ¢g. Relabeling C,, ( %

by C,, and integrating the above inequality over RY it follows that

/]RN (?u\q — —mp |ulP ) dx < Cp ANP/Pe /RN 7}1,(26')[1/(1)_‘]) dx.

Using the hypotheses (1.4) we deduce that there exists a constant C; > 0 such that

RN P

Therefore
(4.2)
A 1
d(u) = (IVul™ + |u|™) dx — —/ |ul? dx + —/ h(z)|ul? dz
N q JrN P N

i
_ %/iN(|Vu|m+lu|’”) dzx — {/RN (2|“|q_m|u|p)] o

mp
(m = D) LT
—AN——————mw+p4Nm>||d

mp

1 1
> —/ (Vul™ + [u]™) d:c—Cl—l——/ W) |ul? dz,
m RN mp

RN
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and thus @ is coercive. O

Lemma 2. Assume that {u,} is a sequence in E such that ®(u,) is bounded. Then
there exists a subsequence of {u,}, relabeled again {u,}, which converges weakly in E
to some ug € E and

D (up) < liminf (uy,).

n—oo

Proof. Using inequality (4.2) we obtain
1 1
D (u,) > —/ (|Vun|™ + |u,|™) dx + —/ h(z)|u,|P dz — C4.
m JrN mp JrnN

Since ®(u,) is bounded the above inequality implies that [oy (|Vu,|™ + |un|™) dz and
Jan M(2)|un|P dz are bounded. Therefore, {||lu,| £} is bounded. In fact, there exists

ug € E such that
u, — up in WH(RY)
u, — ug in LF(RY)

w, — ug in Li (RY) for s € [1,m*).

We define \ l?
U
F(x,u) = —|ul*— h(z)—
(z,u) ql | (z) p
and
flx,u) = F,(z,u) = )\|u|q_2u — h(a:)|u|p_2u.
We see that

fula,w) = Mg = D]l = h(z)(p — 1) [ul"~2.
Using again inequality (4.1) for ky = A(g — 1), ko = h(z)(p—1),s=q—2,r=p—2

we obtain
fulw ) = Mg = D)ul"? = h(z)(p = 1)|ul"~

_ (a—2)/(p—a)
< C-)v(q—l)-(%) , Yz€E,

where C' is a positive constant depending only of p and ¢.
This yields,
A\ @2/ -9
(4.3) o) £ G 3+ (75 ,
where C), is a positive constant depending only of p and ¢q. According to the definition

of ® and F' we obtain the following estimate for ®(ug) — ®(u,,)
(4.4)

1 1
Buo) = B, = - [ (Vu o+ fuof") do = - [ (V" ") da

+ » [F(z,u,) — F(x,up)] de.
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It is clear that

/os fu(@,uo + t(un — up)) dt = ! [f (@, u0 + s(un — o)) — f(2,u0)]

Up — Ug

= w 1 ” [Fu(l’, Ug + S(Un - UO)) - Fu(SL’,UQ)]

Integrating the above relation over [0, 1] we obtain

/01 (/Osfu(:c,uo—i—t(un—uo)) dt) ds = ——— /Ol[Fu(x,u0+s(un—u0))

— Fu(z,ug)] ds
1 T, U
= ———5[F(2,un) — F(z,u0)] — 72, to)

(un - uO) Upn — Ug
The above equality can be written in the following way
(4.5)

1 s
F(z,u,)—F(x,up) = (un—uo)Q/ (/ fulz, up + t(u, — up)) dt) ds+(unp—uo) f(x, up).
0 0

Introducing relation (4.5) in relation (4.4) we get
(4.6)

1 1
D(ug) — P(u,) = —/ (IVuo|™ + |ug|™) dz — —/ (IVun|™ + |u,|™) dx
m RN m RN

+/RN(un—u0)f(:):,u0) d:)s+/RN(un—uo)2/01/Osfu(93,uo

+t(u, — up)) dt ds dx

1 1
< o [ Vul ) do = o (Vi ") do
dx
+ /]:i(un — U())f([lf,'do) dx + Cl v (un — UQ)2W,

where the last inequality follows from (4.3) and C; = C, AP~2/P=9)_ It remains to

show that the last two integrals converge to 0 as n — oo.

We define J : £ — R by

J(v) = f(x,up)v dx.

RN

Obviously, J is linear. We prove that J is also continuous. Indeed, we have

[ 1t ol de = [Nl = b o - o] do
RN RN

< )\/ |u0|q_1|v|d:v+/ h(z)|ug P~ Jv| da.
RN RN

|/ ()]

IA

(4.7)

On the other hand, using Holder’s inequality, it results

(¢—1)/q 1/q
/RN uo| "o da < (/RN |uo|? da:) (/RN v dx) = [|uol| 2 |v]],-
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Since W1™(RY) is continuously embedded in LI(RY) we deduce that there exists a

constant C' > 0 such that
[olly < Cllollwrmgyy, Vo€ WHRY).
Combining the last two inequalities with the fact that
[vllwrm@y < [lvlle
we deduce that there exists a positive constant ¢, > 0 such that
(48) [l de < ol
RN

Applying again Holder’s inequality we obtain

[ @t~ de < [ (@)ool ) da

( /R h(@)ul d:c) v ( /R h(@)lol” d:c) "

Csllvllnp < Csllvlle,

(4.9)

IA

IA

where c3 is a positive constant.
By (4.7), (4.8) and (4.9) we conclude that there exists a positive constant Cyy such
that
|J(v)| < Cyljv||lg, YveEE,
and thus, J is continuous. Since {u,} converges weakly to uy in E and J is linear

and continuous we deduce
J(un) — J(uo)

or

(4.10) lim f(x,up)(u, — ug) dx = 0.

n—oo [pN

In order to show that )
lim —(u" ~ o)
n—oo Jpn h(gy)(q—2)/(p—q)
we take R > 0 sufficiently large and we observe that

(4.11)
(U — ug)? B (U, — ug)? (U — ug)?
/RN ho) e @ = wl<r M) DT@=0) de+ wisp P(2) 020 da
dx (¢-2)/a 2/q
(/ T T da:) . (/ |ty — wol? dm)
ol<r D(2)1/ =) |z|<R
dx (¢—2)/q 2/q
+ / 7) (/ Uy — U qda:) .
( w|>r M(2)1/ =0 \x\ZR| o

By hypothesis (1.4) we have

dx dr
/|m|<Rde</RNWd$<O@ ¥R >0.

dr =0

IA
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On the other hand, for all € > 0 there exists R, > 0 such that

dx p
wior, M@)o 0=

Using the fact that m < ¢ < m* we deduce that W™ (Bg_(0)) is compactly embedded

in L9(Bg, (0)) and thus
2/q
lim (/ |t — uo]? dx) = 0.
n—0o |z|<Re

Since {u, — ug} is bounded in E it follows that it is bounded in L4(RY) and we find
that there exists a positive constant M > 0 such that

2/q 2/q
(/ |t — uo]? dx) < </ |ty — ugl? dz) < M.
|z|>Re RN

Combining the above information with relation (4.11) we conclude that for any € > 0
there exists IV, > 0 such that for all n > N, we have

(tn — uo)® t-2/q
/RN h() @D o= @S € F Mt

Therefore,
. (un - u0)2 o
(4.12) tm J e 9@ =0
Since {u,} converges weakly to ug in W™ (RY) Proposition IT1.5 in [8] implies
it ey > 0]
Passing to the limit in (4.6) and taking into account that (4.10) and (4.12) hold true

we obtain

O (up) < liminf (uy,).

n—oo

Thus, ® is weakly lower semicontinuous.
The proof of Lemma 2 is now complete. O

PROOF OF THEOREM 2. Using Lemmas 1, 2 and Theorem 1.2 in [15] we deduce

that there exists u € E a global minimizer of ®, i.e.

®(u) = inf ®(v).

veEER

It is obvious that u is a weak solution of problem (1.3). We prove that v # 0 in E.
To do that we show that infz ® < 0 providing that the parameter \ is sufficiently

large.

We set

X:inf{i/ (IVu|™ + |ul™) d:z:—l—g/ h(z)|ul? dx; uEE,/ |u| dle}.
m JrnN P JrN RN
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We point out that A > 0. Indeed, for any u € E with [,y [u|? dz = 1 by Hélder’s

inequality we have

dx (r—q)/p q/p
1= / lu|? dz < (/ 7) . (/ h(z)|u|? d:z:) :
RN RN h(x)q/(p—q) RN

It follows that
(g—p)/p
a4 - 0.
- D RN h(l')Q/(P_Q)

Let A > X. Then there exists a function u; € E with [y |u1]? dz = 1 such that

A/ a7 d = A > i/ (Vur|™ + [ur|™) da + g/ h(@)wl? de.
RN m JrN P Jry
This can be written as

1 A 1
q><u1)=—/ (V™ + [ug™) dx——/ .t dm+—/ W) do < 0
m Jrn q JrN P Jry

and consequently inf,cp ®(u) < 0. Thus, there exists A\g = A > 0 such that problem
(1.3) has a nontrivial weak solution, u; € F, for any A > )\, satisfying ®(u;) < 0.

Since ®(u;) = ®(Jui|) we may assume that u; > 0 a.e. in RY, O

In the following we are looking for a second nontrivial weak solution for problem
(1.3).
Fix A Z )\0. Set

0, for t<0
gz, t) = ¢ M1 — h(x)tr~t for 0 <t <u(x)
Aup ()71 — h(x)uy (2)P71, for ¢ > uy(z)

and
t
G(z,1) :/ g(z,s) ds.
0
Define the functional ¥ : E — R by

1
W(u) = —/ (Vu™ + o™ de— | Gz, u) dr.
m JrN RN
The same arguments as those used for functional I imply that J € C'(E,R) and

(0 (), v) = / (V™ >VuVo + |u|™uv) dz — / oz, w)v dz,
RN RN
for all u, v € E. Moreover, it is clear that if u is a critical point of ¥ then v > 0 a.e.
in RV,

Next, we prove

Lemma 3. Ifu is a critical point of ¥ then u < u;.



COMBINED EFFECTS FOR A STATIONARY PROBLEM 381

Proof. For a function v we define the positive part v*(z) = max{v(z),0}. By Theo-
rem 7.6 in [10] we deduce that if v € E then vt € E. We have

’

0 = (U(u)— 0 (w), (u—u)?)

= / (|Vu|™2Vu — |Vuy | 2Vu ) V(u — uy)t do
]RN
+/ (|u|m_2u — |u1|m_2u1)(u —uy) " dw
]RN
= [ latw) =t bl ) da
RN

= / (|Vu|"2Vu — |Vuy "2V, ) (Vu — Vuy) do
[u>u1]

+/ (Ju|™ 2w — |ug|™ 2uy) (u — uy) dx
[u>u1]

> / (|Vu|™ ™t — |[Vu " D (|Vu| — |[Vui|) dz
[u>u1]
+/ (Jul™ " = Jug ™ Y (Ju| = |ua]) dx > 0.
[u>u1]
Thus, we obtain u < u; and the proof of Lemma 3 is complete. 0

In the following we determine a critical point us € E of W such that ¥(uy) > 0
via the mountain pass theorem. By the above lemma we will deduce that 0 < us < uy
in Q. Therefore

g(,u9) = ™' — h(x)ub™" and G(z,up) = 2u% - %ug

and thus

!

U(us) = Puy) and U (ug) = O (uy).

More exactly we find

!

D(uz) > 0=P(0) > D(uy) and O (uz) =0.

This shows that usy is a weak solution of problem (1.3) such that 0 < uy < uy, ug # 0

and U9 % Uq.

In order to find us described above we prove

Lemma 4. There exists p € (0,||u1]]) and a > 0 such that V(u) > a, for allu € E
with ||ul] = p.
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Proof. We have

1
v = —|lul|™— G d
W = "= [ G do

1

= —Jul|™ - / G(z,u) de — / G(z,u) dx
m [u>u1] [u<ui]
1 A 1 A

= —|ul|™ - —/ ui dx + —/ h(z)uy dx — —/ u? dx
m 4 Ju>u) P Jlusuq] 4 Ju>ui]

1
+- / h(z)u? dx
P Ju>ui]

1, o A
z—wM|——/ ul? d.
m q RN

On the other hand, the continuous Sobolev embedding of E into L4(R") implies that

there exists a positive constant L > 0 such that
ul, < L-lull, VueE.

The above inequalities imply
W) > ™~ Lallull = ™ | - — Lo
u) > —||u||™ — ull? = ||u — — u
= m 1 m 1 )
where L, is a positive constant. Since ¢ > m it is clear that Lemma 4 holds true. O
Lemma 5. The functional V is coercive.

Proof. For each u € E we have

1 A 1 A
U(u) = —|lu|™ - —/ ui dx + —/ h(z)u) dx — —/ u? dx
m 4 Jiu>u) P Ju>ui] q Ju>u)
1
—|——/ h(z)u? dx
P Ju>ui]

1 A
e A
m q JrN

1 m
= " - s,

where Lo is a positive constant. The above inequality implies that ¥(u) — oo as

|u|]| — oo, that is, ¥ is coercive. The proof of Lemma 5 is complete. O

PrROOF OF THEOREM 2 COMPLETED. Using Lemma 4 and the mountain pass
theorem (see [6] with the variant given by Theorem 1.15 in [17]) we deduce that there

exists a sequence (u,) C E such that
(4.13) U(up,) —¢>0 and ¥ (u,) — 0

where

= inf max ¥(y(t
¢ = Inf max (v(t))
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and

I = {7 € C([0,1], B); 7(0) = 0, 7(1) = u}.
By relation (4.13) and Lemma 5 we obtain that (u,) is bounded and thus passing
eventually to a subsequence, still denoted by (u,), we may assume that there exists
uy € FE such that w, converges weakly to us. Standard arguments based on the

Sobolev embeddings will show that
lim (U (uy,),v) = (U

oo (u2)7 U) )

for any v € C§°(RY). Taking into account that £ C Wh™(RY) and C§°(RY) is dense
in WH™(RY) the above information implies that uy is a weak solution of problem
(1.3).

We conclude that problem (1.3) has two nontrivial weak solutions. The proof of

’

Theorem 2 is complete. O

We point out that the proof of Theorem 2 is similar with those of Theorems 2.1
and 2.2 in [4]. However, our method in finding the second solution is somewhat
different since we use the mountain pass theorem while in [4] the authors appeals
to sub and super-solutions method. Our idea is frequently used when we deal with

quasilinear problems see, e.g., Perera [13] or Mihailescu and Radulescu [12].

On the other hand, we point out that equation (1.3) can be studied also in the
case when p is supercritical using similar arguments, since the |u|? term in the energy
will be coercive. In that cases standard regularity results will lead to stronger results

in what concerns the smoothness of solutions since in that case W™ is embedded in
C1.
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