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Abstract. The prime goal of this paper is to introduce and study a highly

nonlinear inverse problem of identification discontinuous parameters (in the
domain) and boundary data in a nonlinear variable exponent elliptic obsta-

cle problem involving a nonhomogeneous, nonlinear partial differential op-
erator, which is formulated the sum of a weighted anisotropic p-Laplacian

and a weighted anisotropic q-Laplacian (called the weighted anisotropic (p, q)-

Laplacian), a multivalued reaction term depending on the gradient, two mul-
tivalued boundary conditions and an obstacle constraint. We, first, employ

the theory of nonsmooth analysis and a surjectivity theorem for pseudomono-

tone operators to prove the existence of a nontrivial solution of the anisotropic
elliptic obstacle problem, which relies on the first eigenvalue of the Steklov

eigenvalue problem for the p−-Laplacian. Then, we introduce the parameter-

to-solution map for the anisotropic elliptic obstacle problem, and establish
a critical convergence result of the Kuratowski type to parameter-to-solution

map. Finally, a general framework is proposed to examine the solvability of

the nonlinear inverse problem.

1. Introduction. Let Ω be a bounded domain in RN , N ≥ 2 and its boundary Γ :=
∂Ω be Lipschitz continuous such that Γ is decomposed into four mutually disjoint
parts Γa, Γb, Γc, and Γd with Γa having positive Lebesgue measure. Also, let β > 0
and p, q, θ ∈ C+(Ω) (see Section 2, below) satisfy 1 < q(x) < p(x) < θ(x) < p∗(x)
for all x ∈ Ω, where p∗ is the critical Sobolev variable exponent to p in the domain
Ω (given in (5) for s = p). Given two multivalued mappings f : Ω× R× RN → 2R

and U : Γd × R → 2R, three functions a : Ω → (0,+∞), b : Ω → (0,+∞) and
h : Γb → R, a convex function ψ : Γc × R→ R and an obstacle function Φ: Ω→ R,
in the present paper, we are interesting in the study of the following anisotropic
elliptic obstacle inclusion problem with the weighted anisotropic (p, q)-Laplacian, a
multivalued convection term, and two multivalued boundary conditions:

−∆a
p(x)u−∆b

q(x)u+ β|u|θ(x)−2u ∈ f(x, u,∇u) in Ω,

u = 0 on Γa,

∂u

∂νa,b
= h(x) on Γb,

− ∂u

∂νa,b
∈ ∂cψ(x, u) on Γc,

∂u

∂νa,b
∈ U(x, u) on Γd,

u(x) ≤ Φ(x) in Ω.

(1)

Here
∂u

∂νa,b
:=
(
a(x)|∇u|p(x)−2∇u+ b(x)|∇u|q(x)−2∇u

)
· ν,

where ν is the outward unit normal vector on Γ, ∆a
p(x) stands for the weighted

anisotropic p(x)-Laplace differential operator with respect to the weight a ∈ L∞(Ω)
defined by

∆a
p(x)u := div

(
a(x)|∇u|p(x)−2∇u

)
for all u ∈W 1,p(·)(Ω),

and W 1,p(·)(Ω) is the variable exponent Sobolev space.
In conclusion, the novelty of the present paper is the fact that problem (1) models

numerous interesting and challenge phenomena. We emphasize that the differen-
tial operator involved in problem (1) is a nonhomogeneous and nonlinear partial
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differential operator with different anisotropic growth, called weighted anisotropic
(p, q)-Laplacian, which is the sum of a weighted anisotropic p-Laplace operator
(∆a

p(·)) and a weighted anisotropic q-Laplace operator (∆b
p(·)), where p, q ∈ C+(Ω)

are such that 1 < q(x) < p(x) for a. e. x ∈ Ω. Especially, we have

• if a ≡ b ≡ 1, then the weighted anisotropic (p, q)-Laplacian reduces to the
anisotropic (p, q)-Laplacian

∆p(x)u+ ∆q(x)u := div
(
|∇u|p(x)−2∇u+ |∇u|q(x)−2∇u

)
for all u ∈W 1,p(·)(Ω),

• when p, q are constants such that 1 < q < p, then the weighted anisotropic
(p, q)-Laplacian becomes to the weighted (p, q)-Laplacian

∆a
pu+ ∆b

qu := div
(
a(x)|∇u|p−2∇u+ b(x)|∇u|q−2∇u

)
for all u ∈W 1,p(Ω).

In fact, the main motivation to study the weighted anisotropic (p, q)-Laplacian is
that this partial differential operator has two important properties

• the presence of unbalanced growth,
• variable exponents structure and nonuniform parameters (or weights),

which could explain and describe exactly various complicated problems and natu-
ral phenomena in the Mechanics, Physics and Engineering Sciences. For example,
assume that a body (or the material) occupying the domain Ω is anisotropic and
heterogeneous. If u is the temperature field (resp. electric potential or magnetic
potential), then the first inclusion in (1) stands for a generalized anisotropic version
of the Fourier constitutive law of heat conduction (resp. nonlinear constitutive re-
lation for electric potential or nonlinear constitutive law for magnetic fluids), where
the thermal conductivity a (resp. the dielectric coefficient and magnetic permeabil-
ity) effectively depends on the space variable x. In consideration of the advantage of
weighted anisotropic (p, q)-Laplacian, it permits us to apply model (1) as a powerful
mathematical tool for solving the problems arising in electrostatics, magnetostatics,
and stationary heat transfer in anisotropic and heterogeneous materials.

We notice some impressive results concerning the anisotropic p-Laplacian, the
weighted (p, q)-Laplacian, and anisotropic (p, q)-Laplacian. Bai-Papageorgiou-Zeng
[1] have combined variational tools combined with suitable truncations and com-
parison techniques to study a parametric nonlinear, nonhomogeneous Dirichlet
problem driven by the (p, q)-Laplacian with a reaction involving a singular term
plus a superlinear reaction which does not satisfy the Ambrosetti-Rabinowitz con-
dition, and established a bifurcation-type theorem describing in a precise way
the dependence of the set of positive solutions on a parameter. Ciraolo-Figalli-
Roncoroni [8] characterized the solutions to the critical p-Laplacian equation in-
duced by a smooth norm inside any convex cone, and applied optimal transport
method to prove a general class of (weighted) anisotropic Sobolev inequalities in-
side arbitrary convex cones. By variational method based on critical point the-
ory and Morse theory (critical groups), Gasiński-Papageorgiou [21] studied a non-
linear Neumann problem driven by the anisotropic p-Laplacian differential oper-
ator and with a superlinear reaction which does not satisfy the usual in such
cases Ambrosetti-Rabinowitz condition, and proved that the nonlinear Neumann
problem has at least three nontrivial smooth solutions, two of which have con-
stant sign (one positive, the other negative). Mercuri-Riey-Sciunzi [42] consid-
ered the weak solutions to a class of Dirichlet boundary value problems involv-
ing the p-Laplace operator, and proved that the second weak derivatives are in
Lq with q as large as it is desirable, provided p is sufficiently close to p0 = 2.
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Some related developments can be found in Hannukainen-Hyvonen-Mustonen [29],
Gasiński-Papageorgiou [20], Baroni-Colombo-Mingione al. [2, 3], Colombo-Mingione
[9], Papageorgiou-Rǎdulescu-Repovš [53, 54], Zeng-Bai-Gasiński-Winkert [61], Mar-
cellini [40, 41], and Liu-Motreanu-Zeng [38].

The second interesting feature of the paper consists in the presence of the multi-
valued convection term. It is well-known that in a single or a multiphase fluid flow,
the convection effect may appear spontaneously because of the combined effects
of material heterogeneity and the influence of body forces on a fluid (commonly
density and gravity). Whereas, the reaction terms which depend on the gradient of
unknown functions can precisely model the convection effect for various fluids flow.
From the point of view of methodology, the multivalued convection term appeared
in the problem (1) causes tremendous difficulty from two perspectives. On the one
hand, the multivalued convection phenomenon has a nonvariational character, so
we cannot apply the standard variational tools for the corresponding energy func-
tionals. On the other hand, the discontinuity of the multivalued convection term
renders many regularity theorems inapplicable. These two issues motivate us to
develop a new pattern and techniques to handle with such kinds of problems. This
is, actually, another motivation of the present paper.

We also refer to the recent works involving convection terms or multivalued
terms. Applying the Kakutani-Ky Fan fixed point theorem for multivalued op-
erators along with the theory of nonsmooth analysis and variational methods for
pseudomonotone operators, Zeng-Rǎdulecu-Winkert [64] examined the existence of
solutions to a mixed boundary value problem with a nonhomogeneous, nonlinear
differential operator (called double phase operator), a nonlinear convection term (a
reaction term depending on the gradient), three multivalued terms and an implicit
obstacle constraint. Ghergu-Rǎdulescu [23] established some bifurcation results for
a singular Lane-Emden-Fowler equation with a convection term, in the meanwhile,
the authors utilized the sub- and supersolutions method together with various tech-
niques related to the maximum principles to obtain the asymptotic behaviour of the
solution around the bifurcation point. Via employing nonlinear Trudinger-Moser
inequality and Galerkin approximation approach, de Araujo-Faria [10] verified the
existence of positive solutions to a new class of quasilinear elliptic equations with
exponential nonlinearity combined with convection term. For more details with
respect to the direction of problems having convection terms or multivalued terms,
we refer to El Manouni-Marino-Winkert [15], Figueiredo-Madeira [17], Gasiński-
Papageorgiou [19], Papageorgiou-Rǎdulescu-Repovš [52], Marano-Winkert [39] and
Gasiński-Winkert [22].

Another novelty of the paper is the multivalued boundary conditions, which have
been widely applied to various problems arising in contact mechanics, diffusion of
fluids through a semipermeable membrane, optimal transport, heat conductivity
and so on. It is worthy to point out that, in the present paper, the multivalued
boundary conditions involved in problem (1) are a multivalued monotone boundary
condition, which is formulated by convex subdifferential of a convex functional, and
a generalized multivalued boundary condition, which is nonmonotone in general.
A classical example for multivalued monotone boundary conditions is the Coulomb
law of dry friction, which is formulated by{ ‖στ‖ ≤ µ if vτ = 0,

στ = − µvτ
‖vτ‖

if vτ 6= 0, on Γc,
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where στ stands for the friction, µ is the coefficient of dry friction, vτ is the tan-
gential velocity on the contact boundary Γc. This constitutive law is equivalent to
the following inclusion form

−στ ∈ µ∂c‖vτ‖,
where ∂c‖ · ‖ is the convex subdifferential operator of vτ 7→ ‖vτ‖. On the other
hand, when U is specialized by the generalized Clakre subdiffrential of a locally
Lipschitz function (which is not convex in general), i.e., U(x, s) = ∂j(x, s) for a.e.
x ∈ Γd and all s ∈ R, then the relation ∂u

∂νa,b
∈ U(x, u) reduces to the following

multivalued nonmonotone boundary condition

∂u

∂νa,b
∈ ∂j(x, u) on Γd, (2)

where j : Γd × R → R is locally Lipschitz continuous with respect to the second
variable, and ∂j(x, s) stands for the Clarke subdifferential of s 7→ j(x, s). In fact,
the multivalued nonmonotone boundary condition (2) has been used commonly
in numerous nonsmooth mechanics problems and semipermeability problems, for
instance, Liu et al. [36] used the theory of nonsmooth analysis and Lagrange multi-
pliers method to establish the remarkable existence and convergence results for an
elastic frictional contact problem with nonmonotone subdifferential boundary condi-
tions. Concerning the research of problems with multivalued boundary conditions,
we refer to the recent contribution of Migórski-Ochal [46], Liu [37], Naniewicz-
Panagiotopoulos [49], Panagiotopoulos [50, 51], Migórski-Pa.czka [48], Li-Liu [32],
Han [27], Liu el al. [35, 34], Zeng-Migórski-Khan [63] and etc.

The fourth feature of the paper is the presence of obstacle effect. The study
of obstacle problems goes back to the pioneering contributions of J.-L. Lions [33].
Various classes of obstacle problems arise naturally when describing phenomena in
real-world problems. Many of these models, such as the fluid filtration through
a porous medium, osmosis, optimal stopping, heat control, etc., are described in
monographs by Duvaut-Lions [14] and Rodrigues [57]. Recently, obstacle effects
arising in dynamic vehicle routing problems, contact problems in mechanics, fluids
flow models, the penetration phenomenon of the magnetic field, etc., have been
studied in Brezis-Kinderlehrer-Lewy [5], Wang-Han-Cheng [59], Han-Sofonea [28]
and the cited references therein.

Parameter identification is an inverse problem taking place in material model de-
velopment, which raises much interest in recent years, for example, Cakoni-Moskow-
Pangburn [7] considered the two scale asymptotic expansion for a transmission prob-
lem modeling scattering by a bounded inhomogeneity with a periodic coefficient in
the lower order term of the Helmholtz equation, and shown a new convergence
estimate for the second order boundary corrector on a square, and Guzina-Cakoni-
Bellis [26] investigated the possibility of multi-frequency reconstruction of sound-soft
and penetrable obstacles via the linear sampling method involving either far-field
or near-field observations of the scattered field. Finally, we note that the inverse
problem under investigation is motivated by the problem of identification of a dis-
continuous coefficient in an elliptic variational inequality, see Gutman [25], Zeev-
Cakoni [60], Migórski-Ochal [45], Cakoni-Haddar-Lechleiter [6], Zeng-Bai-Winkert-
Yao [62] and Migórski-Khan-Zeng [44, 43]. Since our direct problem is governed by
the weighted anisotropic (p, q)-Laplacian, the identification problem for (1) seeks to
determine the coefficients a and b (e.g., the permeabilities of the medium), and a
function h (representing a flux of heat, of fluid, or electricity, depending on a model)
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on a part of the boundary in such a way that the solution u (that can be either a
temperature, a pressure, or an electric potential) matches the observed or measured
data z. More precisely, since the problem (1) is not uniquely solvable, in general,
which leads to that the inverse problem is inevitable a double minimization one, see
Problem 4. The compactness of the set (28) of admissible parameters represents
the crucial consequence.

The main contribution of the paper is twofold. The first contribution of the
paper is to examine the existence of a weak nontrivial solution to the anisotropic
elliptic obstacle inclusion problem, problem (1), by employing the theory of non-
smooth analysis and a surjectivity theorem for multivalued mappings generated by
the sum of a maximal monotone multivalued operator and a bounded multivalued
pseudomonotone mapping. However, the second goal of the paper is to develop
the new sufficient conditions for determining the solvability of the nonlinear inverse
problem under consideration. To the best of our knowledge, this is the first work
that combines the weighted anisotropic (p, q)-Laplacian along with an obstacle con-
straint, a multivalued convection term (a reaction term depending on the gradient),
and multivalued mixed boundary conditions.

The paper is organized as follows. Section 2 recalls a preliminary material in-
cluding p-Laplacian eigenvalue problem with the Steklov boundary condition, the
necessary results in Lebesgue and Sobolev spaces with variable exponents, and a
surjectivity result for multivalued pseudomonotone operators. In Section 3, we first
impose the assumptions on the data of problem (1) and then examine the nonempti-
ness and compactness of the solution set to this problem. In Section 4, we present
a new existence result to the nonlinear inverse problem under consideration.

2. Mathematical prerequisites. In this section, we collect some the basic defi-
nitions and tools that will be needed in the sequel to derive the main results of the
paper.

Let Ω ⊂ RN be a bounded domain with Lipschitz boundary Γ := ∂Ω such that
Γ is decomposed into four mutually disjoint parts Γa, Γb, Γc and Γd with Γa having
positive Lebesgue measure, and let 1 ≤ δ < ∞. Let M(Ω) be the space of all
measurable functions u : Ω→ R, and we always identify two functions which differ
on a Lebesgue-null set. Let D be a nonempty subset of Ω. In what follows, we
denote by Lδ(D) := Lδ(D;R) and Lδ(D;RN ) the usual Lebesgue spaces endowed
with the norm ‖ · ‖δ,D, that is,

‖u‖δ,D :=

(∫
D

|u|δ dx

) 1
δ

for all u ∈ Lδ(D).

We set Lδ(D)+ := {u ∈ Lδ(D) | u(x) ≥ 0 for a. e.x ∈ D}. Moreover, W 1,δ(Ω)
stands for the Sobolev space endowed with the norm ‖ · ‖1,δ,Ω, namely,

‖u‖1,δ,Ω := ‖u‖δ,Ω + ‖∇u‖δ,Ω for all u ∈W 1,δ(Ω).

Now we review the r-Laplacian eigenvalue problem with Steklov boundary con-
dition given by

−∆ru = −|u|r−2u in Ω,

|u|r−2u · ν = λ|u|r−2u on Γ.
(3)

It is well-known that problem (3) has a smallest eigenvalue λS1,r > 0 that is isolated

and simple (see, for instance [30]). Also, it is not difficult to see that λS1,r > 0 can
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be characterized by

λS1,r = inf
u∈W 1,r(Ω)\{0}

∫
Ω

|∇u|r dx+

∫
Ω

|u|r dx∫
Γ

|u|r dΓ

. (4)

For the sake of convenience, in what follows, we denote by uS1,r the first eigenfunction

corresponding to the first eigenvalue λS1,r which, indeed, belongs to int
(
C1(Ω)+

)
,

where int
(
C1(Ω)+

)
stands for the interior of C1(Ω)+ := {u ∈ C1(Ω) | u(x) ≥

0 for all x ∈ Ω}. Without any loss of generality, we suppose that ‖uS1,r‖r,Γ = 1.

We introduce a subset C+(Ω) of C(Ω) defined by

C+(Ω) := {a ∈ C(Ω) | 1 < a(x) for all x ∈ Ω}.

For the sake of convenience, in the sequel, for any r ∈ C+(Ω), we define

r− := min
x∈Ω

r(x) and r+ := max
x∈Ω

r(x).

Let p ∈ C+(Ω). In what follows, we denote by p′ ∈ C+(Ω) the conjugate variable
exponent to p, namely,

1

p(x)
+

1

p′(x)
= 1 for all x ∈ Ω.

Also, we denote by s∗ and s∗ the critical Sobolev variable exponents to s ∈ C+(Ω)
in the domain and on the boundary, respectively, given by

s∗(x) =

{
Ns(x)
N−s(x) if s(x) < N,

+∞ if s(x) ≥ N,
for all x ∈ Ω, (5)

and

s∗ =

{
(N−1)s(x)
N−s(x) if s(x) < N,

+∞ if s(x) ≥ N
for all x ∈ Ω, (6)

respectively.
Let r ∈ C+(Ω), let us recall the variable exponent Lebesgue space Lr(·)(Ω) defined

by

Lr(·)(Ω) :=

{
u ∈M(Ω) |

∫
Ω

|u|r(x) dx < +∞
}
.

It is well-known that Lr(·)(Ω) is equipped with the Luxemburg norm given by

‖u‖r(·),Ω := inf

{
λ > 0 |

∫
Ω

(
|u|
λ

)r(x)

dx ≤ 1

}
,

to be a separable and reflexive Banach space, the dual space of Lr(·)(Ω) is Lr(·)
′
(Ω)

(i.e., Lr(·)(Ω)∗ = Lr(·)
′
(Ω)), and the following Hölder inequality holds:∫

Ω

|uv|dx ≤
[

1

r−
+

1

r′−

]
‖u‖r(·),Ω‖v‖r(·)′,Ω ≤ 2‖u‖r(·),Ω‖v‖r(·)′,Ω

for all u ∈ Lr(·)(Ω) and for all v ∈ Lr(·)′(Ω).
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Remark 2.1. It is not difficult to see that if r1, r2 ∈ C+(Ω) are such that r1(x) ≤
r2(x) for all x ∈ Ω, then we have the continuous embedding

Lr2(·)(Ω) ↪→ Lr1(·)(Ω).

For any r ∈ C+(Ω), we consider the modular function %r(·),Ω : Lr(·)(Ω)→ R+ :=
[0,+∞) given by

%r(·),Ω(u) :=

∫
Ω

|u|r(x) dx for all u ∈ Lr(·)(Ω). (7)

The following proposition delivers some important relations between the norm of
variable exponent Lebesgue space Lr(·)(Ω) and the modular function %r(·),Ω (defined
in (7)).

Proposition 2.2. If r ∈ C+(Ω) and u ∈ Lr(·)(Ω), then we have the following
assertions:

(i) ‖u‖r(·),Ω = λ ⇐⇒ %r(·),Ω
(
u
λ

)
= 1 with u 6= 0;

(ii) ‖u‖r(·),Ω < 1 (resp. = 1, > 1) ⇐⇒ %r(·),Ω(u) < 1 (resp. = 1, > 1);

(iii) ‖u‖r(·),Ω < 1 =⇒ ‖u‖r+r(·),Ω ≤ %r(·),Ω(u) ≤ ‖u‖r−r(·),Ω;

(iv) ‖u‖r(·),Ω > 1 =⇒ ‖u‖r−r(·),Ω ≤ %r(·),Ω(u) ≤ ‖u‖r+r(·),Ω;

(v) ‖u‖r(·),Ω → 0 ⇐⇒ %r(·),Ω(u)→ 0;
(vi) ‖u‖r(·),Ω → +∞ ⇐⇒ %r(·),Ω(u)→ +∞.

Let D be a nonempty subset of Ω. In what follows, we denote by ‖ · ‖r(·),D
and by the norm of variable exponent Lebesgue space Lr(·)(D). Set %r(·),D(u) =∫
D

|u|r(x) dx for u ∈ Lr(·)(D).

On the other hand, let us recall the corresponding variable exponent Sobolev
spaces, which could be formulated by the same way by applying the variable ex-
ponent Lebesgue spaces. Let r ∈ C+(Ω), we denote by W 1,r(·)(Ω) the variable
exponent Sobolev space given in

W 1,r(·)(Ω) :=
{
u ∈ Lr(·)(Ω) | |∇u| ∈ Lr(·)(Ω)

}
.

It can prove that variable exponent Sobolev space W 1,r(·)(Ω) is equipped with the
norm

‖u‖1,r(·),Ω := ‖u‖r(·),Ω + ‖∇u‖r(·),Ω for all u ∈W 1,r(·)(Ω)

to be a separable and reflexive Banach space, where ‖∇u‖r(·),Ω := ‖|∇u|‖r(·),Ω.

We also consider a subspace W
1,r(·)
0 (Ω) of W 1,r(·)(Ω) defined by W

1,r(·)
0 (Ω) =

C∞0 (Ω)
‖·‖1,r(·),Ω

. For space W
1,r(·)
0 (Ω), it is well-known that the Poincaré inequality

is valid

‖u‖r(·),Ω ≤ c0‖∇u‖r(·),Ω for all u ∈W 1,r(·)
0 (Ω)

for some c0 > 0. So, in what follows, we adopt the equivalent norm ‖ · ‖1,r(·),0,Ω to

W
1,r(·)
0 (Ω)

‖u‖1,r(·),0,Ω = ‖∇u‖r(·),Ω for all u ∈W 1,r(·)
0 (Ω).

Moreover, we introduce a subset V of W 1,p(·)(Ω) given by

V :=
{
u ∈W 1,p(·)(Ω) | u = 0 for a. e. x ∈ Γa

}
.
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Since Γa has a positive measure, it follows from Gossez [24, Corollary 5.8] that the
norm ‖·‖1,r(·),Ω on V is equivalent to the one, ‖·‖1,r(·),0,Ω and V endowed the norm

‖u‖V := ‖u‖1,r(·),0,Ω for all v ∈ V ,

becomes a reflexive Banach space.

In the sequel, we denote by C0, 1
| log t| (Ω) the set of all functions r : Ω → R that

are log-Hölder continuous, namely, there is a constant C > 0 satisfying

|r(x)− r(y)| ≤ C

|log |x− y||
for all x, y ∈ Ω with |x− y| < 1

2 .

The following proposition gives several important embeddings results, its detailed
proof can be founded in Diening-Harjulehto-Hästö-Ružička [13, Corollary 8.3.2] and
Fan [16, Proposition 2.1].

Proposition 2.3. The following statements hold

(i) if r ∈ C0, 1
| log t| (Ω) and s ∈ C(Ω) is such that

1 ≤ s(x) ≤ r∗(x) for all x ∈ Ω,

then the embedding is continuous

W 1,r(·)(Ω) ↪→ Ls(·)(Ω).

(ii) if s ∈ C+(Ω) is such that

1 ≤ s(x) < r∗(x) for all x ∈ Ω,

then the embedding is compact

W 1,r(·)(Ω) ↪→ Ls(·)(Ω).

Proposition 2.4. The following statements hold

(i) if r ∈ C+(Ω) ∩W 1,ς(Ω) for some ς > N and s ∈ C(Ω) is such that

1 ≤ s(x) ≤ r∗(x) for all x ∈ Ω,

then the embedding is continuous

W 1,r(·)(Ω) ↪→ Ls(·)(∂Ω).

(ii) if s ∈ C+(Ω) is such that

1 ≤ s(x) < r∗(x) for all x ∈ Ω,

then the embedding is compact

W 1,r(·)(Ω) ↪→ Ls(·)(∂Ω).

Remark 2.5. The embeddings in Propositions 2.3 and 2.4 remain valid, if we
replace the space W 1,r(·)(Ω) by V .

Throughout the paper the symbols “
w−→ ” and “→” stand for the weak and

the strong convergence, respectively, in various spaces. For any a ∈ L∞(Ω) with

infx∈Ω a(x) > 0, we introduce the nonlinear operator Ã : V → V ∗ given by

〈Ã(u), v〉 :=

∫
Ω

(
a(x)|∇u|p(x)−2∇u

)
· ∇v dx, (8)

for u, v ∈ V with 〈·, ·〉 being the duality pairing between V and its dual space
V ∗. Arguing as in the proof of Proposition 2.5 of Gasiński-Parpagerogiou [18]
or Rǎdulescu-Repovš [56] (p.40), we have the following result which states main

properties of Ã : V → V ∗.
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Proposition 2.6. The operator Ã defined by (8) is bounded, continuous, monotone
(hence maximal monotone) and of type (S+), that is,

un
w−→ u in V and lim sup

n→∞
〈Ãun, un − u〉 ≤ 0,

imply un → u in V .

We now recall some notions and results concerning nonlinear and nonsmooth
analysis as well as multivalued analysis. We review the notions of pseudomono-
tonicity and generalized pseudomonotonicity in the sense of Brezis for multivalued
operators (see e.g., Migórski et al. [47, Definition 3.57]) which will be useful in the
sequel.

Definition 2.7. Let X be a reflexive real Banach space. The operator A : X → 2X
∗

is called

(a) pseudomonotone (in the sense of Brezis) if the following conditions hold:
(i) the set A(u) is nonempty, bounded, closed and convex for all u ∈ X.

(ii) A is upper semicontinuous from each finite-dimensional subspace of X to
the weak topology on X∗.

(iii) if {un} ⊂ X with un
w−→ u in X and u∗n ∈ A(un) are such that

lim sup
n→∞

〈u∗n, un − u〉X∗×X ≤ 0,

then to each element v ∈ X, there exists u∗(v) ∈ A(u) with

〈u∗(v), u− v〉X∗×X ≤ lim inf
n→∞

〈u∗n, un − v〉X∗×X .

(b) generalized pseudomonotone (in the sense of Brezis) if the following holds:

Let {un} ⊂ X and {u∗n} ⊂ X∗ with u∗n ∈ A(un). If un
w−→ u in X and

u∗n
w−→ u∗ in X∗ and

lim sup
n→∞

〈u∗n, un − u〉X∗×X ≤ 0,

then the element u∗ lies in A(u) and

〈u∗n, un〉X∗×X → 〈u
∗, u〉X∗×X .

It is not difficult to see that every pseudomonotone operator is generalized pseu-
domonotone, see e.g. Migórski-Ochal-Sofonea [47, Proposition 3.58] or Denkowski et
al. [12, Proposition 1.3.65]. Also, under an additional assumption of boundedness,
we obtain the converse statement, see e.g. Migórski-Ochal-Sofonea [47, Proposition
3.58] or Denkowski et al. [12, Proposition 1.3.66].

Proposition 2.8. Let X be a reflexive real Banach space and assume that A : X →
2X
∗

satisfies the following conditions:

(i) for each u ∈ X we have that A(u) is a nonempty, closed and convex subset of
X∗.

(ii) A : X → 2X
∗

is bounded.

(iii) if un
w−→ u in X and u∗n

w−→ u∗ in X∗ with u∗n ∈ A(un) and if

lim sup
n→∞

〈u∗n, un − u〉X∗×X ≤ 0,

then u∗ ∈ A(u) and

〈u∗n, un〉X∗×X → 〈u
∗, u〉X∗×X .

Then the operator A : X → 2X
∗

is pseudomonotone.
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Additionally, we recall the following definition, see, for example, Papageorgiou-
Winkert [55, Definition 6.7.4].

Definition 2.9. Let (X, τ) be a Hausdorff topological space and let {An} ⊂ 2X be
a sequence of sets. We define the τ -Kuratowski lower limit of the sets An by

τ - lim inf
n→∞

An :=
{
x ∈ X | x = τ - lim

n→∞
xn, xn ∈ An for all n ≥ 1

}
,

and the τ -Kuratowski upper limit of the sets An

τ - lim sup
n→∞

An :=

{
x ∈ X | x = τ - lim

k→∞
xnk , xnk ∈ Ank , n1 < n2 < . . . < nk < . . .

}
.

If

A = τ - lim inf
n→∞

An = τ - lim sup
n→∞

An,

then A is called τ -Kuratowski limit of the sets An.

We conclude this section by recalling the following surjectivity theorem for mul-
tivalued mappings which is formulated by the sum of a maximal monotone multival-
ued operator and a bounded multivalued pseudomonotone mapping. The following
theorem was proved in Le [31, Theorem 2.2]. We use the notation BR(0) := {u ∈
X | ‖u‖X < R}.

Theorem 2.10. Let X be a real reflexive Banach space, let G : D(G) ⊂ X → 2X
∗

be
a maximal monotone operator, let F : D(F ) = X → 2X

∗
be a bounded multivalued

pseudomonotone operator and let L ∈ X∗. Assume that there exist u0 ∈ X and
R ≥ ‖u0‖X such that D(G) ∩BR(0) 6= ∅ and

〈ξ + η − L, u− u0〉X∗×X > 0 (9)

for all u ∈ D(G) with ‖u‖X = R, for all ξ ∈ G(u) and for all η ∈ F (u). Then the
inclusion

F (u) +G(u) 3 L

has a solution in D(G).

Remark 2.11. Indeed, it is obvious that if we can prove the following result

lim
‖u‖X→+∞,u∈D(G)

〈ξ + η, u− u0〉X∗×X
‖u‖X

= +∞, (10)

then the estimate condition (9) holds automatically for some R large enough.

3. Existence of solutions for anisotropic obstacle inclusion problems. The
section is concerned with the investigation of solvability of anisotropic obstacle in-
clusion problem, problem (1), with a multivalued reaction term which depends on
the gradient of unknown function, and complicated multivalued boundary condi-
tions which contain a multivalued monotone boundary condition and a generalized
multivalued boundary condition that is nonmonotone in general.

In order to obtain the existence of a nontrivial (weak) solution to problem (1),
we make the following assumptions on the data of problem (1).

H(f): The multivalued convection mapping f : Ω × R × RN → 2R has nonempty,
bounded, closed and convex values such that 0 6∈ f(x, 0, 0) for a. e. x ∈ Ω and
the following conditions are satisfied
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(i) the multivalued mapping x 7→ f(x, s, ξ) is measurable in Ω for all (s, ξ) ∈
R× RN ;

(ii) the multivalued mapping (s, ξ) 7→ f(x, s, ξ) is upper semicontinuous for
a. e.x ∈ Ω;

(iii) there exist αf ∈ L
r(·)
r(·)−1 (Ω)+ and af , bf ≥ 0 such that

|η| ≤ af |ξ|
p(x)(r(x)−1)

r(x) + bf |s|r(x)−1 + αf (x)

for all η ∈ f(x, s, ξ), all s ∈ R, all ξ ∈ RN and a. e.x ∈ Ω, where r ∈ C+(Ω)
is such that

r(x) < p∗(x) for all x ∈ Ω,

with the critical Sobolev variable exponent p∗ in the domain Ω given in
(5) for s = p;

(iv) there exist βf ∈ L1(Ω)+ and constants cf , df ≥ 0 satisfying

ηs ≤ cf |ξ|p(x) + df |s|p− + βf (x)

for all η ∈ f(x, s, ξ), all s ∈ R, all ξ ∈ RN and a. e.x ∈ Ω.

H(Φ): The function Φ: Ω→ [0,∞) is such that Φ ∈M(Ω).

H(ψ): The function ψ : Γc × R→ R is such that
(i) for all s ∈ R, x 7→ ψ(x, s) is measurable on Γc;

(ii) for a. e. x ∈ Γc, s 7→ ψ(x, s) is convex and lower semicontinous;
(iii) for each u ∈ Lp−(Γc), the function x 7→ ψ(x, u(x)) belongs to L1(Γc),

i.e.,

∫
Ω

ψ(x, u(x)) dΓ < +∞ for all u ∈ Lp−(Γc).

H(U): U : Γd × R→ 2R satisfies the following conditions:
(i) U(x, s) is a nonempty, bounded, closed and convex set in R for a. e.x ∈ Γd

and all s ∈ R;
(ii) x 7→ U(x, s) is measurable on Γd for all s ∈ R;
(iii) s 7→ U(x, s) is u.s.c. for a. e. x ∈ Γd;

(iv) there exist αU ∈ L
δ(·)
δ(·)−1 (Γd)+ and aU ≥ 0 such that

|U(x, s)| ≤ αU (x) + aU |s|δ(x)−1

for a. e.x ∈ Γd and all s ∈ R, where δ ∈ C+(Γd) is such that

δ(x) < p∗(x) for all x ∈ Γd

with the critical Sobolev variable exponent p∗ on the boundary Γ given
in (6);

(v) there exist βU ∈ L1(Γd)+ and bU ≥ 0 satisfying

ξs ≤ bU |s|p− + βU (x)

for all ξ ∈ U(x, s), all s ∈ R and a. e. x ∈ Γd.

H(0): a, b ∈ L∞(Ω) are such that infx∈Ω a(x) ≥ cΛ > 0 and b(x) ≥ 0 for a. e. x ∈ Ω,

and h ∈ L
p(·)
p(·)−1 (Γb).

H(1): The inequality holds

cΛ − cf − bU
(
λS1,p−

)−1
> 0,

where λS1,p− is the first eigenvalue of the p−-Laplacian with the Steklov bound-

ary condition (see (3) and (4)).
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Remark 3.1. A concrete example for function ψ is given as follows

ψ(x, s) = π(x)|s| for all s ∈ R and a. e. x ∈ Γc,

where π ∈ Lp
′
−(Γc)+. In this case, the convex subdifferential of ψ is formulated by

∂cψ(x, s) =

 π(x) if s > 0,
π(x)[−1, 1] if s = 0,
−π(x) if s < 0,

for a. e. x ∈ Γc.

Let j : Γd × R→ R be such that x 7→ j(x, s) is measurable on Γd for all s ∈ R and
s 7→ j(x, s) is locally Lipschitz continuous for a. e. x ∈ Γd. If the generalized Clarke
subdifferential s 7→ ∂j(x, s) of j fulfills the following conditions:

H(j)(i) there exist αj ∈ L
δ(·)
δ(·)−1 (Γd)+ and aj ≥ 0 such that

|ξ| ≤ αj(x) + aj |s|δ(x)−1

for all ξ ∈ ∂j(x, s), a. e.x ∈ Γd and all s ∈ R, where δ ∈ C+(Γd) is such that

δ(x) < p∗(x) for all x ∈ Γd,

H(j)(ii) there exist βj ∈ L1(Γd)+ and bj ≥ 0 satisfying

ξs ≤ bj |s|p− + βj(x)

for all ξ ∈ ∂j(x, s), all s ∈ R and a. e. x ∈ Γd,

then hypotheses H(U) hold automatically.
Moreover, it should be pointed out that if hypotheses H(f)(iv) and (U)(v) are

replaced by the following conditions, respectively:

H(f)(iv)’ there exist βf ∈ L1(Ω)+ and constants cf , df ≥ 0 satisfying

ηs ≤ cf |ξ|ϑ1(x) + df |s|p− + βf (x)

for all η ∈ f(x, s, ξ), all s ∈ R, all ξ ∈ RN and a. e.x ∈ Ω, where ϑ1 ∈ C+(Ω)
is such that ϑ1(x) < p(x) for all x ∈ Ω,

H(U)(v)’ there exist βU ∈ L1(Γd)+ and bU ≥ 0 satisfying

ξs ≤ bU |s|ϑ2(x) + βU (x)

for all ξ ∈ U(x, s), for all s ∈ R and for a. a. x ∈ Γd, where ϑ2 ∈ C+(Γd) is
such that ϑ2(x) < p(x) for all x ∈ Γd,

then hypothesis H(1) can be removed. Let ε > 0 be arbitrary. In fact, it follows
from the Young inequality that there exist constants c1(ε), c2(ε) > 0 satisfying

ηs ≤ cf |ξ|ϑ1(y) + df |s|p− + βf (y) ≤ ε|ξ|p(y) + c1(ε) + df |s|p− + βf (y),

ζs ≤ bU |s|ϑ2(x) + βU (x) ≤ ε|s|p(x) + c2(ε) + βU (x)

for all η ∈ f(y, s, ξ), all ζ ∈ U(x, s), all s ∈ R, all ξ ∈ RN , a. e. y ∈ Ω and a. e.

x ∈ Γd. Observe that if we take ε ∈
(

0, cΛ

1+
(
λS1,p−

)−1

)
, then the inequality in H(1)

is satisfied automatically.

Let us consider a subset K of V defined by

K := {v ∈ V | v ≤ Φ in Ω} . (11)
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Remark 3.2. Under the hypothesis H(Φ), we can see that the set K is a nonempty,
closed and convex subset of V . In fact, from H(Φ), we can see that Φ(x) ≥ 0 for
a. e. x ∈ Ω, so, it holds 0 ∈ K, that is, K 6= ∅. The convexity of K is obvious. Let
{un} ⊂ K be a sequence such that un → u in V as n→∞ for some u ∈ V . Keeping
in mind that the embedding of V to Lp−(Ω) is continuous, hence it has un → u in
Lp−(Ω) as n→∞. Passing to a subsequence if necessary, we have un(x)→ u(x) as
n → ∞ for a. e. x ∈ Ω. Therefore, we can see that Φ(x) ≥ limn→∞ un(x) = u(x)
for a. e. x ∈ Ω, thus, u ∈ K. This means that K is closed.

Next, we give the definition of weak solutions to problem (1).

Definition 3.3. A function u ∈ K is said to be a weak solution of problem

(1), if there exist functions η ∈ L
r(·)
r(·)−1 (Ω) and ξ ∈ L

δ(·)
δ(·)−1 (Γd) with η(x) ∈

f(x, u(x),∇u(x)) for a. e.x ∈ Ω, ξ(x) ∈ U(x, u(x)) for a. e.x ∈ Γd such that the
following inequality∫

Ω

(
a(x)|∇u|p(x)−2∇u+ b(x)|∇u|q(x)−2∇u

)
· ∇(v − u) dx

+ β

∫
Ω

|u|θ(x)−2u(v − u) dx+

∫
Γc

ψ(x, v) dΓ−
∫

Γc

ψ(x, u) dΓ

≥
∫

Ω

η(x)(v − u) dx+

∫
Γb

h(x)(v − u) dΓ +

∫
Γd

ξ(x)(v − u) dΓ (12)

is satisfied for all v ∈ K, where the set K is defined by (11).

We are now in a position to deliver the main result in the section by the follow-
ing theorem which reveals that for each triple of functions (a, b, h) ∈ L∞(Ω)+ ×
L∞(Ω)+ × L

p(·)
p(·)−1 (Γb) with a(x) > 0 and b(x) ≥ 0 for a. e. x ∈ Ω, the solution set

to problem (1), denoted by S(a, b, h), is nonempty, bounded, and weakly closed.

Theorem 3.4. Assume that H(f), H(0), H(1), H(ψ), H(U) and H(Φ) are satisfied.
Then, the solution set of problem (1) is nonempty, bounded, closed and weakly closed
(hence, weakly compact).

Proof. Existence. Assume that functions a, b ∈ L∞(Ω) and h ∈ L
p(·)
p(·)−1 (Γb) satisfy

condition H(0). For any u ∈ V fixed, by virtue of hypotheses H(f)(i) and (ii), we
can apply Yankov-von Neumann-Aumann selection theorem (see e.g. Denkowski et
al. [11, Theorem 4.3.7]) to conclude that there exists a measurable selection η : Ω→
R satisfying η(x) ∈ f(x, u(x),∇u(x)) for a. e. x ∈ Ω. On the other hand, from
hypothesis H(f)(iii) and the elementary inequality (|r1|+ |r2|)s ≤ 2s−1(|r1|s+ |r2|s)
for all r1, r2 ∈ R and s ≥ 1, implies∫

Ω

|η(x)|r(x)′ dx ≤
∫

Ω

(
af |∇u|

p(x)(r(x)−1)
r(x) + bf |u|r(x)−1 + αf (x)

)r(x)′

dx

≤
∫

Ω

(
22r(x)′−2|∇u|p(x) + 22r(x)′−2|u|r(x) + 2r(x)′−1αf (x)r(x)′

)
dx

≤M1

∫
Ω

(
|∇u|p(x) + |u|r(x) + αf (x)r(x)′

)
dx

≤M1

(
%p(·),Ω(|∇u|) + %r(·),Ω(u) + %r′(·),Ω(αf )

)
≤M1

(
max

{
‖u‖p−V , ‖u‖p+

V

}
+ max

{
‖u‖r−r(·),Ω, ‖u‖

r+
r(·),Ω

}
+ %r′(·),Ω(αf )

)
,
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where M1 := maxx∈Ω 22r(x)′−2. For any k ∈ C+(Ω) with k(x) < p∗(x) for all x ∈ Ω,
in the sequel, let Ck > 0 be such that

‖u‖k(·),Ω ≤ Ck‖u‖V for all u ∈ V .

Keeping in mind that the embedding of V to Lr(·)(Ω) is continuous (see hypothesis
H(f)(iii)), we have∫

Ω

|η(x)|r(x)′ dx (13)

≤M1

(
max

{
‖u‖p−V , ‖u‖p+

V

}
+ max

{
Cr−r ‖u‖

r−
V , Cr+r ‖u‖

r+
V

}
+ %r′(·),Ω(αf )

)
.

This turns out that η belongs to Lr(·)
′
(Ω). Under the above analysis, we are now

in a position to introduce the Nemytskij operator Nf : V ⊂ Lr(·)(Ω) → 2L
r(·)′ (Ω)

corresponding to the multivalued mapping f given by

Nf (u) :=
{
η ∈ Lr(·)

′
(Ω) | η(x) ∈ f(x, u(x),∇u(x)) for a. e.x ∈ Ω

}
for all u ∈ V .

Analogously, using hypotheses H(U)(i), (ii) and (iii) and Yankov-von Neumann-
Aumann selection theorem, for each u ∈ Lδ(·)(Γd), we are able to find a measurable
function ξ : Γd → R satisfying ξ(x) ∈ U(x, u(x)) for a. e. x ∈ Γd and

%δ(·)′,Γd(ξ) =

∫
Γd

|ξ(x)|δ(x)′ dΓ ≤
∫

Γd

(
αU (x) + aU |u|δ(x)−1

)δ(x)′

dΓ (14)

≤M2

∫
Γd

(
αU (x)δ(x)′ + |u|δ(x)

)
dΓ = M2

(
%δ(·)′,Γd(αU ) + %δ(·),Γd(u)

)
≤M2

(
%δ(·)′,Γd(αU ) + max

{
‖u‖δ−δ(·),Γd , ‖u‖

δ+
δ(·),Γd

})
for some M2 > 0. So, in what follows, we denote by NU : Lδ(·)(Γd)→ 2L

δ(·)′ (Γd) the
Nemytskij operator associated with the multivalued mapping U given by

NU (u) :=
{
η ∈ Lδ(·)

′
(Γd) | η(x) ∈ U(x, u(x)) for a. e.x ∈ Γd

}
for all u ∈ Lδ(·)(Γd). Denote by ι : V → Lr(·)(Ω) and ω : V → Lθ(·)(Ω) the em-
bedding operators of V to Lr(·)(Ω) and of V to Lθ(·)(Ω) with the adjoint operators

ι∗ : Lr(·)
′
(Ω)→ V ∗ and ω∗ : Lθ(·)

′
(Ω)→ V ∗. Also, let γ : V → Lδ(·)(Γd) be the trace

operator of V into Lδ(·)(Γd) with its adjoint operator γ∗ : Lδ(·)
′
(Γd)→ V ∗.

On the other hand, let us consider the indicator function IK : V → R := R ∪
{+∞} of K given by

IK(u) :=

{
0 if u ∈ K,
+∞ otherwise,

for all u ∈ V .

It is not difficult to observe that u ∈ K is a solution of problem (1), if and only if
it solves the following problem∫

Ω

(
a(x)|∇u|p(x)−2∇u+ b(x)|∇u|q(x)−2∇u

)
· ∇(v − u) dx

+ β

∫
Ω

|u|θ(x)−2u(v − u) dx+

∫
Γc

ψ(x, v) dΓ−
∫

Γc

ψ(x, u) dΓ + IK(v)− IK(u)

≥
∫

Ω

η(x)(v − u) dx+

∫
Γb

h(x)(v − u) dΓ +

∫
Γd

ξ(x)(v − u) dΓ (15)
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for all v ∈ V for some η ∈ L
r(·)
r(·)−1 (Ω) and ξ ∈ L

δ(·)
δ(·)−1 (Γd) with η(x) ∈ f(x, u(x),

∇u(x)) for a. e.x ∈ Ω and ξ(x) ∈ U(x, u(x)) for a. e.x ∈ Γd. In addition, we

consider the function ĨK : V → R := R ∪ {+∞} defined by

ĨK(u) := IK(u) +

∫
Γc

ψ(x, u) dΓ

for all u ∈ V . We assert that ĨK is a proper, convex, and lower semicontinuous
function. Because V is a subset of the effective domain of function V 3 u 7→∫

Γc
ψ(x, u) dΓ ∈ R (see hypothesis H(ψ)(iii)). So, it is sufficient to show that V 3

u 7→
∫

Γc
ψ(x, u) dΓ ∈ R is a proper, convex, and lower semicontinuous function. The

convexity of V 3 u 7→
∫

Γc
ψ(x, u) dΓ ∈ R is the direct consequence of hypothesis

H(ψ)(ii). Let sequence {un} ⊂ V be such that un → u in V as n → ∞ for some
u ∈ V . So, un → u in L1(Γc). Without any loss of generality, we may assume that
un(x)→ u(x) as n→∞ for a. e. x ∈ Γc. Employing Fatou lemma, we have

lim inf
n→∞

∫
Γc

ψ(x, un(x)) dΓ ≥
∫

Γc

inf
n→∞

ψ(x, un) dΓ ≥
∫

Γc

ψ(x, u) dΓ.

This reveals that V 3 u 7→
∫

Γc
ψ(x, u) dΓ ∈ R is l.s.c.

Whereas, we can use a standard argument to find that u ∈ K is a solution of the
inequality (15), if and only if, it solves the following inclusion problem

Au+ ω∗Bu− ι∗Nf (u)− γ∗Nf (u) + ∂cĨK(u) 3 h in V ∗, (16)

where the nonlinear functions A : V → V ∗ and B : Lθ(·)(Ω) → Lθ(·)
′
(Ω) are given

by

〈Au, v〉 :=

∫
Ω

(
a(x)|∇u|p(x)−2∇u+ b(x)|∇u|q(x)−2∇u

)
· ∇v dx for all u, v ∈ V ,

〈Bw, z〉Lθ(·)′ (Ω)×Lθ(·)(Ω) := β

∫
Ω

|w|θ(x)−2wz dx for all w, z ∈ Lθ(·)(Ω),

respectively.
Next, we are going to invoke Theorem 2.10 for examining the existence of a

nontrivial solution to problem (16). By the definition of A and Proposition 2.6,
we can see that A is a bounded map. From the definition of B, it is not difficult
to prove that B is also a bounded operator. Therefore, taking account into (13)
and (14), we conclude that F : V → 2V

∗
, F (u) = Au+ ω∗Bu− ι∗Nf (u)− γ∗Nf (u)

for all u ∈ V , is a bounded map thanks to the boundedness of ω, ι and γ. Using
the convexity of f and U , we can verify that for each u ∈ V the sets ι∗Nf (u) and
γ∗Nf (u) are both convex in V ∗. Indeed, we also can prove that F (u) is closed in
V ∗ for each u ∈ V . Moreover, we shall show that F is generalized pseudomonotone.
Let sequences {un} ⊂ V , {ζn} ⊂ V ∗ and (u, ζ) ∈ V × V ∗ be such that ζn ∈ F (un)
for each n ∈ N,

ζn
w−→ ζ, un

w−→ u in V , and lim supn→∞〈ζn, un − u〉 ≤ 0. (17)

Then, for every n ∈ N, there are ηn ∈ Nf (un) and ξn ∈ NU (un) such that

ζn = Aun + ω∗Bun − ι∗ηn − γ∗ξn for all n ∈ N.
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From (13) and (14), we can observe that sequences {ηn} ⊂ Lr(·)
′
(Ω) and {ξn} ⊂

Lδ(·)
′
(Γd) are both bounded independently of n. Passing to a subsequence if neces-

sary, we may assume that

ηn
w−→ η in Lr(·)

′
(Ω), and ξn

w−→ ξ in Lδ(·)
′
(Γd) as n→∞

for some (η, ξ) ∈ Lr(·)′(Ω)× Lδ(·)′(Γd). Keeping in mind that the embeddings of V
to Lθ(·)(Ω) and V to Lr(·)(Ω), and the trace operator γ : V → Lδ(·)(Γd) are compact
(see Propositions 2.3 and 2.4), then we have

lim
n→∞

〈ω∗Bun, un − u〉 = lim
n→∞

〈Bun, un − u〉Lθ′(·)(Ω)×Lθ(·)(Ω) = 0,

lim
n→∞

〈ι∗ηn, un − u〉 = lim
n→∞

〈ηn, ι(un − u)〉Lr(·)′ (Ω)×Lr(·)(Ω) = 0, (18)

lim
n→∞

〈γ∗ξn, un − u〉 = lim
n→∞

〈ξn, γ(un − u)〉Lδ(·)′ (Γd)×Lδ(·)(Γd) = 0.

Using (17) and (18), one has

0 ≥ lim sup
n→∞

〈ζn, un − u〉

≥ lim sup
n→∞

〈Aun, un − u〉+ lim inf
n→∞

〈ω∗Bun, un − u〉+ lim inf
n→∞

〈ι∗ηn, u− un〉

+ lim inf
n→∞

〈γ∗ξn, u− un〉

≥ lim sup
n→∞

〈Aun, un − u〉.

The latter together with the monotonicity of s 7→ b(x)|s|q(x)−2s deduces

0 ≥ lim sup
n→∞

〈Ãun, un − u〉.

Taking into account the inequality above and the fact that Ã is of type (S+) (see
Proposition 2.6), we obtain

un → u in V as n→∞.

Passing to a subsequence if necessary, we may suppose that

un(x)→ u(x) and ∇un(x)→ ∇u(x) as n→∞ for a. e. x ∈ Ω, (19)

due to the continuity of the embedding of V to W 1,p−(Ω). Employing Mazur’s
theorem, we are able to find a sequence {χn}n∈N of convex combinations of {ηn}n∈N
satisfying

χn → η in Lr(·)
′
(Ω) as n→∞.

This allows one to suppose that χn(x) → η(x) for a. e. x ∈ Ω (owing to the

continuity of the embedding of Lr(·)
′
(Ω) to Lr

′
−(Ω)). From the convexity of f , it

finds

χn(x) ∈ f(x, un(x),∇un(x)) for a. e. x ∈ Ω.

Because f is u.s.c. and has nonempty, bounded, closed and convex values (see
hypotheses H(f)(i) and (ii)). This allows us to invoke Denkowski et al. [11, Propo-
sition 4.1.9] to admit that the graph of (s, ξ) 7→ f(x, s, ξ) is closed for a. e. x ∈ Ω.
Besides, we use the convergences (19) and χn(x)→ η(x) for a. e. x ∈ Ω to confess

η(x) ∈ f(x, u(x),∇u(x)) for a. e. x ∈ Ω.
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This means that η ∈ Nf (u). Analogously, we could apply the same arguments to
infer that ξ ∈ NU (u). However, it follows from the continuity of A, B and the
convergence (17) that

ζn = Aun + ω∗Bun − ι∗ηn − γ∗ξn
w−→ Au+ ω∗Bu− ι∗η − γ∗ξ = ζ in V ∗. (20)

This means that ζ ∈ F (u). Note that

lim
n→∞

〈ζn, un〉

= lim
n→∞

〈Aun + ω∗Bun − ι∗ηn − γ∗ξn, un〉

= lim
n→∞

〈Aun + ω∗Bun, un〉 − lim
n→∞

〈ηn, ιun〉Lr(·)′ (Ω)×Lr(·)(Ω)

− lim
n→∞

〈ξn, γun〉Lδ(·)′ (Γd)×Lδ(·)(Γd)

= 〈Au+ ω∗Bu− ι∗η − γ∗ξ, u〉
= 〈ζ, u〉,

we use the equality above and (20) to profess that F is a generalized pseudomono-
tone operator. We are now in a position to employ Proposition 2.8 to admit that
F is pseudomonotone.

Furthermore, we show that F is coercive. For any u ∈ V and ζ ∈ F (u), we have

〈ζ, u〉 (21)

= 〈Au, u〉+ 〈Bu, u〉Lθ(·)′ (Ω)×Lθ(·)(Ω) − 〈η, u〉Lr(·)′ (Ω)×Lr(·)(Ω)

− 〈ξ, u〉Lδ(·)′ (Γd)×Lδ(·)(Γd)

≥
∫

Ω

cΛ|∇u|p(x) + b(x)|∇u|q(x) dx+ β

∫
Ω

|u|θ(x) dx−
∫

Ω

η(x)u(x) dx

−
∫

Γd

ξ(x)u(x) dΓ

≥ cΛ%p(·),Ω(|∇u|) + β%θ(·),Ω(u)−
∫

Ω

cf |∇u|p(x) + df |u|p− + βf (x) dx

−
∫

Γd

bU |u|p− + βU (x) dΓ

≥ (cΛ − cf ) %p(·),Ω(|∇u|) + β%θ(·),Ω(u)− df‖u‖p−p−,Ω − ‖βf‖1,Ω
− bU‖u‖p−p−,Γd − ‖βU‖1,Γd ,

where η ∈ Nf (u) and ξ ∈ NU (u) are such that ζ = Au + ω∗Bu − ι∗η − γ∗ξ.
Employing the variational characteristic of the smallest eigenvalue λS1,p− > 0 to

Steklov eigenvalue problem for the p−-Laplacian (see (4)), we have

bU‖u‖p−p−,Γd ≤ bU
(
λS1,p−

)−1 (
‖∇u‖p−p−,Ω + ‖u‖p−p−,Ω

)
. (22)

Inserting (22) into (21), it yields

〈ζ, u〉 ≥ (cΛ − cf ) %p(·),Ω(|∇u|) + β%θ(·),Ω(u)− df‖u‖p−p−,Ω − ‖βf‖1,Ω

− bU
(
λS1,p−

)−1 (
‖∇u‖p−p−,Ω + ‖u‖p−p−,Ω

)
− ‖βU‖1,Γd

= (cΛ − cf ) %p(·),Ω(|∇u|) + β%θ(·),Ω(u)−
(
df + bU

(
λS1,p−

)−1
)
‖u‖p−p−,Ω



INVERSE PROBLEMS FOR ANISOTROPIC OBSTACLE PROBLEMS 19

− ‖βf‖1,Ω − bU
(
λS1,p−

)−1

‖∇u‖p−p−,Ω − ‖βU‖1,Γd

≥
(
cΛ − cf − bU

(
λS1,p−

)−1
)
%p(·),Ω(|∇u|) + β%θ(·),Ω(u)− ‖βf‖1,Ω −M3

− ‖βU‖1,Γd −
(
df + bU

(
λS1,p−

)−1
)
‖u‖p−p−,Ω

for some M3 >0, where the last inequality is obtained via using Young inequality,
namely,

‖∇u‖p−p−,Ω =

∫
Ω

|∇u|p− dx

=

∫
{x∈Ω | p(x)=p−}

|∇u|p(x) dx+

∫
{x∈Ω | p(x)>p−}

|∇u|p− dx

≤
∫
{x∈Ω | p(x)=p−}

|∇u|p(x) dx+

∫
{x∈Ω | p(x)>p−}

|∇u|p(x) dx+M4

=

∫
Ω

|∇u|p(x) dx+M4 = %p(·),Ω(|∇u|) +M4

for some M4 > 0. Let ε = β

2

((
λS1,p−

)−1
bU+df

) . Employing Young inequality again,

we get

‖u‖p−p−,Ω =

∫
Ω

|u|p− dx ≤ ε
∫

Ω

|u|θ(x) dx+M5 = ε%θ(·),Ω(u) +M5

for some M5 > 0. From the last three inequalities, we have

〈ζ, u〉 (23)

≥
(
cΛ − cf − bU

(
λS1,p−

)−1
)
%p(·),Ω(|∇u|) +

β

2
%θ(·),Ω(u)− ‖βf‖1,Ω

−M6 − ‖βU‖1,Γd

≥
(
cΛ − cf − bU

(
λS1,p−

)−1
)

min
{
‖u‖p−V , ‖u‖p+

V

}
− ‖βf‖1,Ω −M6

− ‖βU‖1,Γd +
β

2
min

{
‖u‖θ−θ(·),Ω, ‖u‖

θ+
θ(·),Ω

}
with some M6 > 0. This means that F is coercive. Recall that ĨK is a proper,

convex, and lower semicontinuous function, then ĨK is bounded from below by an
affine function (see, e.g., [4, Proposition 1.10]), thus, there exist constants αK , βK ≥
0 such that

ĨK(v) ≥ −αK‖v‖V − βK for all v ∈ K. (24)

Notice that 0 ∈ K, by virtue of definition of convex subgradient, for any ς ∈ ∂cĨK(u)
we have

〈ς, u〉 =− 〈ς,−u〉 ≥ ĨK(u)− ĨK(0) = ĨK(u)−
∫

Γc

ψ(x, 0) dΓ

≥− αK‖u‖V − βK −
∫

Γc

ψ(x, 0) dΓ. (25)
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Combining (23) and (25), it has

lim
‖u‖V→∞,u∈K

〈ζ + ς, u〉
‖u‖V

= +∞.

This indicates that the result (10) is valid with u0 = 0.
Therefore, all conditions of Theorem 2.10 are verified. Using this theorem, we

conclude that there exists a function u ∈ K such that inclusion (16) holds true,
which is also a solution of problem (1). However, the condition 0 6∈ f(x, 0, 0) for
a. e. x ∈ Ω points out that u ∈ K is a nontrivial solution of problem (1), thus,
S(a, b, h) 6= ∅.
Boundedness. Arguing by contradiction, we suppose that the solution set S(a, b, h)
is unbounded. Therefore, we are able to find a sequence {un} ⊂ S(a, b, h) such that

‖un‖V → +∞ as n→∞.
Employing the same arguments as in the proof of the first part, we take v = 0 into
(12) with u = un and get the following estimates(

cΛ − cf − bU
(
λS1,p−

)−1
)

min{‖un‖p−V , ‖un‖p+

V }+
β

2
min{‖un‖θ−θ(·),Ω, ‖u‖

θ+
θ(·),Ω}

≤ ‖βf‖1,Ω +M7 + ‖βU‖1,Γd +

∫
Γc

ψ(x, 0) dΓ +M8‖h‖p(·)′,Γb‖un‖V + αK‖un‖V

+ βK (26)

for all n ∈ N, for some M7,M8 > 0. This, obviously, leads to a contradiction.
Therefore, the solution set S(a, b, h) is bounded in V .

Closedness. Let a sequence {un} ⊂ S(a, b, h) be such that

un
w−→ u in V as n→∞

for some u ∈ K. Hence, we could take ηn ∈ Nf (un) and ξn ∈ NU (un) such that∫
Ω

(
a(x)|∇un|p(x)−2∇un + b(x)|∇un|q(x)−2∇un

)
· ∇(v − un) dx

+ β

∫
Ω

|un|θ(x)−2un(v − un) dx+

∫
Γc

ψ(x, v) dΓ−
∫

Γc

ψ(x, un) dΓ

≥
∫

Ω

ηn(x)(v − un) dx+

∫
Γb

h(x)(v − un) dΓ +

∫
Γd

ξn(x)(v − un) dΓ (27)

for all v ∈ K. The boundedness of operators Nf and NU (see (13) and (14)) allows

one to suppose that there are functions η ∈ Lr(·)′(Ω) and ξ ∈ Lδ(·)′(Γd) satisfying

ηn
w−→ η in Lr(·)

′
(Ω) and ξn

w−→ ξ in Lδ(·)
′
(Γd) as n→∞.

Taking v = u in (27) and passing to the upper limit as n → ∞ in the resulting
inequality, we get

lim sup
n→∞

〈Aun, un − u〉

≤ lim sup
n→∞

〈Bun, u− un〉Lθ(·)′ (Ω)×Lθ(·)(Ω) +

∫
Γc

ψ(x, udΓ− lim inf
n→∞

∫
Γc

ψ(x, un) dΓ

− lim
n→∞

∫
Ω

ηn(u− un) dx− lim
n→∞

∫
Γb

h(u− un) dΓ− lim
n→∞

∫
Γd

ξn(u− un) dΓ

≤0.
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We apply Proposition 2.6 to obtain that un → u in V as n→∞. Using the upper
semicontinuity of f and U , we obtain η ∈ Nf (u) and ξ ∈ NU (u). Passing to the
upper limit as n → ∞ in inequality (27), we have u ∈ S(a, b, h). This means that
S(a, b, h) is weakly closed. This completes the proof.

4. Inverse problems for anisotropic obstacle inclusion systems. The cur-
rent section is devoted to consider a nonlinear inverse problem of identification of
parameters (in the domain) and boundary data in the problem (1), and to develop
a general framework for solving the nonlinear inverse problem. More precisely, we
shall introduce a highly nonlinear regularized optimization problem, Problem 4 be-
low, to identify two discontinuous parameters (a, b), which control the weighted
anisotropic (p, q)-Laplacian, and a discontinuous boundary data h on the part Γd.

For any g ∈ L1(Ω) fixed, we denote by TV (g) the total variation of function g
given by

TV (g) := sup
ϕ∈C1(Ω;RN )

{∫
Ω

g(x) divϕ(x) dx | |ϕ(x)| ≤ 1 for all x ∈ Ω

}
.

In what follows, we denote by BV (Ω) the function space of all integrable functions
with bounded variation, that is,

BV (Ω) := {g ∈ L1(Ω) | TV (g) < +∞}.

It is well-known that the function space BV (Ω) endowed with the norm

‖g‖BV (Ω) := ‖g‖1,Ω + TV (g) for all g ∈ BV (Ω)

becomes a Banach space. Let H be a nonempty, closed and convex subset in
Lp(·)

′
(Γb), and consider the set of admissible parameters Λ for weighted anisotropic

(p, q)-Laplacian defined by

Λ := {a ∈ L∞(Ω) ∩BV (Ω) | 0 < cΛ ≤ a(x) ≤ dΛ for a. e. x ∈ Ω} , (28)

where cΛ and dλ are positive constants. It is obvious to see that Λ is a closed, and
convex subset of BV (Ω) and L∞(Ω).

Let κ, τ and µ > 0 be given regularization coefficients and z ∈ Lp(·)(Ω;RN )
the known observed or measured data. We consider the following inverse problem
which is modelled by a highly nonlinear regularized optimal control system:

Problem. Find a∗, b∗ ∈ Λ and h∗ ∈ H such that

inf
a,b∈Λ, h∈H

L(a, b, h) = L(a∗, b∗, h∗), (29)

where the cost functional L : Λ2 ×H → R is formulated by

L(a, b, h) := min
u∈S(a,b,h)

∫
Ω

|∇u− z|p(x) dx+ κTV (a) + τ TV (b)

+ µ

∫
Γb

|h|p(x)′ dΓ, (30)

and S(a, b, h) is the solution set of problem (1) corresponding a, b ∈ L∞(Ω) and

h ∈ Lp(·)′(Γb).

The main result of the section is provided by the following theorem, which
presents the sufficient conditions for determining the existence of an optimal so-
lution to nonlinear regularized optimization problem, Problem 4.
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Theorem 4.1. If the hypotheses of Theorem 3.4 are fulfilled, then the solution set
of Problem 4 is nonempty and weakly compact.

Proof. The proof of the theorem is divided into four steps.

Step 1. For each (a, b, h) ∈ Λ2 ×H fixed, the cost functional L defined by (30) is
well-defined.

Let (a, b, h) ∈ Λ2 ×H be fixed. To this end, we only prove that the minimizer
of infu∈S(a,b,h)

∫
Ω
|∇u − z|p(x) dx is reachable. Assume that {un} ⊂ S(a, b, h) is a

minimizing sequence of the problem infu∈S(a,b,h)

∫
Ω
|∇u− z|p(x) dx. Then,

inf
u∈S(a,b,h)

∫
Ω

|∇u− z|p(x) dx = lim inf
n→∞

∫
Ω

|∇un − z|p(x) dx.

From Theorem 3.4, we can see that the set S(a, b, h) is bounded in V , so does
{un}. Therefore, there exists a subsequence of {un}, denoted still in the same

way, such that un
w−→ u∗ in V as n → ∞ for some u∗ ∈ V . This together

with the weak closedness of S(a, b, h) implies that u∗ ∈ S(a, b, h). Note that the
function Lp(·)(Ω) 3 u 7→

∫
Ω
|u|p(x) dx ∈ R is convex and continuous, so, it is weakly

semicontinuous. Hence, one has

inf
u∈S(a,b,h)

∫
Ω

|∇u− z|p(x) dx = lim inf
n→∞

∫
Ω

|∇un − z|p(x) dx

≥
∫

Ω

|∇u∗ − z|p(x) dx ≥ inf
u∈S(a,b,h)

∫
Ω

|∇u− z|p(x) dx.

This indicates that for every (a, b, h) ∈ Λ2 × H we are able to find a function
u∗ ∈ S(a, b, h) satisfying

inf
u∈S(a,b,h)

∫
Ω

|∇u− z|p(x) dx =

∫
Ω

|∇u∗ − z|p(x) dx,

and hence, L(a, b, h) is well defined.
Let (a, b, h) ∈ Λ2 ×H and u ∈ S(a, b, h) be arbitrary. A simple calculation (see

e.g. (26)) gives(
cΛ − cf − bU

(
λS1,p−

)−1
)

min
{
‖u‖p−V , ‖u‖p+

V

}
+
β

2
min

{
‖u‖θ−θ(·),Ω, ‖u‖

θ+
θ(·),Ω

}
≤ ‖βf‖1,Ω +M9 + ‖βU‖1,Γd +

∫
Γc

ψ(x, 0) dΓ + αK‖u‖V +M10‖h‖p(·)′,Γb‖u‖V

+ βK

for some M9,M10 > 0. We infer that S maps bounded sets of BV (Ω)×BV (Ω)×H
into bounded sets of K.

Step 2. If sequence {(an, bn, hn)} ⊂ Λ2 ×H is such that {an}, {bn} are bounded

in BV (Ω), and (an, bn) → (a, b) in L1(Ω) × L1(Ω) and hn
w−→ h in H for some

(a, b, h) ∈ L1(Ω)2 ×H, then (a, b) ∈ Λ2 and one has

∅ 6= w– lim sup
n→∞

S(an, bn, hn) ⊂ S(a, b, h). (31)

Let sequence {(an, bn, hn)} ⊂ Λ2 × H be such that (an, bn) → (a, b) in L1(Ω)2

and hn
w−→ h in H for some (a, b, h) ∈ L1(Ω)2 × H. Hence, by the properties

of Λ (that is, Λ is nonempty, closed and convex in BV (Ω) and L1(Ω)), one has
(a, b, h) ∈ Λ2 × H. By virtue of boundedness of {(an, bn)} ⊂ BV (Ω) × BV (Ω)
and the map S, we obtain that ∪n≥1S(an, bn, hn) is bounded in K. The latter
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together with the reflexivity of V concludes that the set w– lim supn→∞ S(an, bn, hn)
is nonempty.

Let u ∈ w– lim supn→∞ S(an, bn, hn) be arbitrary. Passing to a subsequence if
necessary, there exists a sequence {un} ⊂ K satisfying

un ∈ S(an, bn, hn) and un
w−→ u in V as n→∞.

Hence, for each n ∈ N, we are able to find ηn ∈ Nf (un) and ξn ∈ NU (un) such that∫
Ω

(
an(x)|∇un|p(x)−2∇un + bn(x)|∇un|q(x)−2∇un

)
· ∇(v − un) dx

+ β

∫
Ω

|un|θ(x)−2un(v − un) dx+

∫
Γc

ψ(x, v) dΓ−
∫

Γc

ψ(x, un) dΓ

≥
∫

Ω

ηn(x)(v − un) dx+

∫
Γb

hn(x)(v − un) dΓ +

∫
Γd

ξn(x)(v − un) dΓ (32)

for all v ∈ K. Letting v = u for (32), we obtain∫
Ω

(
an(x)|∇un|p(x)−2∇un + bn(x)|∇un|q(x)−2∇un

)
· ∇(un − u) dx

≤ β
∫

Ω

|un|θ(x)−2un(u− un) dx+

∫
Γc

ψ(x, u) dΓ−
∫

Γc

ψ(x, un) dΓ

−
∫

Ω

ηn(x)(u− un) dx−
∫

Γb

hn(x)(u− un) dΓ−
∫

Γd

ξn(x)(u− un) dΓ. (33)

By hypotheses H(f)(iii) and H(U)(iv), we can see that sequences {ηn} and {ξn}
are bounded in Lr(·)

′
(Ω) and Lδ(·)

′
(Γd), respectively, due to (13) and (14). By the

compactness of the embeddings V to Lθ(·)(Ω), Lr(·)(Ω) and of the trace of V to
Lδ(·)(Γd) (see Propositions 2.3 and 2.4), it finds

lim
n→∞

β

∫
Ω

|un|θ(x)−2un(un − u) dx = 0, lim
n→∞

∫
Ω

ηn(x)(u− un) dx = 0,

lim
n→∞

∫
Γc

hn(x)(u− un) dΓ = 0, lim
n→∞

∫
Γd

ξn(x)(u− un) dΓ = 0.
(34)

However, the weak lower semicontinuity of V 3 u 7→
∫

Γc
ψ(x, u) dΓ ∈ R deduces∫

Γc

ψ(x, u) dΓ− lim inf
n→∞

∫
Γc

ψ(x, un) dΓ ≤ 0. (35)

Using the Hölder inequality, we have∫
Ω

(
(an(x)− a(x))|∇u|p(x)−2∇u

)
· ∇(un − u) dx

≥ −
∫

Ω

|an(x)− a(x)||∇u|p(x)−1|∇(un − u)|dx

≥ −
[

1

p−
+

1

p′−

]
‖|an(·)− a(·)||∇u|‖ p(·)

p(·)−1
,Ω
‖un − u‖V

≥ −
[

1

p−
+

1

p′−

]
‖un − u‖V ×min

{(∫
Ω

|an(x)− a(x)|
p(x)
p(x)−1 |∇u|p(x) dx

)( p
p−1 )−

,

(∫
Ω

|an(x)− a(x)|
p(x)
p(x)−1 |∇u|p(x) dx

)( p
p−1 )

+
}
,
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where the last inequality is obtained by using Proposition 2.2. Since an → a in
L1(Ω), so, we may assume that an(x) → a(x) for a. e. x ∈ Ω. Note {un} ⊂ V
and {an} ⊂ L∞(Ω) are bounded. This allows us to invoke Lebesgue dominated
convergence theorem to get

lim
n→∞

(∫
Ω

|an(x)− a(x)|
p(x)
p(x)−1 |∇u|p(x) dx

)( p
p−1 )±

×
[

1

p−
+

1

p′−

]
‖un − u‖V = 0.

Hence, we have

lim
n→∞

∫
Ω

(
(an(x)− a(x))|∇u|p(x)−2∇u

)
· ∇(un − u) dx ≥ 0. (36)

Keeping in mind that un
w−→ u in V as n→∞, so, we have

lim
n→∞

∫
Ω

(
a(x)|∇u|p(x)−2∇u+ b(x)|∇u|q(x)−2∇u

)
· ∇(u− un) dx

= lim
n→∞

〈Au, un − u〉 = 0. (37)

We use the monotonicity of s 7→ |s|q(x)−2s to find∫
Ω

(
an(x)|∇un|p(x)−2∇un + bn(x)|∇un|q(x)−2∇un

)
· ∇(un − u) dx

=

∫
Ω

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx

+

∫
Ω

(
(an(x)− a(x))|∇u|p(x)−2∇u

)
· ∇(un − u) dx

+

∫
Ω

(
a(x)|∇u|p(x)−2∇u

)
· ∇(un − u) dx

+

∫
Ω

(
bn(x)|∇un|q(x)−2∇un

)
· ∇(un − u) dx

≥
∫

Ω

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx

+

∫
Ω

(
(an(x)− a(x))|∇u|p(x)−2∇u

)
· ∇(un − u) dx

+

∫
Ω

(
a(x)|∇u|p(x)−2∇u

)
· ∇(un − u) dx

+

∫
Ω

(
bn(x)|∇u|q(x)−2∇u

)
· ∇(un − u) dx

≥
∫

Ω

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx

+

∫
Ω

(
(an(x)− a(x))|∇u|p(x)−2∇u

)
· ∇(un − u) dx

+

∫
Ω

(
a(x)|∇u|p(x)−2∇u

)
· ∇(un − u) dx

+

∫
Ω

(
(bn(x)− b(x))|∇u|q(x)−2∇u

)
· ∇(un − u) dx

+

∫
Ω

(
b(x)|∇u|q(x)−2∇u

)
· ∇(un − u) dx. (38)
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Passing to the upper limit as n→∞ for (33) and using inequalities (34), (35), (36),
(37) and (38), we conclude that

lim sup
n→∞

∫
Ω

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx ≤ 0.

The latter combined with the nonnegativity of (|s|p(x)−2s− |t|p(x)−2t)(s− t) for all
s, t ∈ RN implies

lim
n→∞

∫
Ω

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx = 0. (39)

On the other hand, it follows from Simom [58, formula (2.2)], that the following
inequalities hold

ct|ξ − η|t ≤
(
|ξ|t−2ξ − |η|t−2η

)
· (ξ − η), if t ≥ 2, (40)

Ct|ξ − η|2 ≤
(
|ξ|t−2ξ − |η|t−2η

)
· (ξ − η)

(
|ξ|t + |η|t

) 2−t
t , if 1 ≤ t < 2, (41)

for all ξ, η ∈ RN , where the constants ct, Ct > 0 are independent of ξ, η ∈ RN
given by

ct = 5
2−t

2 and Ct = (t− 1)2
(t−1)(t−2)

t .

Set cp := minx∈Ω 5
2−p(x)

2 and Cp := minx∈Ω(p(x)−1)2
(p(x)−1)(p(x)−2)

p(x) . For p ∈ C+(Ω),
it is obvious that the domain Ω could be decomposed into two mutually disjoint
parts Ωp≥2 and Ωp<2, i.e., Ω = Ωp≥2 ∪Ωp<2 and Ωp≥2 ∩Ωp<2 = ∅, where Ωp≥2 and
Ωp<2 are given by

Ωp≥2 := {x ∈ Ω | p(x) ≥ 2} and Ωp<2 := {x ∈ Ω | p(x) < 2}.

In the part Ωp≥2, we can use (40) to get∫
Ωp≥2

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx

≥
∫

Ωp≥2

an(x)cp(x)|∇un −∇u|p(x) dx

≥ cΛcp%p(·),Ωp≥2
(|∇un −∇u|). (42)

Set Ωn = {x ∈ Ω | ∇un 6= 0} ∪ {x ∈ Ω | ∇u 6= 0} and Σn = {x ∈ Ω | ∇u = ∇un =
0}. So, it is valid that Ω = Ωn∪Σn and Ωn∩Σn = ∅. Using the absolute continuity
of the Lebesgue integral, it gives∫

Σn

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx = 0.

Hence, ∫
Ω

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx

=

∫
Ωn

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx

+

∫
Σn

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx

=

∫
Ωn

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx.
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Regarding the part Ωp<2, it follows from (41) that∫
Ωp<2

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx

=

∫
Ωn∩Ωp<2

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u)×

(
|∇un|p(x) + |∇un|p(x)

) 2−p(x)
p(x)(

|∇un|p(x) + |∇un|p(x)
) 2−p(x)

p(x)

dx

≥
∫

Ωn∩Ωp<2

Cp(x)an(x) |∇un −∇u|2
(
|∇un|p(x) + |∇un|p(x)

) p(x)−2
p(x)

dx

≥ Cp
∫

Ωn∩Ωp<2

an(x) |∇un −∇u|2
(
|∇un|p(x) + |∇un|p(x)

) p(x)−2
p(x)

dx

≥ cΛCp
∫

Ωn∩Ωp<2

|∇un −∇u|2
(
|∇un|p(x) + |∇un|p(x)

) p(x)−2
p(x)

dx.

Since 1 < p(x) < 2, we have 2
p(x) > 1. By the Hölder inequality, we obtain∫

Ωn∩Ωp<2

|∇un −∇u|p(x)
dx =

∫
Ωn∩Ωp<2

|∇un −∇u|2×
p(x)

2 dx

=

∫
Ωn∩Ωp<2

(
|∇un −∇u|2

(
|∇un|p(x) + |∇u|p(x)

) p(x)−2
p(x)

) p(x)
2

×

(
|∇un|p(x) + |∇u|p(x)

) 2−p(x)
2

dx

≤

 1(
2
p

)
−

+
1(

2
2−p

)
−

 ‖l1‖ 2
p(·) ,Ωn∩Ωp<2

‖l2‖ 2
2−p(·) ,Ωn∩Ωp<2

,

where functions l1, l2 are given by

l1(x) =

(
|∇un −∇u|2

(
|∇un|p(x) + |∇u|p(x)

) p(x)−2
p(x)

) p(x)
2

,

l2(x) =
(
|∇un|p(x) + |∇u|p(x)

) 2−p(x)
2

.

Comparing between the norm and the modular, see Proposition 2.2, it yields

‖l1‖ 2
p(·) ,Ωn∩Ωp<2

‖l2‖ 2
2−p(·) ,Ωn∩Ωp<2

≤ max


(∫

Ωn∩Ωp<2

l1(x)
2

p(x) dx

) 1

( 2
p )−

,

(∫
Ωn∩Ωp<2

l1(x)
2

p(x) dx

) 1

( 2
p )

+

×
max


(∫

Ωn∩Ωp<2

l2(x)
2

2−p(x) dx

) 1

( 2
2−p )−

,

(∫
Ωn∩Ωp<2

l2(x)
2

2−p(x) dx

) 1

( 2
2−p )

+

 .
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From the last two inequalities, it has∫
Ωn∩Ωp<2

|∇un −∇u|p(x)
dx

≤

 1(
2
p

)
−

+
1(

2
2−p

)
−

max


(∫

Ωn∩Ωp<2

l1(x)
2

p(x) dx

) 1

( 2
p )−

,

(∫
Ωn∩Ωp<2

l1(x)
2

p(x) dx

) 1

( 2
p )

+

×max


(∫

Ωn∩Ωp<2

l2(x)
2

2−p(x) dx

) 1

( 2
2−p )−

,

(∫
Ωn∩Ωp<2

l2(x)
2

2−p(x) dx

) 1

( 2
2−p )

+

 ,

that is, 1(
2
p

)
−

+
1(

2
2−p

)
−


−1 ∫

Ωn∩Ωp<2

|∇un −∇u|p(x) dx×

max


(∫

Ωn∩Ωp<2

l2(x)
2

2−p(x) dx

) 1

( 2
2−p )− ,

(∫
Ωn∩Ωp<2

l2(x)
2

2−p(x) dx

) 1

( 2
2−p )+


−1

≤ max


(∫

Ωn∩Ωp<2

l1(x)
2

p(x) dx

) 1

( 2
p )− ,

(∫
Ωn∩Ωp<2

l1(x)
2

p(x) dx

) 1

( 2
p )+

 .

Let M0 > 0 be such that

M0

≥ max


(∫

Ωn∩Ωp<2

l2(x)
2

2−p(x) dx

) 1

( 2
2−p )−

,

(∫
Ωn∩Ωp<2

l2(x)
2

2−p(x) dx

) 1

( 2
2−p )

+


×

 1(
2
p

)
−

+
1(

2
2−p

)
−


for all n ∈ N, thanks to the boundedness of {un}. It follows from (39) that the limit

superior of
∫

Ω
l1(x)

2
p(x) dx is strictly smaller than one. Therefore, we have

max


(∫

Ωn∩Ωp<2

l1(x)
2

p(x) dx

) 1

( 2
p )−

,

(∫
Ωn∩Ωp<2

l1(x)
2

p(x) dx

) 1

( 2
p )

+


=

(∫
Ωn∩Ωp<2

l1(x)
2

p(x) dx

) p−
2

.

Hence, it has∫
Ωp<2

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx
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≥cΛCp
∫

Ωn∩Ωp<2

|∇un −∇u|2
(
|∇un|p(x) + |∇un|p(x)

) p(x)−2
p(x)

dx

≥cΛCp

(
M
−1

0

∫
Ωn∩Ωp<2

|∇un −∇u|p(x)
dx

) p−
2

=cΛCp

(
M
−1

0

∫
Ωp<2

|∇un −∇u|p(x)
dx

) p−
2

.

Inserting the inequality above and (42) into (39), it gives

%p(·),Ω(|∇un −∇u|) =

∫
Ω

|∇un −∇u|p(x)
dx→ 0.

The latter combined with Proposition 2.2 implies

‖un − u‖V → 0, i.e., un → u in V as n→∞.

Additionally, the boundedness of {ηn} and {ξn}, and the reflexivity of Lr(·)
′
(Ω)

and Lδ(·)
′
(Γd) point out that there exist subsequences of {ηn} and {ξn}, denoted

still in the same way, and functions η ∈ Lr(·)′(Ω) and ξ ∈ Lδ(·)′(Γd) satisfying

ηn
w−→ η in Lr(·)

′
(Ω) and ξn

w−→ ξ in Lδ(·)
′
(Γd) as n→∞.

Since un → u in V as n→∞. Without any loss of generality, we may assume that
∇un(x) → ∇u(x) and un(x) → u(x) for a. e. x ∈ Ω. Using the same arguments
as before we did (see the proof of Theorem 3.4), we conclude that η ∈ Nf (u) and
ξ ∈ NU (u). Exploiting the Lebesgue dominated convergence theorem, it yields

lim
n→∞

∫
Ω

(
an(x)|∇un|p(x)−2∇un + bn(x)|∇un|q(x)−2∇un

)
· ∇(v − un) dx

=

∫
Ω

lim
n→∞

(
an(x)|∇un|p(x)−2∇un + bn(x)|∇un|q(x)−2∇un

)
· ∇(v − un) dx

=

∫
Ω

(
a(x)|∇u|p(x)−2∇u+ b(x)|∇u|q(x)−2∇u

)
· ∇(v − u) dx,

because of the boundedness of {an}, {bn} ⊂ L∞(Ω) and {un} ⊂ V . Letting n→∞
in inequality (32) and using the convergence results above we deduce∫

Ω

(
a(x)|∇u|p(x)−2∇un + b(x)|∇u|q(x)−2∇u

)
· ∇(v − u) dx

+ β

∫
Ω

|u|θ(x)−2u(v − u) dx+

∫
Γc

ψ(x, v) dΓ−
∫

Γc

ψ(x, u) dΓ

≥
∫

Ω

η(x)(v − u) dx+

∫
Γb

h(x)(v − u) dΓ +

∫
Γd

ξ(x)(v − u) dΓ

for all v ∈ K. This implies that u ∈ K is a solution of problem (1) corresponding to
(a, b, h) ∈ Λ2×H, namely, u ∈ S(a, b, h). So, we get ∅ 6= w– lim supn→∞ S(an, bn, hn)
⊂ S(a, b, h). Hence, (31) is valid.

Step 3. If sequence {(an, bn, hn)} ⊂ Λ2 ×H is such that {an}, {bn} are bounded

in BV (Ω), and (an, bn) → (a, b) in L1(Ω) × L1(Ω) and hn
w−→ h in H for some

(a, b, h) ∈ L1(Ω)2 ×H, then the inequality is valid

L(a, b, h) ≤ lim inf
n→∞

L(an, bn, hn). (43)
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Let {(an, bn, hn)} ⊂ Λ2 × H be such that {an}, {bn} are bounded in BV (Ω),

and (an, bn) → (a, b) in L1(Ω)2 and hn
w−→ h in Lp(·)

′
(Γb) as n → ∞ for some

(a, b, h) ∈ L1(Ω)2 ×H. By virtue of Step 2, we know that (a, b) ∈ Λ× Λ. Suppose
that sequence {un} ∈ K is such that un ∈ S(an, bn, hn)

inf
u∈S(an,bn,hn)

∫
Ω

|∇u− z|p(x) dx =

∫
Ω

|∇un − z|p(x) dx
(44)

for each n ∈ N. Remembering that ∪n≥1S(an, bn, hn) is bounded, passing to a

subsequence if necessary, we may suppose that un
w−→ u∗ in V as n → ∞ for

some u∗ ∈ K, i.e., u∗ ∈ w– lim supn→∞ S(an, bn, hn). Applying Step 2, it yields
u∗ ∈ S(a, b, h). Therefore, it follows from the lower semicontinuity of the function
L1(Ω) 3 a 7→ TV (a) ∈ R, and the weak lower semicontinuity of V 3 u 7→

∫
Ω
|∇u−

z|p(x) dx ∈ R and Lp(·)
′
(Γb) 3 h 7→

∫
Γb
|h(z)|p′(x) dΓ ∈ R that

lim inf
n→∞

L(an, bn, hn)

= lim inf
n→∞

[∫
Ω

|∇un − z|p(x) dx+ κTV (an) + τTV (bn) + µ

∫
Γb

|hn(z)|p
′(x) dΓ

]
≥ lim inf

n→∞

∫
Ω

|∇un − z|p(x) dx+ lim inf
n→∞

κTV (an) + lim inf
n→∞

τTV (bn)

+ lim inf
n→∞

µ

∫
Γb

|hn(z)|p
′(x) dΓ

≥
∫

Ω

|∇u∗ − z|p(x) dx+ κTV (a) + τTV (b) + µ

∫
Γb

|h(z)|p
′(x) dΓ

≥ inf
u∈S(a,b,h)

∫
Ω

|∇u− z|p(x) dx+ κTV (a) + τTV (b) + µ

∫
Γb

|h(z)|p
′(x) dΓ

= L(a, b, h).

Hence (43) follows.

Step 4. The solution set of Problem 4 is nonempty and weakly compact.
It follows from the formulation of the cost functional L that L is nonnegative.

Let {(an, bn, hn)} ⊂ Λ2 ×H be a minimizing sequence of problem (29), that is,

inf
a,b∈Λ, h∈H

L(a, b, h) = lim inf
n→∞

L(an, bn, hn). (45)

By virtue of definitions of L and Λ, we can see that {an} ⊂ Λ, {bn} ⊂ Λ are bounded

in BV (Ω)∩L∞(Ω), and {hn} is bounded in Lp(·)
′
(Γb). Passing to a subsequence if

necessary, we have

an → a∗, bn → b∗ in L1(Ω) and hn
w−→ h∗ in Lp(·)

′
(Γb) (46)

for some (a∗, b∗, h∗) ∈ Λ2 × Lp(·)′(Γb), where we have used the closedness of Λ in
L1(Ω) and the compactness of the embedding of BV (Ω) to L1(Ω). Let {un} ⊂ K
be a sequence such that (44) holds. From the convergence (46) and boundedness of
S, we conclude that {un} is bounded in V . So, we are able to select a subsequence

of {un}, denoted still in the same way, such that un
w−→ u∗ in V as n → ∞ for

some u∗ ∈ K. It is clear from Step 2 that u∗ ∈ S(a∗, b∗, h∗). Therefore, we have

lim inf
n→∞

L(an, bn, hn)
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= lim inf
n→∞

[∫
Ω

|∇un − z|p(x) dx+ κTV (an) + τTV (bn) + µ

∫
Γb

|hn(z)|p
′(x) dΓ

]
≥ lim inf

n→∞

∫
Ω

|∇un − z|p(x) dx+ lim inf
n→∞

κTV (an) + lim inf
n→∞

τTV (bn)

+ lim inf
n→∞

µ

∫
Γb

|hn(z)|p
′(x) dΓ

≥
∫

Ω

|∇u∗ − z|p(x) dx+ κTV (a∗) + τTV (b∗) + µ

∫
Γb

|h∗(z)|p
′(x) dΓ

≥ inf
u∈S(a∗,b∗,h∗)

∫
Ω

|∇u− z|p(x) dx+ κTV (a∗) + τTV (b∗) + µ

∫
Γb

|h∗(z)|p
′(x) dΓ

= L(a∗, b∗, h∗)

≥ inf
a,b∈Λ, h∈H

L(a, b, h). (47)

The latter combined with (45) implies that (a∗, b∗, h∗) ∈ Λ2 × H is a solution to
Problem 4.

Finally, we prove the weak compactness of solution set to Problem 4. Let
{(an, bn, hn)} be a sequence of solutions to Problem 4. It is obvious that {an} ⊂ Λ,

{bn} ⊂ Λ are bounded in BV (Ω) ∩ L∞(Ω), and {hn} is bounded in Lp(·)
′
(Γb). Us-

ing the same arguments, we may assume that (46) holds with some (a∗, b∗, h∗) ∈
Λ2 × Lp(·)′(Γb). Likewise, there exists a sequence {un} such that (44) is fulfilled

and un
w−→ u∗ in V as n → ∞ for some u∗ ∈ S(a∗, b∗, h∗). As we did before, we

prove the validity of (47). This means that (a∗, b∗, h∗) ∈ Λ2 × H is a solution to
Problem 4. Consequently, the solution set of Problem 4 is weakly compact. This
completes the proof.

Remark 4.2. The results of this section remain valid if the functional (30) is
replaced by the following regularized cost functional

J(a, b, h) = min
u∈S(a,b,h)

(∫
Ω

|∇u− z|p(x) dx

) 1
p−

+ κTV (a) + τ TV (b)

+ µ

(∫
Γb

|h|p(x)′ dΓ

) 1
p′−
.
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[19] L. Gasiński and N. S. Papageorgiou, Positive solutions for nonlinear elliptic problems with

dependence on the gradient, J. Differential Equations, 263 (2017), 1451-1476.
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[45] S. Migórski and A. Ochal, Inverse coefficient problem for elliptic hemivariational inequality,

Chapter 11 in: Nonsmooth/Nonconvex Mechanics (Blacksburg, VA, 1999), 247-261, Noncon-

vex Optim. Appl., 50, Kluwer Acad. Publ., Dordrecht, 2001.
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